The Anonymous Widower

Mountain Marvel: How One Of Biggest Batteries In Europe Uses Thousands Of Gallons Of Water To Stop Blackouts

The title of this post, is the same as that of this article on The Guardian.

This is the sub-heading.

Much-loved’ Dinorwig hydroelectric energy storage site in Wales has a vital role to play in keeping the lights on

These are the first three paragraphs of the article.

Seconds after a catastrophic series of power outages struck across the UK in the summer of 2019, a phone rang in the control room of the Dinorwig hydropower plant in north Wales. It was Britain’s energy system operator requesting an immediate deluge of electricity to help prevent a wide-scale blackout crippling Britain’s power grids.

The response was swift, and in the end just under one million people were left without power for less than 45 minutes. While trains were stuck on lines for hours and hospitals had to revert to backup generators, that phone call prevented Britain’s worst blackout in a decade from being far more severe.

Almost six years later, the owners of Dinorwig, and its sister plant at Ffestiniog on the boundary of Eryri national park, formerly Snowdonia, are preparing to pump up to £1bn into a 10-year refurbishment of the hydropower plants that have quietly helped to keep the lights on for decades.

This is one of the best articles, I have read about pumped storage hydroelectricity.

It is very much a must read.

May 25, 2025 Posted by | Energy, Energy Storage | , , , , , | 1 Comment

ENGIE And CDPQ To Invest Up To £1bn In UK Pumped Storage Hydro Assets 

The title of this post, is the same as a news item from ENGIE.

These four bullet points act as sub-headings.

  • Refurbishment programme to extend life of plants at Dinorwig and Ffestiniog will ensure the UK’s security of supply and support the transition to a low carbon energy future  
  • ENGIE owns 75% of the plants via First Hydro Company, a 75:25 joint venture with Canadian investment group CDPQ 
  • The two pumped storage hydro plants are the UK’s leading provider of power storage and flexibility, with 2.1GW of installed capacity  
  • They represent 5% of the UK’s total installed power generation capacity and 74% of the UK’s pumped storage hydro capacity

These three paragraphs give more details.

The preparation of a 10-year project of refurbishment at *ENGIE’s Dinorwig pumped storage station has begun, following an 8-year refurbishment at Ffestiniog, enabling the delivery of clean energy whenever needed.

These flexible generation assets, based in North Wales, are essential to the UK Government’s accelerated target of achieving a net zero carbon power grid by 2030. Together they help keep the national electricity system balanced, offering instant system flexibility at short notice. The plants are reaching end of life and replanting will ensure clean energy can continue to flow into the next few decades.

Re-planting could see the complete refurbishment of up to all six generating units at Dinorwig – a final investment decision is still to be made on the number of units to replace – while the re-planting at Ffestiniog will be completed at the end of 2025. The program also involves the replacement of main inlet valves – with full drain down of the stations – and detailed inspections of the water shafts.

It also looks like the complete refurbishment at Dinorwig will take ten years, as it seems they want to keep as much of the capacity available as possible.

When the replanting is complete, the two power plants will be good for twenty-five years.

Hopefully, by the time Dinorwig has been replanted, some of the next generation of pumped storage hydroelectric power stations are nearing completion.

The news item says this about Dinorwig.

Dinorwig, the largest and fastest-acting pumped storage station in Europe, followed in 1984 and was regarded as one of the world’s most imaginative engineering and environmental projects.

Dinorwig must be good, if a French company uses those words about British engineering of the 1980s.

May 21, 2025 Posted by | Energy, Energy Storage, Environment | , , , , , , , , | Leave a comment

Highview Power Releases More Details Of The Hunterston LDES

In a long and detailed press release, these are the first two paragraphs.

London, 15 October 2024: The First Minister for Scotland, John Swinney MSP, welcomed Highview Power Executives to Scotland House in London today as the company announced its intention to develop its Hunterston project in Scotland as part of its multi-billion-pound LDES programme. Hunterston will deliver five times Scotland’s current operational battery storage capacity and is strategically placed in the grid transmission network to maximise the use of Scottish-produced renewable electricity. This follows Highview Power’s funding round in June where it secured a £300 million investment for its 300MWh proprietary Liquid Air Energy Storage (LAES) technology at Carrington, near Manchester.

Supported by the Scottish Government, Hunterston is the first project in Highview Power’s second phase, which comprises four projects across Scotland and Northern England. The 2.5GWh LAES plant at Hunterston will deliver an 8-fold increase in storage capacity on Carrington – to deliver enough power 650,000 homes for 12.5 hours.

Note these important points.

  1. The Hunterston battery will be the first of four 200 MW/2.5 GWh batteries.
  2. Together, these four batteries will have a distributed 1600 MW/10 GWh capability.
  3. For comparison, Dinorwig pumped storage hydroelectric power station, in Snowdonia, which opened in 1984, has a 1600 MW/9.1 GWh capability.
  4. The second battery will be in Aberdeenshire.
  5. The Hunterston project will support 1,000 jobs onsite during construction and 650 jobs in the supply chain.

John Swinney, who is First Minister for Scotland, summed the project up like this.

The creation of the largest liquid air energy facility in the world, in Ayrshire, demonstrates just how valuable Scotland is in delivering a low carbon future as well as supporting the global transition to net zero.

October 16, 2024 Posted by | Energy, Energy Storage | , , , , | Leave a comment

RWE Goes For An Additional 10 GW Of Offshore Wind In UK Waters In 2030

This press release from RWE is entitled RWE And Masdar Join Forces To Develop 3 Gigawatts Of Offshore Wind Projects Off The UK Coast.

This is the last paragraph.

The UK plays a key role in RWE’s strategy to grow its offshore wind portfolio RWE is a leading partner in the delivery of the UK’s Net Zero ambitions and energy security, as well as in contributing to the UK build-out target for offshore wind of 50 GW by 2030. RWE already operates 10 offshore wind farms across the UK. Following completion of the acquisition of the three Norfolk offshore wind projects from Vattenfall announced at the end of 2023, RWE is developing nine offshore wind projects in the UK, representing a combined potential installed capacity of around 9.8 GW, with RWE’s pro rata share amounting to 7 GW. Furthermore, RWE is constructing the 1.4 GW Sofia offshore wind project in the North Sea off the UK’s east coast. RWE’s unparalleled track record of more than 20 years in offshore wind has resulted in 19 offshore wind farms in operation, with a goal to triple its global offshore wind capacity from 3.3 GW today to 10 GW in 2030.

Note.

  1. Nine offshore wind projects in the UK, representing a combined potential installed capacity of around 9.8 GW
  2. RWE are saying they intend to add 6.7 GW in 2030.

The eight offshore wind farms, that RWE are developing in UK waters would appear to be.

  • Sofia – 1,400 MW
  • Norfolk Boreas – 1380 MW
  • Norfolk Vanguard East – 1380 MW
  • Norfolk Vanguard West – 1380 MW
  • Dogger Bank South – 3000 MW
  • Awel y Môr – 500 MW
  • Five Estuaries – 353 MW
  • North Falls – 504 MW

This is a total of 9897 MW, which ties in well with RWE’s new capacity figure of 9.8 GW.

The Location Of RWE’s Offshore Wind Farms

RWE’s wind farms seem to fit in groups around the UK.

Dogger Bank

This wind farm is on the Dogger Bank.

  • Dogger Bank South – 3000 MW – Planned

This wind farm would appear to be rather isolated in the middle of the North Sea.

RWE could have plans to extend it or even link it to other wind farms in the German area of the Dogger Bank.

Lincolnshire Coast

This wind farm is along the Lincolnshire Coast.

  • Triton Knoll – 857 MW – 2022

As there probably isn’t much heavy industry, where Triton Knoll’s power comes ashore, this wind farm can provide the power needed in the area.

But any excess power in the area can be exported to Denmark through the Viking Link.

Norfolk Coast

These wind farms are along the Norfolk Coast.

  • Norfolk Boreas – 1380 MW – Planned
  • Norfolk Vanguard East – 1380 MW – Planned
  • Norfolk Vanguard West – 1380 MW – Planned

These three wind farms will provide enough energy to provide the power for North-East Norfolk.

North Wales Coast

These wind farms are along the North Wales Coast.

  • Awel y Môr – 500 MW – Planned
  • Gwynt y Môr – 576 MW – 2015
  • Rhyl Flats  – 90 MW – 2009
  • North Hoyle – 60 MW – 2003

These wind farms will provide enough energy for the North Wales Coast.

Any spare electricity can be stored in the 1.8 GW/9.1 GWh Dinorwig pumped storage hydroelectric power station.

Electric Mountain may have opened in 1984, but it is surely a Welsh giant decades ahead of its time.

Suffolk Coast

These wind farms are along the Suffolk Coast.

  • Five Estuaries – 353 MW – Planned
  • Galloper – 353 MW – 2018
  • North Falls – 504 MW – Planned

These wind farms will provide enough energy for the Suffolk Coast, which except for the Haven Ports, probably doesn’t have many large electricity users.

But if the area is short of electricity, there will be Sizewell B nuclear power station to provide it.

Teesside

This wind farm is along the Teesside Coast

  • Sofia – 1,400 MW – Planned

Teesside is a heavy user of electricity.

These six areas total as follows.

  • Dogger Bank – 3,000 MW
  • Lincolnshire Coast – 857 MW
  • Norfolk Coast – 4140 MW
  • North Wales Coast – 1226 MW
  • Suffolk Coast – 1210 MW
  • Teesside – 1,400 MW

Backup for these large clusters of wind farms for when the wind doesn’t blow will be provided as follows.

  • Dogger Bank – Not provided
  • Lincolnshire Coast- Interconnectors to Denmark and Scotland
  • Norfolk Coast – Not provided
  • North Wales Coast – Stored in Dinorwig pumped storage hydroelectric power station
  • Suffolk Coast – Sizewell B and Sizewell C
  • Teesside – Interconnectors to Norway and Scotland and Hartlepool nuclear power stations

Note.

  1. The interconnectors will typically have a 2 GW capacity.
  2. The 1.9 GW/9.1 GWh Dinorwig pumped storage hydroelectric power station must be one of the best wind farm backups in Europe.

There is a very solid level of integrated and connected assets that should provide a reliable power supply for millions of electricity users.

How Will Dogger Bank And The Norfolk Coast Wind Clusters Work Efficiently?

The Dogger Bank and the Norfolk Coast clusters will generate up to 3 and 4.14 GW respectively.

So what purpose is large amounts of electricity in the middle of the North Sea?

The only possible purpose will be to use giant offshore electrolysers to create hydrogen.

The hydrogen will then be transported to point of use by pipeline or tanker.

Feeding H2ercules

I described H2ercules in H2ercules.

H2ercules is an enormous project that will create the German hydrogen network.

The H2ercules web site, shows a very extensive project, as is shown by this map.

Note.

  1. Hydrogen appears to be sourced from Belgium, the Czech Republic, The Netherlands and Norway.
  2. RWE’s Dogger Bank South wind farm will be conveniently by the N of Norway.
  3. RWE’s Norfolk cluster of wind farms will be conveniently by the N of Netherlands.
  4. The Netherlands arrow points to the red circles of two hydrogen import terminals.

For Germany to regain its former industrial success, H2ercules  will be needed to be fed with vast amounts of hydrogen.

And that hydrogen could be in large amounts from the UK sector of the North Sea.

Uniper’s Wilhelmshaven Hydrogen Hub

This page on the Uniper web site is entitled Green Wilhelmshaven: To New Horizons

This Uniper graphic shows a summary of gas and electricity flows in the Wilhelmshaven Hydrogen Hub.

Note.

  1. Ammonia can be imported, distributed by rail or ships, stored or cracked to provide hydrogen.
  2. Wilhelmshaven can handle the largest ships.
  3. Offshore wind energy can generate hydrogen by electrolysis.
  4. Hydrogen can be stored in underground salt caverns.

I suspect hydrogen could also be piped in from an electrolyser in the East of England or shipped in by a hydrogen tanker.

All of this is well-understood technology.

Sunak’s Magic Money Tree

Rishi Sunak promised a large giveaway of tax in his manifesto for the 2024 General Election.

As we are the only nation, who can provide the colossal amounts of hydrogen the Germans will need for H2ercules, I am sure we will be well paid for it.

A few days ago we celebrated D-Day, where along with the Americans and the Canadians, we invaded Europe.

Now eighty years later, our hydrogen is poised to invade Europe again, but this time for everybody’s benefit.

This document on the Policy Mogul web site is entitled Rishi Sunak – Conservative Party Manifesto Speech – Jun 11.

These are three paragraphs from the speech.

We don’t just need military and border security. As Putin’s invasion of Ukraine has shown, we need energy security too. It is only by having reliable, home-grown sources of energy that we can deny dictators the ability to send our bills soaring. So, in our approach to energy policy we will put security and your family finances ahead of unaffordable eco zealotry.

Unlike Labour we don’t believe that we will achieve that energy security via a state-controlled energy company that doesn’t in fact produce any energy. That will only increase costs, and as Penny said on Friday there’s only one thing that GB in Starmer and Miliband’s GB Energy stands for, and that’s giant bills.

Our clear plan is to achieve energy security through new gas-powered stations, trebling our offshore wind capacity and by having new fleets of small modular reactors. These will make the UK a net exporter of electricity, giving us greater energy independence and security from the aggressive actions of dictators . Now let me just reiterate that, with our plan, we will produce enough electricity to both meet our domestic needs and export to our neighbours. Look at that. A clear, Conservative plan not only generating security, but also prosperity for our country.

I believe that could be Rishi’s Magic Money Tree.

Especially, if the energy is exported through electricity interconnectors or hydrogen or ammonia pipelines and tankers.

Will This Be A Party Anyone Can Join?

Other wind farm clusters convenient for the H2ercules hydrogen import terminals on the North-West German coast include.

  • Dogger Bank – SSE, Equinor – 5008 MW
  • East Anglian – Iberdrola – 3786 MW
  • Hornsea – Ørsted – 8056 MW

That totals to around 16.5 GW of wind power.

I can see offshore electrolysers producing hydrogen all around the coasts of the British Isles.

What Happens If Sunak Doesn’t Win The Election?

RWE and others have signed contracts to develop large wind farms around our shores.

They didn’t do that out of the goodness of their hearts, but to make money for themselves and their backers and shareholders.

Conclusion

I believe a virtuous circle will develop.

  • Electricity will be generated in the UK.
  • Some will be converted to hydrogen.
  • Hydrogen and electricity will be exported to the highest bidders.
  • European industry will, be powered by British electricity and hydrogen.
  • Money will be paid to the UK and the energy suppliers for the energy.

The more energy we produce, the more we can export.

In the future more interconnectors, wind farms and electrolysers will be developed.

Everybody will benefit.

As the flows grow, this will certainly become a Magic Money Tree, for whoever wins the election.

 

June 9, 2024 Posted by | Energy, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

UK ESO Unveils GBP 58 Billion Grid Investment Plan To Reach 86 GW of Offshore Wind By 2035

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

Great Britain’s electricity system operator (ESO) has proposed a GBP 58 billion (approximately EUR 68 billion) investment in the electricity grid. The proposal outlines a vision for incorporating an additional 21 GW of offshore wind into the grid by 2035, which would bring the country’s total offshore wind capacity to a potential 86 GW.

These three paragraphs add more details to what the investment in the grid means for offshore wind.

The ESO released on 19 March the first Beyond 2030 report. The plan sets up the necessary infrastructure to transfer power to and from future industries, as electricity demand is expected to rise by 64 per cent by 2035, according to the ESO.

The grid operator said that the plan connects a further 21 GW of offshore wind in development off the coast of Scotland to the grid in an efficient and coordinated way which would bring the country’s total offshore wind capacity to a potential 86 GW.

The proposals could assist the UK government in meeting the sixth Carbon Budget and allow for the connection of Crown Estate Scotland’s ScotWind leasing round.

These are my thoughts.

How Much Offshore Wind Is In The Pipeline?

This Wikipedia entry is a List Of Offshore Wind Farms In The United Kingdom.

It gives these figures for wind farms in various operational an development states.

  • Operational – 14,703 MW
  • Under Construction – 5,202 MW
  • Pre-Construction – 6,522 MW
  • Contracts for Difference – Round 3 – 12 MW
  • Contracts for Difference – Round 4 – 1,428 MW
  • Early Planning – England – 18,423 MW
  • Early Planning – Wales – 700 MW
  • Early Planning – Scotland – 30,326 MW

Note.

  1. These add up to a total of 77,316 MW.
  2. If all the wind farms in the Wikipedia entry are commissioned, the UK will be short of the 86,000 MW total by 8,664 MW.
  3. Some wind farms like Ossian could be increased in size by a few GW, as I reported in Ossian Floating Wind Farm Could Have Capacity Of 3.6 GW.

It looks like only another 7,164 MW of offshore wind needs to be proposed to meet the required total.

This article on offshoreWIND.biz is entitled The Crown Estate Opens 4.5 GW Celtic Sea Floating Wind Seabed Leasing Round, will add another 4,500 MW to the total, which will raise the total to 81,816 MW.

The article also finishes with this paragraph.

Round 5 is expected to be the first phase of development in the Celtic Sea. In November 2023, the UK Government confirmed its intention to unlock space for up to a further 12 GW of capacity in the Celtic Sea.

A further 12 GW of capacity will take the total to 93,816 MW.

In Three Shetland ScotWind Projects Announced, I talked about three extra Scotwind wind farms, that were to be developed to the East of Shetland.

These will add 2.8 GW, bringing the total to 96,616 MW.

I don’t think the UK has a problem with installing 86 GW of offshore wind by 2035, so we must create the electricity network to support it.

The Electricity Network In 2024

I clipped this map from this article in The Telegraph, which is entitled Britain’s Energy System Will Not Hit Net Zero Until 2035, National Grid Tells Labour.

 

The dark blue lines are the 400 kV transmission lines.

  • The one furthest East in East Anglia serves the Sizewell site, which hosts the Sizewell B nuclear power station and will be the home of Sizewell C nuclear power station, unless the Green or LibDem Parties are a member of a coalition government.
  • Kent and Sussex seem to be encircled by 400 kV lines, with small spurs to the interconnectors to Europe.
  • Two 400 kV lines appear to serve the South-West peninsular, with one going along the South Coast and the other further North. I suspect these two motorways for electricity explain, why the Morocco-UK Power Project terminates in Devon.
  • London seems to have its own M25 for electricity.
  • There also appears to be an East-West link to the North of London linking Sizewell in the East and Pembroke in the West. Both ends have large power stations.
  • There also appear to be two 400 kV lines from Keadby by the Humber Estuary to North Wales with the pumped storage hydro power station at Dinorwig.
  • Two more 400 kV lines link Yorkshire to the South of Scotland.
  • A lonely Northern cable connects Edinburgh and the North of Scotland.

The red lines, like the one encircling central London are the 275 kV transmission lines.

  • Think of these as the A roads of the electricity network.
  • They encircle London often deep underground or under canal towpaths.
  • They reinforce the electricity network in South Wales.
  • Liverpool appears to have its own local network.
  • They also seem to provide most of the capacity North of and between Edinburgh and Glasgow.

Newer cables are starting to appear on this map.

There are two light blue cables and these are HVDC cables that run underwater.

  • The 1.2 GW Caithness – Moray Link does what it says in the name and it connects the far North of Scotland direct towards Aberdeen.
  • The much larger 2.25 GW Western HVDC Link connects Hunterston near Glasgow to Flintshire Bridge near Liverpool. Note how it passes to the West of the Isle of Man.

Not shown on the map are the smaller 500 MW Moyle Interconnector and the recently-opened 600 MW Shetland HVDC Connection.

The Electricity Network In 2050

This second map shows how the network will look in 2050.

Note.

  1. The colours are the same, as the previous map.
  2. Although, I do think there are some errors in which have been used.
  3. There are a lot more cables.

There are several more light blue cables and these are HVDC cables that run underwater.

  • Shetland is now linked to the North of Scotland by the Shetland HVDC Connection.
  • There appears to be a cluster of HVDC interconnectors at Caithness HVDC switching station, near Wick, including a new one to Orkney, to go with the others to Moray and Shetland.
  • The 2 GW Scotland England Green Link 1 will run from Torness in Southeast Scotland to Hawthorn Pit substation in Northeast England.
  • The 2 GW Eastern Green Link 2 will run from Sandford Bay, at Peterhead in Scotland, to the Drax Power Station in Yorkshire, England.
  • There also appear to be two or possibly three other offshore cables linking the East Coast of Scotland with the East Coast of England.
  • If the Eastern cables are all 2 GW, that means there is a trunk route for at least 8 GW between Scotland’s wind farms in the North-East and Eastern England, which has the high capacity wind farms of Dogger Bank, Hornsea and around the Lincolnshire and East Angliam coasts.
  • Turning to the Western side of Scotland, there appears to be a HVDC connection between the Scottish mainland and the Outer Hebrides.
  • South-West of Glasgow, the Western HVDC Link appears to have been duplicated, with a second branch connecting Anglesey and North-West Wales to Scotland.
  • The Moyle Interconnector must be in there somewhere.
  • Finally, in the South a link is shown between Sizewell and Kent. It’s shown as 400 kV link but surely it would be a HVDC underwater cable.

There are also seven stubs reaching out into the sea, which are probably the power cables to the wind farms.

  • The red one leading from South Wales could connect the wind farms of the Celtic Sea.
  • The blue link North of Northern Ireland could link the MachairWind wind farm to the grid.
  • The other two red links on the West Coast of Scotland could link to other ScotWind wind farms.
  • The red link to the North of East Anglia could link RWE’s Norfolk wind farms to the grid.
  • The other stubs in the East could either connect wind farms to the grid or be multi-purpose interconnectors linking to Germany and the Netherlands.

It looks to me, that National Grid ESO will be taking tight control of the grid and the connected wind farms, as an integrated entity.

As a Graduate Control Engineer, I can’t disagree with that philosophy.

Hydrogen Production

In How Germany Is Dominating Hydrogen Market, I talked about how Germany’s plans to use a lot of hydrogen, will create a large world-wide demand, that the UK because of geography and large amounts of renewable energy is in an ideal place to fulfil.

I can see several large electrolysers being built around the UK coastline and I would expect that National Grid ESO have made provision to ensure that the electrolysers have enough electricity.

Would I Do Anything Different?

Consider.

  • If it is built the Morocco-UK Power Project will terminates in Devon.
  • There could be more wind farms in the Celtic Sea.
  • It is likely, that the wind farms in the Celtic Sea will connect to both Pembroke and Devon.
  • Kent has interconnectors to the Continent.

Would a Southern HVDC link along the South Coast between Devon and Kent be a good idea?

Conclusion

Looking at the proposed list of wind farms, a total in excess of 96 GW could be possible, which is ten GW more than needed.

The network not only serves the UK in a comprehensive manner, but also tees up electricity for export to Europe.

March 20, 2024 Posted by | Energy | , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

The UK’s Pumped Storage Hydroelectricity

This post is a simple list of the UK’s pumped storage hydroelectricity.

  • Balliemeanoch – 1500 MW/45 GWh – In Development
  • Coire Glas – 1500 MW/30 GWh – Under Construction
  • Corrievarkie – 600 MW/14.5 GWh – In Development
  • Cruachan – 1000 MW/7.1 GWh – In Operation
  • Fearn – 1800 MW/37 GWh – In Development
  • Dinorwig – 1800 MW/9.1 GWh – In Operation
  • Earba – 900 MW/33 GWh – In Development
  • Foyers – 305 MW/10 GWh – In Operation
  • Ffestiniog – 360 MW/1.44 GWh – In Operation
  • Loch Kemp – 600 MW/9 GWh – In Development
  • Loch Sloy – 152.5 MW/25 GWh – In Operation
  • Red John – 450 MW/2.8 GWh – Under Construction

Note.

  1. Cruachan is only 440 MW and is being upgraded.
  2. The storage capacity at Foyers may be wrong, as I can’t find my original source.

When fully developed the total will be 10969.3 MW/223.94 GWh.

February 16, 2024 Posted by | Energy, Energy Storage | , , , , , , , , | 4 Comments

Q4 2023 Sees Largest Quarterly Increase In Battery Energy Storage

The title of this post, is the same as that of this article on Solar Power Portal.

These three paragraphs outline the story.

Energy research consultancy Modo Energy has confirmed that Q4 2023 saw 420MW of new battery energy storage capacity become commercially operational.

This new capacity represents a 13% increase on the previous quarter and, in doing so, becomes the largest ever quarterly increase in operating battery capacity in GB. The previous record was set in Q2 2023 when 413MW was added.

It is worth noting that the additional capacity now means that GB’s operational grid-scale battery energy storage capacity has now reached 4.6GWh. Modo also confirmed that 1.5GW of battery storage was added across 2023 – a record for a one-year period.

Note.

  1. Modo Energy has a web site.
  2. Hinckley Point C has a nameplate capacity 3.26 GW.
  3. The article also says that the average duration of battery storage in GB is now 1.3 hours.

Strangely, this gives a BESS total storage capacity of 4.55 GWh, which is half the capacity of Electric Mountain.

January 16, 2024 Posted by | Energy, Energy Storage | , , , | Leave a comment

Wales Puts Another Pumped Storage Hydroelectric Power Station Into Play

This page on World Energy is entitled Fortune Hydro AG and Voith Acquire 450 MW Dorothea Lakes Pump Storage.

This paragraph introduced the article.

Fortune Hydro AG, in collaboration with Voith Small Hydro, has acquired the 450 MW Dorothea Lakes Pump Storage project as part of an £800 million (US$1 billion) strategic investment in renewable energy in the UK.

It looks to me that this was a good buy in July 2023, as after last week, when I wrote Price Framework Paves Way For Vast Electricity Storage Scheme, in response to a UK Government announcement about funding pumped storage hydroelectricity.

These two paragraphs give more details of the project.

Located in Snowdonia, Northern Wales, this green storage facility presents a unique opportunity to integrate wind, solar and hydroelectric power, Fortune Hydro said. The Dorothea Lakes site was one of the largest slate quarries in Europe and the largest in North Wales.

Electricity produced by solar and wind during low demand can be stored until demand is there. This storage allows balancing of the production cycle in the large solar and wind farms in the north against the demand cycle of consumers and businesses in central and southern UK. It will generate up to 600 jobs and bring economic development and new business opportunities to the local community, the company said.

This map shows the location of Dorothea Lakes.

Note.

  1. Dorothea Lakes is indicated by the red arrow.
  2. The Menai Strait between Bangor and Caernarfon is at the top of the map.
  3. It is certainly in a convenient place, with all the wind farms off the North Wales Coast.

At 450 MW, it’s about a third the size of Electric Mountain, so I suspect it could hold about 3 GWh of electricity.

January 14, 2024 Posted by | Energy, Energy Storage, Finance | , , , | Leave a comment

National Grid To Accelerate Up To 20GW Of Grid Connections Across Its Transmission And Distribution Networks

The title of this post, is the same as that of this press release from National Grid.

These four bullet points, act as sub-headings.

  • Connection dates of 10GW of battery projects accelerated at transmission level, and 10GW of capacity unlocked at distribution level, both part of the Electricity System Operator (ESO)’s connections five-point plan.
  • Battery energy storage projects connecting to the transmission network to be offered new connection dates averaging four years earlier than their current agreement.
  • The accelerated 20GW equates to the capacity of six Hinkley Point C nuclear power stations.
  • Work is part of ongoing collaborative industry efforts, together with Ofgem and government, to speed up and reform connections.

This is the opening paragraph.

National Grid is accelerating the connection of up to 20GW of clean energy projects to its electricity transmission and distribution networks in England and Wales as part of ongoing collaborative work across industry.

As I write this, the UK is generating 38.5 GW of electricity, so another 20 GW will be a large increase in capacity.

I shall look at what National Grid are proposing in sections.

10 GW Of Battery Power

These two paragraphs, outline the plan for 10 GW of battery power.

On its transmission network, 19 battery energy storage projects worth around 10GW will be offered dates to plug in averaging four years earlier than their current agreement, based on a new approach which removes the need for non-essential engineering works prior to connecting storage.

The new policy is part of National Grid’s connections reform initiative targeting transmission capacity, spearheaded by the ESO – which owns the contractual relationship with connecting projects – and actioned jointly with National Grid Electricity Transmission (ET), the part of the business which designs and builds the transmission infrastructure needed in England and Wales to plug projects in.

It looks to me that someone has been doing some serious mathematical modelling of the UK’s electricity network.

Fifty years ago, I provided the differential equation solving software, that enabled the Water Resources Board to plan, where reservoirs and pipelines were to be built. I have no idea how successful it was, but we don’t seem to have any serious water supply problems, except when there is equipment failures or serious drought.

But modelling water and electrical networks is mathematically similar, with rainfall, pipelines and reservoirs in the water network and power generation, transmission lines and batteries and pumped storage hydroelectricity in the electricity network.

I’d be interesting to know what software was used to solve the mathematical model.

I certainly agree with the solution.

Two of our modern sources of renewable energy; solar and wind are not very predictable, but cost a lot of capital investment to build.

So it is very wrong not to do something positive with any excess electricity generated. And what better place to put it than in a battery, so it can be retrieved later.

The earlier, the batteries come on stream, the earlier, the batteries can save all the excess electricity.

So moving the plug in dates for battery storage four years earlier is a very positive thing to do.

A simple calculation shows that for 10 GW, we would need nineteen batteries of about 526 MW.

Ideally, like power stations, they would be spread around the country.

Could Pumped-Storage Hydroelectricity Be Used?

The largest battery in the UK is the Dinorwig pumped-storage hydroelectric power station, which is commonly known as Electric Mountain or Mynydd Gwefru if you’re Welsh.

  • It opened in 1984, after a ten years of construction.
  • It has a power output of 1.8 GW.
  • The energy storage capacity of the station is around 9.1 GWh.

Roughly, every gigawatt of output is backed up by 5 GWh of storage.

If the proposed nineteen new batteries have the same power to storage ratio as Electric Mountain, then each battery will have a storage capacity of 2.63 GWh

SSE Renewables are planning two large pumped-storage hydroelectric power stations in Scotland.

A quick calculation, says we’d need seven pumped-storage hydroelectric power stations, which need a lot of space and a handy mountain.

I don’t think pumped-storage hydroelectric would be feasible.

Could Lithium-Ion Batteries Be Used?

My mathematical jottings have shown we need nineteen batteries with this specification.

  • An output of about 526 MW.
  • A storage capacity of around 2.63 GWh

This Wikipedia entry gives a list of the world’s largest battery power stations.

The current largest is Vistra Moss Landing battery in California, which has this specification.

  • An output of 750 MW.
  • A storage capacity of 3 GWh

Reading the Wikipedia entry for Vistra Moss Landing, it appears to have taken five years to construct.

I believe that nineteen lithium-ion batteries could handle National Grid’s need and they could be built in a reasonable time.

Could Any Other Batteries Be Used?

Rounding the battery size, I feel it would be better have twenty batteries with this specification.

  • An output of 500 MW.
  • A storage capacity of 2.5 GWh

Are there any companies that could produce a battery of that size?

Form Energy

Form Energy are well-backed with an MIT heritage, but their largest proposed battery is only 10 MW/1 GWh.

They could be a possibility, but I feel it’s only a small chance.

Highview Power

Highview Power say this about their next projects on this page of their web site.

Highview Power’s next projects will be located in Scotland and the North East and each will be 200MW/2.5GWh capacity. These will be located on the national transmission network where the wind is being generated and therefore will enable these regions to unleash their untapped renewable energy potential and store excess wind power at scale.

Note.

  1. This is more like the size.
  2. Work is now underway at Carrington – a 50MW / 300MWh plant at Trafford Energy Park near Manchester.
  3. Highview’s technology uses liquid air to store energy and well-proven turbo-machinery.
  4. Highview have a co-operation agreement with Ørsted

They are a definite possibility.

10 GW Of Extra Unlocked Capacity

These two paragraphs, outline the plan for 10 GW of extra unlocked capacity.

On its distribution network in the Midlands, South West of England and South Wales, the additional 10GW of unlocked capacity announced recently is set to accelerate the connection of scores of low carbon technology projects, bringing forward some ‘shovel ready’ schemes by up to five years.

National Grid has already been in contact with more than 200 projects interested in fast tracking their distribution connection dates in the first wave of the capacity release, with 16 expressing an interest in connecting in the next 12 months and another 180 looking to connect within two to five years.

This page from National Grid ESO, lists the actions that were taken to release the extra grid capacity.

Conclusion

This looks to be a very good plan from National Grid.

 

 

November 6, 2023 Posted by | Energy, Energy Storage | , , , , , , , , , , | 3 Comments

£100m Boost For Biggest UK Hydro Scheme In Decades

The title of this post, is the same as that of this article on the BBC.

This is the sub-heading.

A giant hydro scheme which would double the UK’s ability to store energy for long periods is taking a leap forward with a £100m investment by SSE.

These are the first three paragraphs.

The proposed 92m-high dam and two reservoirs at Coire Glas in the Highlands would be Britain’s biggest hydroelectric project for 40 years.

Scottish ministers approved the 1.5 GW pumped storage facility in 2020.

But power giant SSE wants assurances from the UK government before finally signing it off.

There are two major problems with this scheme.

Why The Forty Year Wait?

I am an Electrical and Control Engineer and it is a scandal that we are waiting forty years for another pumped storage scheme like the successful  Electric Mountain or Cruachan power stations to arrive.

Petrol or diesel vehicles have batteries for these three main purposes.

  • To start the engine.
  • To stabilise the output of the generator or alternator.
  • To provide emergency power.

As to the latter, I can’t be the only person, who has dragged a car out of a ford on the starter motor. But think of the times, you’ve used the hazard warning lights, after an accident or an engine failure.

The nightmare of any operator of a complicated electricity network like the UK’s is a black start, which is defined by Wikipedia like this.

A black start is the process of restoring an electric power station or a part of an electric grid to operation without relying on the external electric power transmission network to recover from a total or partial shutdown.

Hydro electric power stations and especially those that are part of pumped storage schemes are ideal for providing the initial power, as they are often easy to start and have water available. Cruachan power station has a black start capability, but at 440 MW is it big enough?

Over the last few years, many lithium-ion batteries have been added to the UK power network, which are used to stabilise the grid, when the sun isn’t shining and the wind isn’t blowing.

There are four pumped storage hydro-electric schemes in the UK.

Note.

  1. I always give the power output and the storage capacity for a battery, if it is known.
  2. According to Wikipedia, Scotland has a potential for around 500 GWh of pumped storage.
  3. The largest lithium-ion battery that I know, that is being planned in the UK, is Intergen’s 320 MW/640 MWh battery at Thames Gateway, that I wrote about in Giant Batteries Will Provide Surge Of Electricity Storage. It’s smaller than any of the four current pumped storage schemes.
  4. The Wikipedia entry for Coire Glas says that it is a 1.5 GW/30 GWh pumped storage hydro-electric power station.

I very much feel that even one 1.5 GW/30 GWh pumped storage hydro-electric power station must make a big difference mathematically.

Why have we had to wait so long? It’s not as though a pumped storage hydro-electric power station of this size has suffered a serious disaster.

Drax Needs Assurances Too?

The BBC article says this.

Scotland’s only other pumped storage scheme, operated by Drax Group, is housed within a giant artificial cavern inside Ben Cruachan on the shores of Loch Awe in Argyll.

The North Yorkshire-based company plans to more than double the generating capacity of its facility, nicknamed Hollow Mountain, to more than 1GW, with the construction of a new underground power station.

But both Drax and SSE have been reluctant to press ahead without assurances from Whitehall.

It looks like the right assurances would open up at least two pumped storage hydro-electric power station projects.

But it could be better than that, as there are other projects under development.

This totals to 3750 MW/104.3 GWh or 5850 MW/134.3 GWh with the addition of Coire Glas and the extension to Cruachan.

Getting the assurances right could result in large amounts of construction in Scotland!

What Assurances Do Power Giants SSE And Drax Want Before Signing Off?

This news item on SSE Renewables, which is dated 18th March 2022, is entitled Ministerial Roundtable Seeks To Unlock Investment In UK Energy Storage.

These three paragraphs gives details of the meeting.

Business leaders have met with UK Energy Minister the Rt Hon Greg Hands MP to discuss how the government could unlock significant investment in vital energy storage technologies needed to decarbonise the power sector and help ensure greater energy independence.

The meeting was organised by the Long-Duration Electricity Storage Alliance, a new association of companies, progressing plans across a range of technologies to be first of their kind to be developed in the UK for decades.

Representatives from Drax, SSE Renewables, Highview Power and Invinity Energy Systems met with The Rt Hon Greg Hands MP, Minister of State for Business, Energy and Clean Growth [yesterday].

But they still don’t seem to have come up with a funding mechanism.

  • In this case, it seems that multiple politicians may not be to blame, as Greg Hands was the Minister of State for Business, Energy and Clean Growth until the 6th of September 2022, when he handed over to Graham Stuart, who is still the incumbent.
  • Could it be that civil servants for this problem need to be augmented by a Control Engineer with mathematical modelling skills from a practical university?

It is the sort of problem, I would love to get my teeth into, but unfortunately my three mentors in accountancy and banking; Bob, Brian and David, who could have helped me, have all passed on to another place to help someone else with their problems.

I’ve just had a virtual meeting with all three and they told me to look at it like a warehousing system.

Consider.

  • It would be very easy to measure the amount of water stored in the upper reservoir of a pumped storage hydro-electric power station.
  • It would also be easy to measure the electricity flows to and from the pumped storage hydro-electric power station.
  • A monetary value could be placed on the water in the upper reservoir and the flows, depending on the current price for electricity.

So it should be possible to know that a pumped storage hydro-electric power station, was perhaps storing energy as follows.

  • 10 GWh for SSE
  • 8 GWh for RWE
  • 6 GWh for Scottish Power
  • 6 GWh is not being used

And just as in a warehouse, they would pay a fee of so much for storing each GWh for an hour.

  • The system would work with any type of storage.
  • Would competition between the various storage sites bring down prices for storing electricity?
  • Pumped storage operators would get a bonus when it rained heavily.
  • Just as they do now, electricity generators would store it when prices are low and retrieve it when prices are high.

A lot of the rules used to decide where electricity goes would still work.

 

 

March 22, 2023 Posted by | Energy, Energy Storage, Finance | , , , , , , , , , , , , | 3 Comments