The Anonymous Widower

Long Duration Energy Storage Would Reduce The UK’d Gas Usage By 10 Megatonnes By 2035

The title of this post, is the same as that of this press release on the Highview Power web site.

The press release gives these three bullet points.

  • UK has wasted over 1,300 GWh of wind since the start of the energy crisis in September 2021 due to an inability to store excess generation – enough to power 500,000 homes a day.
  • A new survey from YouGov, commissioned by Highview Power, reveals that 43% of UK adults think the UK imports too much gas, rising to 54% among Conservative voters at the 2019 General Election.
  • Long-duration energy storage (LDES) would reduce UK’s gas usage by 10 megatonnes in 2035 and save the grid around £2 billion a year, passing on savings of up to £50 a year.

In Highview Power’s Plan To Add Energy Storage To The UK Power Network, I talked about Highview Power’s possible 30 GWh CRYOBattery.

This project has not been fully revealed and I expect something will be announced before the end of this year.

August 6, 2022 Posted by | Energy, Energy Storage | , , , | Leave a comment

BP To Charge Up Vehicle Battery Research

The title of this post is the same as that of this article in The Times.

This is the title on a stock picture at the top of the page.

BP, whose profits benefited from soaring oil and gas prices, plans to invest heavily in research to develop solutions to help to decarbonise the transport sector.

I’m unsure about the picture, but it could be a number of buses or trucks connected to a large battery.

This press release on the BP web site, is the original source for The Times article and it is entitled BP To Invest Up To £50 million In New Global Battery Research And Development Centre In Britain.

The press release starts with these bullet points.

  • bp continuing to invest in the UK, with new investment of up to £50 million for new electric vehicle battery testing centre and analytical laboratory in Pangbourne.
  • Aims to advance development of engineering, battery technology and fluid technology and engineering into new applications such as electric vehicles, charging and data centres.
  • New facilities at its Castrol headquarters and technology centre expected to open in 2024, supporting the technology, engineering and science jobs housed there today.

I find these sentences interesting.

new applications such as electric vehicles, charging and data centres

This sentence is a bit of a mess as electric vehicles are not new, charging is well established and what have data centres got to do with batteries.

I have a friend, who runs a large fleet of electric buses and charging is a problem, as getting the required number of MWhs to the garage can be a problem in a crowded city.

But could it be, that BP are thinking of a battery-based solution, that trickle-charges when electricity is affordable and then charges buses or other vehicles as required, throughout the day?

I believe that a battery based on process engineering like Highview Power’s CRYOBattery could be ideal in this situation.

  • Effectively, the bus garage or transport parking would have its own high capacity battery-powered charging network.
  • The storage capacity of the battery would be geared to the daily charge load of the vehicles.
  • It would reduce the cost of electricity to the operator.

Such a battery might also be ideal to power a battery charging station.

I don’t know much about data centres, except that they need a lot of electricity.

Would driving data centres from a battery, that was trickle-charged overnight mean that the cost of electricity was reduced?

bp today unveiled plans to invest up to £50 million (around $60 million) in a new, state-of-the-art electric vehicle (EV) battery testing centre and analytical laboratory in the UK

There are a lot of battery ideas in the pipeline, so will one of the tasks be to find the best batteries for BP’s needs?

The site already undertakes research and development of fuels, lubricants and EV fluids and aims to become a leading hub for fluid technologies and engineering in the UK

You don’t think of lubricants being associated with electric vehicles, but obviously BP thinks it’s a serious enough topic to do some research.

The new facilities will help advance the development of leading fluid technologies and engineering for hybrid and fully battery electric vehicles, aiming to bring the industry closer to achieving the key tipping points for mainstream electric vehicle (EV) adoption.

This is self-explanatory.

Castrol ON advanced e-fluids manage temperatures within the battery which enables ultra-fast charging and improves efficiency, which help EVs to go further on a single charge and extend the life of the drivetrain system

Lubrication helps the world go round.

In addition, the advanced e-fluid technologies and engineering can be applied to other industries such as thermal management fluids for data centres where demand is rising exponentially

This is an interesting application and it will become increasingly important.

The growth of EV fluids is a huge opportunity, and we aim to be the market leader in this sector

I didn’t realise that EV fluids were so important.

The press release says this about the current status.

Two thirds of the world’s major car manufacturers use Castrol ON EV fluids as a part of their factory fill and we also supply Castrol ON EV fluids to the Jaguar TCS Racing Formula E team.

This press release on the Castrol web site is entitled CASTROL ON: Range Of Advanced E-Fluids For Mobility On Land, Sea And In Space.

This is the Castrol ON E-Fluids home page.

Where Will BP Need Batteries?

I can see the following applications are in BP’s sight from this press release.

  • Charging fleets of buses and trucks at their garage.
  • Powering battery-charging stations at filling stations.
  • Providing uninterruptable electricity feeds.
  • Powering data centres.

I will give a simple example.

Suppose a bus company wants to electrify the buses in a town.

  • They will have thirty double-deck buses each with a 500 kWh battery.
  • Wrightbus electric buses charge at 150 kW.
  • Charging all buses at the same time would need 4.5 MW
  • Each bus will need to be charged overnight and once during the day.
  • This means the bus company will need 30 MWh of power per day.
  • The largest wind turbines today are around 12 MW and have a capacity factor of 30 %.
  • A single turbine could be expected to generate 86 MWh per day.

It looks to me, that a battery in the garage which could provide an output of 5 MW and had a capacity of 100 MWh would link everything together and support the following.

  • A fleet of thirty buses.
  • All buses charged overnight and at one other time.
  • A 12 MW wind turbine.
  • Power for the offices and other facilities.
  • The battery would provide backup, when there is no wind.
  • There would also be a mains connection to the battery for use, when the wind turbine failed.

The size of the battery and the turbine would depend on the number of vehicles and how often, they were to be charged.

BP could replace diesel sales to the bus or transport company, with leasing of a zero-carbon charging system.

Simple systems based on one or two wind turbines, solar panels and a battery would have several applications.

  • Charging fleets of buses and trucks at their garage.
  • Powering battery-charging stations at filling stations.
  • Providing uninterruptable electricity feeds.
  • Powering data centres
  • Powering farms
  • Powering new housing estates
  • Powering factories

I can see this becoming a big market, that big energy companies will target.

Are BP planning to develop systems like this, as many of those, who might buy a system, are already their customers?

Choosing the best batteries and designing the system architecture would appear to be within the remit of the new Research Centre at Pangbourne.

Supporting Wind Farms

BP could certainly use a 2.5 GW/30 GWh battery at each of the three large wind farms; Mona, Morgan and Morven, that they are developing in the Irish Sea and off Aberdeen. These wind farms total 5.9 GW and a battery at each one, perhaps co-located with the offshore sub-station could mean that 5.9 GW was much more continuous.

The wind farms would be like virtual nuclear power stations, without any nuclear fuel or waste.

It would also mean that if the wind farm wasn’t needed and was told to switch off, the electricity generated could be stored in BP’s battery.

How many of BP’s other developments around the world could be improved with a co-located battery?

Process Technology

I am very keen on Highview Power’s CRYOBattery, but I do think that some parts of the design could benifit from the sort of technology that BP has used offshore and in the oil industry.

So will BP’s new battery research include offering advice to promising start-ups?

August 2, 2022 Posted by | Energy | , , , , , , , , , , | 3 Comments

Could A Highview Power CRYOBattery Use A LNG Tank For Liquid Air Storage?

This Google Map shows a 3D image of liquified natural gas (LNG) tanks at South Hook LNG Terminal near Milford Haven.

Note that images of these tanks under construction on the Internet, show that there is an underground portion of the tanks.

This page on the CIMC-ENRIC web site is entitled Successful Delivery Of 5,000M3 LNG Single Containment Tank Project. The page shows the design of the LNG tank.

As the density of liquid air is 870 kg/m3, a 5,000 cubic metre tank would contain 4,350 tonnes of liquid air at −194.35 °C and atmospheric pressure.

How much energy would be needed to create 4,350 tonnes of liquid air?

In this document, this is said about compressing natural gas with an electric drive.

It is the most-energy efficient technology with 230 kWh per ton of LNG.

As air and natural gas have molecules of similar weight, would 230 kWh per tonne be applicable to liquid air.

If it is, then around a GWh of electricity will be needed to create the liquid air.

This Wikipedia entry is entitled Cryogenic Energy Storage and describes Highview Power’s CRYOBattery.

This section describes the operation of the CRYOBattery.

When it is cheaper (usually at night), electricity is used to cool air from the atmosphere to -195 °C using the Claude Cycle to the point where it liquefies. The liquid air, which takes up one-thousandth of the volume of the gas, can be kept for a long time in a large vacuum flask at atmospheric pressure. At times of high demand for electricity, the liquid air is pumped at high pressure into a heat exchanger, which acts as a boiler. Air from the atmosphere at ambient temperature, or hot water from an industrial heat source, is used to heat the liquid and turn it back into a gas. The massive increase in volume and pressure from this is used to drive a turbine to generate electricity.

Note.

  1. The Claude cycle is described in this Wikipedia entry.
  2. The liquid air takes up one-thousandth of the volume of the gas.
  3. Wikipedia suggests that Highview claim the process has a round trip efficiency of 70 %.

Having done calculations in the past with chemical reactions in a series of large vessels, the dynamics can be strange and I wouldn’t be surprised that as Highview learn more about the process and add more and better ways of recycling heat and coolth, efficiencies will improve.

Certainly, in the process I mathematically-modelled in the 1970s, when I worked for ICI, I remember that one large reaction vessel performed better than four or five smaller ones with the same total volume.

Hence my thought that perhaps one large containment tank could be the most efficient design.

I also think, that the design of LNG tanks must have improved significantly over the last few years, as the transport of LNG has increased in importance.

August 1, 2022 Posted by | Energy, Energy Storage | , , | 4 Comments

Highview Power’s Second Commercial System In Yorkshire

This is all that Highview Power say about their proposed system in Yorkshire, on their web site.

Highview Power’s second commercial renewable energy power station in the UK is a 200MW/2.5GWh facility in Yorkshire. This is the first of 18 sites for UK wide deployment strategically located to benefit from the existing transmission infrastructure.

I have a few thoughts.

How Does The Size Of This System Fit With Other Systems?

According to the Highview Power web site the Manchester system is a 50MW/300MWh facility, but Wikipedia has this system as a 50MW/250MWh.

In this article on the Telegraph, which is entitled Britain Will Soon Have A Glut Of Cheap Power, And World-Leading Batteries To Store It, it is stated that they are planning a battery with this specification, location and timeline.

  • 2.5 GW output
  • 30 GWh of storage
  • Located on Humberside
  • Delivery in late 2024.

This CRYOBattery is an absolute monster.

Will The Humberside CRYOBattery Be Built At Creyke Beck Substation?

In Highview Power’s Plan To Add Energy Storage To The UK Power Network, I came to the conclusion, that the Humberside CRYOBattery will most likely be built near Creyke Beck substation, which is close to Cottingham.

  • Dogger Bank A, Dogger Bank B and Hornsea 4 offshore wind farms will all be connected to the Creyke Beck substation.
  • These wind farms have a total capacity of 3.4 GW.
  • The Humberside CRYOBattery, now looks to have a maximum output of 2.5 GW.
  • It looks like the Humberside CRYOBattery would be a well-matched backup to the three planned wind farms and perhaps even a few more turbines.

Building the Humberside CRYOBattery at Creyke Beck substation would appear to be a sensible decision.

Is Cottingham In Humberside, Yorkshire Or Both?

The Wikipedia entry for the village is named Cottingham, East Riding of Yorkshire, says this.

A golf course and leisure club on Wood Hill Way, and a major (400/275 kV AC) electricity substation “Creyke Beck”, lie just outside the formal boundaries of the parish, within Skidby civil parish.

Skidby is definitely in Yorkshire.

Where Are The Other Seventeen Sites?

The Yorkshire facility is indicated to be one of 18 sites on the Highview Power web site. Where are the other seventeen?

All we know is that they will be strategically located to benefit from the existing transmission infrastructure.

This is said in the Wikipedia entry, which is entitled High-Voltage Substations In The United Kingdom.

In 2020 there were 179 400 kV substations and 137 275 kV substations.

He who pays the money, makes the choice!

Has The Company Changed Direction?

I wrote Highview Power Names Rupert Pearce Chief Executive Officer on April 12th, 2022.

  • Since then, the Vermont and Chile projects have disappeared from the web site and projects in Yorkshire and Australia have been added.
  • The web site has also been improved.
  • As new CEOs often do, is Rupert Pearce refocussing the company?

Are they also looking in detail at current projects?

Has The Yorkshire Project Grown Substantially?

Consider.

  • National Grid are a company that has improved its image and engineering in recent years.
  • It has shown it can obtain finance for infrastructure from the City of London and respected financial institutions.
  • National Grid probably have extensive computer models of their electricity network.
  • National Grid knows it must add energy storage to their electricity network.
  • National Grid pays almost a billion pounds a year to wind farm operators to shut them down.

Eventually saving up to a billion pounds would be a good reason to have a small bet on promising technology.

Did Rupert Pearce ask his engineers to design the largest CRYOBattery they can?

Did National Grid have a count up sand find that twenty CRYOBatteries would cover all the strategic points on their transmission infrastructure?

According to the figures on the Highview Power web site (200 MW/2.5 GWh), eighteen systems like the one proposed for Yorkshire would have.

  • A total output of 3.6 GW
  • A total storage capacity of 45 GWh

The figures given in the article in the Telegraph (2.5 GW/30 GWh) for the very large system, would mean that twenty systems would have.

  • A total output of 50 GW
  • A total storage capacity of 600 GWh

These figures are between thirteen and fourteen times larger than those originally proposed.

Building The System

The Highview Power web site, says this about the deployment of eighteen systems.

UK wide deployment strategically located to benefit from the existing transmission infrastructure.

This Google Map shows the Creyke Beck substation.

Could 30 GWh of liquid-air storage be accommodated on the site?

I can see a large insulated sphere, partly buried in the ground being used.

Designing, building and testing the first system will probably be the most difficult part of the project.

  • But once the first system is successfully working reliably, the roll-out of other systems can be started.
  • The biggest problem will probably be planning permissions, so the systems must be designed to be sympathetic to the local environment.

I can certainly see, twenty of these systems in the UK, but how many others will we see worldwide?

I

July 30, 2022 Posted by | Energy, Energy Storage | , , , , , , , | 2 Comments

Highview Power’s Plan To Add Energy Storage To The UK Power Network

The plan was disclosed in this article on the Telegraph, which is entitled Britain Will Soon Have A Glut Of Cheap Power, And World-Leading Batteries To Store It, by Rupert Pearce, who is Highview’s chief executive.

His plan is to build twenty of Highview Power’s CRYOBatteries around the country.

  • Each CRYOBattery will be able to store 30 GWh.
  • Each CRYOBattery will be one of the largest batteries in the world.
  • They will have three times the storage of the pumped storage hydroelectric power station at Dinorwig.
  • They will be able to supply 2.5 GW for twelve hours, which is more output than Sizewell B nuclear power station.

The first 30 GWh CRYOBattery is planned to be operational by late 2024.

  • It will be built on Humberside.
  • Humberside is or will be closely connected to the Dogger Bank, Hornsea and Sofia wind farms.
  • When fully developed, I believe these wind farms could be producing upwards of 8 GW.

The Telegraph quotes Rupert Pearce as saying this.

We can take power when the grid can’t handle it, and fill our tanks with wasted wind (curtailment). At the moment the grid has to pay companies £1bn a year not to produce, which is grotesque.

I certainly agree with what he says about it being a grotesque practice.

It sounds to me, that Rupert’s plan would see Highview Power in the waste electricity management business.

  • The wasted wind would just be switched to the Humberside CRYOBattery, if there was too much power in the area.
  • The CRYOBattery might be conveniently located, where the wind farm cables join the grid.
  • Dogger Bank A and B wind farms are connected to Creyke Beck substation, which is North of the Humber.
  • Hornsea 1 and Hornsea 2 wind farm are connected to Killingholme substation, which is South of the Humber.
  • Hornsea 3 wind farm will be connected to Norfolk.
  • Hornsea 4 wind farms will be connected to Creyke Beck substation
  • It looks like the combined capacity of Dogger Bank A, Dogger Bank B and Hornsea 4 could be around 3.4 GW.
  • Sofia wind farm will be connected to Lazenby substation near Redcar.
  • As the CRYOBattery is buying, selling and storing electricity, I would assume that there’s money to be made.

This Google Map shows Creyke Beck substation.

Note.

  1. It is a large site.
  2. Creyke Beck Storage have built a 49.99 MW lithium-ion storage battery on the site.
  3. The Northern part of the site is used to store caravans.
  4. It looks like the combined capacity of Dogger Bank A, Dogger Bank B and Hornsea 4 could be around 3.4 GW.

It looks like a 30 GWh CRYOBattery with a maximum output of 2.5 GW would be an ideal companion for the three wind farms connected to Creyke Back substation.

The combination could probably supply upwards of 2.5 GW to the grid at all times to provide a strong baseload for Humberside.

Conclusion

Will the income from the Humberside CRYOBattery be used to fund the next CRYOBattery?

I very much think so as it’s very sensible financial management!

July 30, 2022 Posted by | Energy, Energy Storage | , , , , , , , , | 12 Comments

Can Highview Power’s CRYOBattery Compete With Pumped Storage Hydroelectricity?

In this article on the Telegraph, Rupert Pearce, who is Highview’s chief executive and ex-head of the satellite company Inmarsat, discloses this.

Highview is well beyond the pilot phase and is developing its first large UK plant in Humberside, today Britain’s top hub for North Sea wind. It will offer 2.5GW for over 12 hours, or 0.5GW for over 60 hours, and so forth, and should be up and running by late 2024.

The Humberside plant is new to me, as it has not been previously announced by Highview Power.

  • If it is built it will be megahuge with a storage capacity of 30 GWh and a maximum output of 2.5 GW.
  • Humberside with its connections to North Sea Wind, will be an ideal location for a huge CRYOBattery.
  • The world’s largest pumped storage hydroelectric power station is Fengning Pumped Storage Power Station in China and it is 40 GWh.

Pumped storage hydroelectric power stations are the gold standard of energy storage.

In the UK we have four pumped storage hydroelectric power stations.

With two more under construction.

As energy is agnostic, 30 GWh of pumped storage hydroelectric power at Coire Glas is the equivalent of 30 GWh in Highview Power’s proposed Humberside CRYOBattery.

Advantages Of CRYOBatteries Over Pumped Storage Hydroelectric Power

I can think of these advantages.

  • Cost
  • Could be build on the flat lands of East Anglia or Lincolnshire
  • Factory-built
  • NIMBYs won’t have much to argue about
  • No dams
  • No flooding of valleys
  • No massive construction sites.
  • No mountains required
  • No tunnels
  • Small footprint

I suspect that a large CRYOBattery could be built well within a year of starting construction.

Rupert Pearce’s Dream

The Telegraph article says this and I suspect it’s a quote from Rupert Pearce.

Further projects will be built at a breakneck speed of two to three a year during the 2020s, with a target of 20 sites able to provide almost 6GW of back-up electricity for four days at a time, or whatever time/power mix is optimal.

6 GW for four days is 576 GWh, which if it were spread around twenty sites is 28.8 GWh per site, which is just under the 30 GWh of the proposed Humberside CRYOBattery.

Conclusion

You can just imagine the headlines in The Sun!

Man In Bishop’s Stortford Shed Saves The World!

This story on the BBC, which is entitled Meet The British Inventor Who Came Up With A Green Way Of Generating Electricity From Air – In His Shed, explains my suggested headline.

Now that’s what I call success!

 

July 29, 2022 Posted by | Energy, Energy Storage | , , , , , , , | 4 Comments

How Will Highview Power Affect The Lithium-Ion Grid Battery Market?

In this article on the Telegraph, Rupert Pearce, who is Highview’s chief executive and ex-head of the satellite company Inmarsat, discloses this.

Highview is well beyond the pilot phase and is developing its first large UK plant in Humberside, today Britain’s top hub for North Sea wind. It will offer 2.5GW for over 12 hours, or 0.5GW for over 60 hours, and so forth, and should be up and running by late 2024.

The Humberside plant is new to me, as it has not been previously announced by Highview Power.

  • If it is built it will be megahuge with a storage capacity of 30 GWh and a maximum output of 2.5 GW.
  • Humberside with its connections to North Sea Wind, will be an ideal location for a huge CRYOBattery.
  • The world’s largest battery is at Ouarzazate Solar Power Station in Morocco and it is 3 GWh.
  • The world’s largest pumped storage power station is Fengning Pumped Storage Power Station in China and it is 40 GWh.

The proposed Humberside battery also has a smaller sibling under construction at Carrington in Manchester.

This will have a storage capacity of 250 MWh and a maximum output of 50 MW.

Factors Affecting The Choice

Several factors will affect the choice between lithium-ion batteries and Highview Power’s CRYOBattery.

Reliability

Reliability is paramount and whilst lithium-ion batteries batteries have a high level of reliability, there probably needs to be more development and quality assurance before CRYOBatteries have a similar level of reliability.

Size

The largest lithium-ion battery, that has been proposed in the UK, is the 320 MW/640 MWh battery that will be installed at the Gateway Energy Centre in Essex.

This size of CRYOBattery should be possible, but this size is probably in range of both lithium-ion and CRYOBatteries.

Safety

The Wikipedia entry for Battery Storage Power Station has this to say about Safety.

Some batteries operating at high temperatures (sodium–sulfur battery) or using corrosive components are subject to calendar ageing, or failure even if not used. Other technologies suffer from cycle ageing, or deterioration caused by charge-discharge cycles. This deterioration is generally higher at high charging rates. These two types of ageing cause a loss of performance (capacity or voltage decrease), overheating, and may eventually lead to critical failure (electrolyte leaks, fire, explosion).

An example of the latter was a Tesla Megapack in Geelong which caught fire, fire and subsequent explosion of battery farm in Arizona, fire of Moss Landing battery farm. Concerns about possible fire and explosion of a battery module were also raised during residential protests against Cleve Hill solar farm in United Kingdom. Battery fire in Illinois resulted in “thousands of residents” being evacuated, and there were 23 battery farm fires in South Korea over the period of two years. Battery fires may release a number of dangerous gases, including highly corrosive and toxic hydrogen fluoride.

The long term safety of a CRYOBattery is probably not yet known in detail, but I suspect in some applications, CRYOBatteries could be safer than chemical batteries.

Environmental Factors

I suspect that CRYOBatteries can be built without any hard-to-mine or environmentally-unfriendly materials like lithium.

Cost

The article in The Telegraph, says this about costs.

Mr Pearce said Highview’s levelised cost of energy (LCOE) would start at $140-$150, below lithium, and then slide on a “glide path” to $100 with over time.

It does look that the all important factor of cost could be the clincher in the choice between the two systems.

For larger batteries, the CRYOBattery will probably have a larger advantage.

Conclusion

I can see Highview Power and their CRYOBatteries putting up a good fight against lithium-ion batteries, especially with larger batteries, where they have a larger cost advantage.

In the UK, we will know they have won an advantage, if the two big battery-storage funds; Gore Street and Gresham House, start to install CRYOBatteries.

 

 

July 29, 2022 Posted by | Energy, Energy Storage | , , , , , , , | Leave a comment

Highview Chief Rupert Pearce On The Cold Batteries That Could Save The Planet

The title of this post, is the same as that of this article on The Sunday Times.

It is an article very much worth a read, as it talks about former Inmarsat boss; Rupert Pearce and his new position as boss at Highview Power.

I have followed Highview Power for a few years.

I first wrote about the company in British Start-Up Beats World To Holy Grail Of Cheap Energy Storage For Wind And Solar, after reading about the company in the Daily Telegraph in August 2019.

They seem to have had good press in the last three years and have generated a steady stream of orders from Spain, Chile and Scotland.

But progress seems to have been slow to get the first full-size system at Carrington completed.

It does seem , that Rupert Pearce could be the professional boss they need?

Highview Power ‘s CRYOBatteries certainly have potential.

Highview Power CRYOBatteries Compared To Lithium-Ion Batteries

Highview Power ‘s CRYOBatteries do not use any exotic metals or materials, that are not readily available, whereas lithium-ion batteries use lots of rare metals and electricity in their manufacture.

CRYOBatteries can also be expanded in capacity by just adding more liquid-air tanks.

Highview Power CRYOBatteries Typically Cost £500 Million

This figure is disclosed in the Sunday Times article.

For that you probably get a power station, with these characteristics.

  • 50 MW Output.
  • Five to eight hour storage.
  • No emissions.
  • Well-understood maintenance.
  • An environmentally-friendly plant.
  • Long battery life.

But my experience tells me, that like large lithium-ion batteries used for grid storage, that CRYOBatteries could be an asset that will appeal to large financial companies.

  • At present, Highview Power have not run a 50 MW CRYOBattery, but once they show high reliability, I can envisage the energy storage funds taking a good look.
  • At £500 million a throw, they are a good size with probably a decent return for insurance companies and pension funds.

See World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant for Aviva’s view on investing in massive green infrastructure.

I very much feel, that with his City connections and experience, that Rupert Pearce might be the right person to arrange financing for CRYOBatteries.

I will add a story from the financing of Artemis, which was the project management system, that I wrote in the 1970s.

Normally we leased or rented the systems, but some companies wanted to buy them outright, so we came up with a price of something like £125,000. Our bank were happy to fund these systems, when the purchaser was someone like BP, Shell, Bechtel, Brown & Root or British Aerospace. Later on, the bank would package together several systems and get us a better deal.

Intriguingly, £125,000 in the late 1970s is about half a billion now. I suspect, I’m being naive to suggest that Highview’s problem of funding multiple sales is similar to the one we had fifty years ago.

Highview Power CRYOBatteries And Wind And Solar Farms

I discussed the use of CRYOBatteries with solar power in The Power Of Solar With A Large Battery.

As the Highview Power press release, on which I based the article has now been deleted, I would assume that that project has fallen through. But the principles still apply!

But surely, a wind farm paired with an appropriately-sized CRYOBattery would ensure a steady supply of power?

Could CRYOBatteries Be Used With Floating Offshore Wind Farms?

In ScotWind N3 Offshore Wind Farm, I described an unusual wind farm proposed by Magnora ASA.

  • This page on their web site outlines their project.
  • It will be technology agnostic, with 15MW turbines and a total capacity of 500MW
  • It will use floating offshore wind with a concrete floater
  • It is estimated, that it will have a capacity factor of 56 %.
  • The water depth will be an astonishing 106-125m
  • The construction and operation will use local facilities at Stornoway and Kishorn Ports.
  • The floater will have local and Scottish content.

The floater will be key to the whole wind farm.

  • It will certainly have an offshore substation to connect the wind turbines to the cable to the shore.
  • Magnora may be proposing to add a hydrogen electrolyser.
  • Tanks within the concrete floater can be used to store gases.

I wonder if CRYOBatteries could be installed on the concrete floaters, that would be used to smooth the electrical output of the wind farm?

Note that in the past, concrete semi-submersible concrete structures have been used to host all kinds of gas and oil processing equipment.

Conclusion

I feel that Highview Power have made a good choice of Chief Executive and I have high hopes he can awaken a company with masses of potential.

 

 

April 24, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , | 2 Comments

All You Want To Know About Highview Power

This article on Power is entitled Market Prospects Heating Up for Cryogenic Energy Storage.

It talks in detail about the technology, financing and market prospects for Highview Power and their CRYOBattery.

  • Their batteries store energy by liquifying air and storing it in large tanks.
  • To recover the energy, the air is encouraged to go to a gaseous phase and put through an air turbine.
  • Their first commercial system is being built at Carrington near Manchester.
  • The Carrington system will have an output of 50 MW and be able to store up to 250 MWh.
  • Other systems are under development for Vermont and Spain.
  • The systems are built like Leho from readily available components from the oil and gas industry.

One of my regrets in life, is that I missed the crowdfunding for this company!

Read the article as you might find one of Highview Power’s CRYOBatteries coming to a site near you.

Power’s article is the best yet on describing the technology.

 

June 2, 2021 Posted by | Energy Storage | , , , , , , | Leave a comment