The Anonymous Widower

Work On Herne Bay Hydrogen Plant In Westbrook Lane To Start This Year

The title of this post is the same as that as this article on KentOnline.

Jo Bamford is quoted as saying that the first green hydrogen will be produced in the second half of 2022.

June 4, 2021 Posted by | Hydrogen, Transport | , , | 2 Comments

Do BP And The Germans Have A Cunning Plan For European Energy Domination?

The headline of this post may be slightly tongue in cheek, but I believe that a plan is being hatched.

Preamble

I’ll start with a preamble, where I’ll outline some of the factors behind what may be happening.

Decarbonisation

It is generally accepted by most people that there is a need to decarbonise everything we do.

And large oil companies like Shell, BP and others are starting to move in the same direction.

Hydrogen

Using hydrogen instead of fossil fuels is becoming one of the major routes to decarbonisation.

Hydrogen can be used for the following.

  • Provide power for cars, buses, trucks, trains, locomotives and ships.
  • Hydrogen can be used in steelmaking instead of coking coal.
  • As a chemical feedstock to make ammonia, fertiliser and a large range of petrochemicals.
  • I believe that hydrogen could be a viable fuel to power aircraft over thousands of miles.

Hydrogen will become the most common zero-carbon fuel.

Hydrogen  And Natural Gas

In many applications hydrogen can replace natural gas, so for large users of natural gas, hydrogen offers a route to decarbonisation.

But hydrogen can also be mixed up to a level of around twenty percent in natural gas for partial decarbonisation of applications like space heating. Most industrial uses, boilers and appliances can be made to work very successfully with this mixture.

I grew up in the 1950s with coal gas, which according to Wikipedia had this composition.

  • hydrogen 50%
  • methane 35%
  • carbon monoxide 10%
  • ethylene 5%
  • When we changed over in the 1970s, all my appliances were converted.

This is the UK government description of natural gas.

It contains primarily methane, along with small amounts of ethane, butane, pentane, and propane. Natural gas does not contain carbon monoxide. The by-products of burning natural gas are primarily carbon dioxide and water vapour. Natural gas is colourless, tasteless and odourless.

As with the conversion from coal-gas to natural gas, conversion from Natural gas to a hydrogen/natural  gas mixture and eventually to hydrogen, will be a relatively painless process.

Note that carbon monoxide is a nasty poison and is not contained in either natural gas or hydrogen.

Green Hydrogen And Electrolysis Of Water

Green hydrogen is hydrogen produced exclusively from renewable energy sources.

Typically green hydrogen is produced by electrolysis of water using electricity produced by hydro, solar, tidal or wind.

The largest factory building electrolysers is owned by ITM Power.

  • It is located in Rotherham.
  • The factory has the capacity to build 1 GW of electrolysers in a year.
  • Typical electrolysers have a capacity of several MW.

Ryse Hydrogen are building an electrolyser at Herne Bay, that  will consume 23 MW of solar and wind power and produce ten tonnes of hydrogen per day.

Blue Hydrogen

‘Blue hydrogen is produced through a production process where carbon dioxide is also produced then subsequently captured via carbon capture and storage. In many cases the carbon dioxide is stored in depleted gas fields, of which we have plenty in the North Sea. Over the last few years, research has been ongoing into using the carbon dioxide. Applications in horticulture and agriculture, carbon structures and sustainable aviation fuel are being developed.

Shell have also developed the Shell Blue Hydrogen Process, where the carbon is extracted from methane as carbon dioxide and then stored or used.

CO2 In Greenhouse Horticulture

This paper from The Netherlands is called CO2 In Greenhouse Horticulture.

Read it and you might believe me, when I say, we’ll eat a lot of carbon in the form of tomatoes, salads and soft fruit. We’ll also buy flowers grown in a carbon-dioxide rich atmosphere.

Hydrogen As An Energy Transfer Medium

Every kilogram of natural gas when it burns releases energy, as it does in your boiler or gas hob. So it transfers energy in the form of gas from the gas well or storage tank to your house.

Electricity can also be transferred from the power station to your house using wires instead of pipes.

Hydrogen is being put forward as a means of transferring energy over hundreds of miles.

  • Electricity is converted to hydrogen, probably using an electrolyser, which would be powered by zero-carbon electricity.
  • The hydrogen is transferred using a steel pipe.
  • At the destination, the hydrogen is either distributed to end-users, stored or used in a gas-fired power station, that has been modified to run on hydrogen, to generate electricity.

It sounds inefficient, but it has advantages.

  • Long underwater cables have energy losses.
  • Electrical connections use a lot of expensive copper.
  • Re-use of existing gas pipes is possible.
  • Oil and gas companies like BP and their contractors have been laying gas pipes on land and under water for decades.

If hydrogen has a problem as an energy transfer medium, it is that it us difficult to liquify, as this statement from Air Liquide illustrates.

Hydrogen turns into a liquid when it is cooled to a temperature below -252,87 °C. At -252.87°C and 1.013 bar, liquid hydrogen has a density of close to 71 kg/m3. At this pressure, 5 kg of hydrogen can be stored in a 75-liter tank.

To transport, larger quantities of hydrogen by ship, it is probably better to convert the hydrogen into ammonia, which is much easier to handle.

The Germans and others are experimenting with using liquid ammonia to power large ships.

Hydrogen As An Energy Storage Medium

The UK has a comprehensive National Transmission System for natural gas with large amounts of different types of storage.

This section of the Wikipedia entry is entitled Natural Gas Storage and lists ten large storage facilities in salt caverns and depleted onshore gas fields. In addition, several depleted offshore gas fields have been proposed for the storage of natural gas. Rough was used successfully for some years.

I can certainly see a network of hydrogen storage sites being developed both onshore and offshore around the UK.

Iceland

With its large amount of hydro-electric and geothermal energy, Iceland can generate much more electricity, than it needs and has been looking to export it.

The UK is probably the only country close enough to be connected to Iceland to buy some of the country’s surplus electricity.

There has been a proposal called Icelink, that would build an electrical interconnector with a capacity of around a GW between Iceland at the UK.

But the project seems to have stalled since I first heard about it on my trip to Iceland in 2014.

Could the engineering problems just be too difficult?

The Waters Around The Northern Parts Of Great Britain

Look at a map of the UK and particularly Great Britain and there is a massive area of water, which is not short of wind.

Between Norway, Denmark, Germany, The Netherlands, the East Coast of England, the Northern Coasts of Scotland and Iceland, there are only a few islands.

  • The Faroes
  • The Orkneys
  • The Shetlands

To be complete we probably must include hundreds of oil and gas rigs and platforms and the Dogger Bank.

  • Oil and gas companies probably know most there is to know about these waters.
  • Gas pipelines connect the production platforms to terminals at Sullom Voe and along the East Coast from St. Fergus near Aberdeen to Bacton in Norfolk.
  • Many of the oil and gas fields are coming to the end of their working lives.

I believe that all this infrastructure could be repurposed to support the offshore wind industry.

The Dutch Are Invading The Dogger Bank

The Dogger Bank sits in the middle of the North Sea.

  • It is roughly equidistant from Norway, Denmark, the Netherlands and the UK.
  • The Western part is in UK territorial waters.
  • The Eastern part is mainly in Dutch territorial waters.

On the UK part, the Dogger Bank Wind Farm is being developed.

  • The turbines will be between 78 and 180 miles from the shore.
  • It could have a capacity of up to 5 GW.
  • It would be connected to East Yorkshire or Teesside.

On their side of the Dogger Bank, the Dutch are proposing the North Sea Wind Power Hub.

  • It is a collaboration between the Dutch, Germans, and Danes.
  • There have been reports, that up to 110 GW of turbines could be installed.
  • It will be connected to the Dogger Bank Wind Farm, as well as The Netherlands.

It is also planned that the connections to the Dogger Bank will create another interconnector between the UK and the Continent.

The Shetland Islands

The Shetland Islands are the only natural islands with a large oil and gas infrastructure in the waters to the North of Great Britain.

They have a large gas and oil terminal at Sullom Voe.

  • Oil is transported to the terminal by pipelines and tanker.
  • Oil is exported by tanker.
  • Gas is imported from oil and gas fields to the West of the islands through the West of Shetland Pipeline.
  • The gas-fired Sullom Voe power station provide about 80 MW of power to the islands.

This document on the APSE web site is entitled Future Hydrogen Production In Shetland.

It describes how the Shetland Islands can decarbonise and reposition themselves in the energy industry to be a major producer of hydrogen.

It gives these two facts about carbon emissions in the Shetlands Islands and Scotland.

  • Annual per capita CO2 emissions in the Shetland Islands are 17 tonnes.
  • In Scotland they are just 5.3 tonnes.

By comparison, the UK average is 5.55 and Qatar is 37.29.

Currently, the annual local market for road, marine and domestic fuel calculated
at around £50 million.

These are the objectives of the Shetland’s plan for future hydrogen production.

  • Supply 32TWh of low carbon hydrogen annually, 12% of the expected UK total requirement, by 2050
  • Provide more than 3GW of wind generated electrical power to Shetland, the UK grid, generating green hydrogen and electrification of the offshore oil and gas sector
  • Enable all West of Shetland hydrocarbon assets to be net zero by 2030 and abate 8Mt/year CO2 by 2050
  • Generate £5bn in annual revenue by 2050 and contribute significantly to the UK Exchequer.

They also envisage removing the topsides of platforms, during decommissioning of mature East of Shetland
oil fields and repurposing them for hydrogen production using offshore wind.

That is certainly a powerful set of ambitions.

This diagram from the report shows the flow of electricity and hydrogen around the islands, terminals and platforms.

Note these points about what the Shetlanders call the Orion Project.

  1. Offshore installations are electrified.
  2. There are wind turbines on the islands
  3. Hydrogen is provided for local energy uses like transport and shipping.
  4. Oxygen is provided for the fish farms and a future space centre.
  5. There is tidal power between the islands.
  6. There are armadas of floating wind turbines to the East of the islands.
  7. Repurposed oil platforms are used to generate hydrogen.
  8. Hydrogen can be exported by pipeline to St. Fergus near Aberdeen, which is a distance of about 200 miles.
  9. Hydrogen can be exported by pipeline to Rotterdam, which is a distance of about 600 miles.
  10. Hydrogen can be exported by tanker to Rotterdam and other parts of Europe.

It looks a very comprehensive plan!

The German Problem

Germany has an energy problem.

  • It is a large energy user.
  • It has the largest production of steel in Europe.
  • It prematurely shut some nuclear power stations.
  • About a quarter of electricity in Germany comes from coal. In the UK it’s just 1.2 %.
  • It is very reliant on Russian natural gas.
  • The country also has a strong Green Party.
  • Germany needs a lot more energy to replace coal and the remaining nuclear.
  • It also needs a lot of hydrogen to decarbonise the steel and other industries.

Over the last few months, I’ve written these articles.

Germany seems to have these main objectives.

  • Increase their supply of energy.
  • Ensure a plentiful supply of hydrogen.

They appear to be going about them with a degree of enthusiasm.

BP’s Ambition To Be Net Zero By 2050

This press release from BP is entitled BP Sets Ambition For Net Zero By 2050, Fundamentally Changing Organisation To Deliver.

This is the introductory paragraph.

BP today set a new ambition to become a net zero company by 2050 or sooner, and to help the world get to net zero. The ambition is supported by ten aims

The ten aims are divided into two groups.

Five Aims To Get BP To Net Zero

These are.

  1. Net zero across BP’s operations on an absolute basis by 2050 or sooner.
  2. Net zero on carbon in BP’s oil and gas production on an absolute basis by 2050 or sooner.
  3. 50% cut in the carbon intensity of products BP sells by 2050 or sooner.
  4. Install methane measurement at all BP’s major oil and gas processing sites by 2023 and reduce methane intensity of operations by 50%.
  5. Increase the proportion of investment into non-oil and gas businesses over time.

I would assume that by gas, they mean natural gas.

Five Aims To Help The World Get To Net Zero

These are.

  1. More active advocacy for policies that support net zero, including carbon pricing.
  2. Further incentivise BP’s workforce to deliver aims and mobilise them to advocate for net zero.
  3. Set new expectations for relationships with trade associations.
  4. Aim to be recognised as a leader for transparency of reporting, including supporting the recommendations of the TCFD.
  5. Launch a new team to help countries, cities and large companies decarbonise.

This all does sound like a very sensible policy.

BP’s Partnership With EnBW

BP seemed to have formed a partnership with EnBW to develop offshore wind farms in the UK

Their first investment is described in this press release from BP, which is entitled BP Advances Offshore Wind Growth Strategy; Enters World-Class UK Sector With 3GW Of Advantaged Leases In Irish Sea.

This is the first five paragraphs.

bp and partner EnBW selected as preferred bidder for two highly-advantaged 60-year leases in UK’s first offshore wind leasing round in a decade.

Advantaged leases due to distance from shore, lower grid cost, synergies from scale, and faster cycle time.

Projects expected to meet bp’s 8-10% returns aim, delivering attractive and stable returns and integrating with trading, mobility, and other opportunities.

Annual payments expected for four years before final investment decisions and assets planned to be operational in seven years.

In the past six months bp has entered offshore wind in the UK – the world’s largest market – and the US – the world’s fastest-growing market.

Note.

  1. EnBW are Energie Baden-Wuerttemberg AG, who, according to Wikipedia, are the third largest utilities company in Germany.
  2. It also appears, that EnBW have developed wind farms.

BP have issued this infographic with the press release.

Note.

  1. The lease areas don’t appear to be far from the Morecambe Bay gas field.
  2. The Morecambe Bay gas field is coming to the end of its life.
  3. The Morecambe Bay gas field is connected to the Rampside gas terminal at Barrow-in-Furness.
  4. At peak production 15 % of the UK’s natural gas came from Morecambe Bay.

I just wonder, if there is a cunning plan.

Could the platforms be repurposed to act as electrical hubs for the wind turbines?

  • 3GW of electricity would produce 55 tonnes of hydrogen per day.
  • The hydrogen would be exported to the Rampside gas terminal using the existing pipelines.
  • There may be savings to be made, as HVDC links are expensive.
  • BP either has the engineering to convert the platforms or they know someone who does.
  • Would the industrial complex at Barrow-in-Furnace and the nearby Sellafield complex have a use for all that hydrogen?
  • Or would the hydrogen be used to fuel Lancashire’s buses and trucks on the M6.

It certainly looks to me, that it could be a possibility, to bring the energy ashore as hydrogen.

BP Seeking Second Wind Off Scotland

The title of this section, is the same as that of this article in The Times.

These are the first two paragraphs.

BP is preparing to bid for the rights to build wind farms off Scotland as it signals no let-up in expansion after a £900 million splurge on leases in the Irish Sea.

The London-based oil giant caused waves in February by offering record prices to enter the UK offshore wind market through a Crown Estate auction of seabed leases off England and Wales.

As I said earlier.

  • The Shetland Islands are developing themselves as a giant hydrogen factor.
  • There are pipelines connecting platforms to the Sullom Voe Terminal.
  • There are plans to convert some of the redundant platforms into hydrogen production platforms.
  • The islands will be developing ways to export the hydrogen to the South and Europe.

BP also operates the Schiehallion oil and gas field to the West of the Shetlands, which is connected to the Sullom Voe Terminal by the West of Shetland pipeline.

Could BP and EnBW be coming to the party?

They certainly won’t be arriving empty-handed.

Does BP Have Access To Storage Technology?

I ask this question because both the Morecambe Bay and Shetland leases could be built with co-located depleted gas fields and offshore electrolysers.

So could hydrogen gas be stored in the gas fields?

I think it could be a possibility and would mean that hydrogen would always be available.

Could Iceland Be Connected To Schiehallion Via A Gas Pipeline?

I estimate that Iceland and Schiehallion would be about six hundred miles.

This wouldn’t be the longest undersea gas pipeline in the world as these two are longer.

The Langeled pipeline cost £1.7 billion.

Conclusion

I think there’s more to the link-up between BP and EnBW.

I am fairly certain, that BP are thinking about converting some redundant gas platforms into hubs for wind turbine, which use the electricity to create hydrogen, which is then exported to the shore using existing gas pipelines and onshore terminals.

Could it be said, that BP will be recycling oil and gas platforms?

I feel that the answer is yes! Or at least maybe!

The answer my friend is blowing in the wind!

May 6, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , | Leave a comment

Uniper To Make Wilhelmshaven German Hub For Green Hydrogen; Green Ammonia Import Terminal

The title of this post, is the same as that of this article on Green Car Congress.

This is the first two paragraphs.

Under the name “Green Wilhelmshaven,” Germany-based international energy company Uniper plans to establish a German national hub for hydrogen in Wilhelmshaven and is working on a corresponding feasibility study.

Plans include an import terminal for green ammonia. The terminal will be equipped with an ammonia cracker for producing green hydrogen and will also be connected to the planned hydrogen network. A 410-megawatt electrolysis plant is also planned, which—in combination with the import terminal—would be capable of supplying around 295,000 metric tons or 10% of the demand expected for the whole of Germany in 2030.

I can’t help feeling that there is some bad thinking here.

The Wikipedia entry for ammonia, says this about green ammonia.

Even though ammonia production currently creates 1.8% of global CO2 emissions, a 2020 Royal Society report claims that “green” ammonia can be produced by using low-carbon hydrogen (blue hydrogen and green hydrogen). Total decarbonization of ammonia production and the accomplishment of net-zero targets are possible by 2050.

So why is green ammonia imported rather than green hydrogen, which may have been used to manufacture the ammonia?

Green ammonia would appear to have two main uses in its own right.

  • As a feedstock to make fertiliser and other chemicals.
  • As a possible fuel for large ships, which could also be powered by hydrogen.

The only thing, I can think of, is that as liquid hydrogen boils at -253 ° C and liquid ammonia at -33 ° C, ammonia may be easier to transport by ship.

It may make a better fuel for large ships for the same reason.

This policy briefing from The Royal Society is entitled Ammonia: Zero-Carbon Fertiliser, Fuel And Energy Store.

This is the introductory paragraph.

This policy briefing considers the opportunities and challenges associated with the manufacture and future use of zero-carbon or green ammonia.

It is an excellent explanation of green ammonia and a must read.

Hydrogen for Wilhelmshaven

On the other hand, Wilhelmshaven, which is situated on Germany’s North West Coast would be in a good position to be a terminal for a hydrogen pipeline or electrical interconnector from the Dogger Bank, where both the Netherlands and the UK have plans for some of the largest windfarms in the world.

The UK’s Dogger Bank Wind Farm, which is being developed by SSE, looks to have an initial capacity of 4.8 MW, whereas the North Sea Wind Power Hub, being developed by the Danes, Dutch and Germans on their side of the Dogger Bank could be rated at up to 110 GW.

Wikipedia says this about how the two huge projects could be connected.

The power hub would interconnect the three national power grids with each other and with the Dogger Bank Wind Farm.

We could be seeing a 200 GW power station in an area of the sea, generally only known to those who listen to the shipping forecasts and fans like Marti Caine.

Under a section in the Wikipedia entry for the North Sea Wind Power Hub, which is entitled the North Sea Wind Power Hub Consortium, these points are made.

  • It is hoped that Norway, the United Kingdom, and Belgium will join the consortium.
  • Dutch gas-grid operator Gasunie has joined the consortium, suggesting converting wind power to gas and using near offshore gas infrastructure for storage and transport.
  • The Port of Rotterdam became the fifth member of the consortium.

This looks like a party, where some of our North Sea gas fields and infrastructure, lying in the triangle of the Humber, Teesside and the Dogger Bank could add a lot of value.

We could even sea hydrogen generated in the European Eastern part of the Dogger Bank, stored in a worked-out gas field in the UK sector of the North Sea and then when needed, it could be pumped to Germany.

A 410 Megawatt Electrolyser

Ryse Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

This would produce just 5.6 percent of the hydrogen of the Wilhelmshaven electrolyser

In H2 Green Steel Plans 800 MW Hydrogen Plant In Sweden, I wrote about a 800 MW electrolyser, that would produce 380 tonnes of hydrogen per day.

It looks like the Wilhelmshaven  electrolyser is very much a middle-sized one and would produce around 65,000 tonnes per year.

Conclusion

It looks like the Germans will be importing lots of green ammonia and green hydrogen from the North Sea.

 

April 18, 2021 Posted by | Energy, Hydrogen | , , , , , , , , , , | 1 Comment

Ryse Hydrogen’s Suffolk Freeport Hydrogen Vision Takes Shape

The title of this post, is the same as that of this article on S & P Global.

This is the introductory paragraph.

Ryse Hydrogen plans to install a 6 MW electrolyzer at the Sizewell nuclear site in Suffolk as a launchpad for mass production of low carbon hydrogen in and around the future freeport of Felixstowe, company founder Jo Bamford told S&P Global.

Ryse Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

This would mean that Sizewell’s 6 MW electrolyser could be producing around a thousand tonnes of hydrogen per year or 2.6 tonnes per day.

Note that the port and the power station are only about thirty miles apart.

Suffolk is thinking big again!

The last part of the article is where Jo Bamford discusses the cost of hydrogen and hydrogen buses and how he intends to sell them to the UK and ultimately the world.

Suffolk and Jo Bamford appear to be made for each other, with complementary ambitions.

March 4, 2021 Posted by | Hydrogen | , , , , , , , | Leave a comment

Felixstowe And Harwich Ports Submit Bid For ‘Freeport’ Status

The title of this post is the same as this article on the BBC.

These are the first three paragraphs.

A bid for “freeport” status for two existing ports has been submitted after the project was approved by a council.

East Suffolk Council unanimously backed the bid for the Port of Felixstowe and Harwich International to become one of 10 freeport facilities across the UK.

Freeport East would see owners Hutchison operate a single custom zone covering both coastal ports.

I think, some will think this a bit cheeky, but I think it is a product of the characters of the counties of Essex and Suffolk.

I was conceived in Suffolk and have probably spent half my life in the county.

It’s a county that thinks big.

  • Is there another woman, who as Boudica did, assembled an army of hundreds of thousands and attempted to throw an unwelcome invader out of her country?
  • The history of her tribe; the Iceni is closely tied, according to some historians, to the development of the thoroughbred racehorse at New Horse Market or Newmarket as it is known today!
  • Newmarket is to horse racing as St. Andrews is to golf.
  • The town is home of about 3,500 horses and is a major centre for horse and animal health.
  • Newmarket Heath is a Site of Special Scientific Interest and is to be the largest area of mown grass in the world.
  • Suffolk sheep are one of the most numerous sheep breeds in the world, having been exported all over the world.
  • Suffolk is the only county in England with its own breed of sheep, cattle (Red Poll) and horse (Suffolk Horse)
  • Bury St. Edmunds Abbey was one of the largest churches in England.

When I was about seven, the Port of Felixstowe was just a small dock exporting grain and now it the busiest container port in the UK and the eighth in Europe.

It is no surprise to me, that Felixstowe and Harwich want to be a Freeport, so they can expand further.

There have already been related news and media reports.

Freeport East Web Site

The Freeport East web site is at www.freeporteast.com.

Read these sections.

It is an ambitious vision. As someone, who believes we must innovate, this paragraph from the Innovation section strikes the right tone.

Beyond the energy sector, Freeport East will also contribute to wider innovation in the technology sector. Hutchison Ports is already working with Cambridge University and Three UK to develop innovative 5G applications. Hutchison Ports is also working with the New Anglia LEP, Tech East and BT’s research centre at Adastral Park on new telecommunications infrastructure. Freeport East will embed these technological innovations at its heart and help to make the UK a world leader in technological innovation

The web site, also talks about the ports becoming major centres for the development and servicing of renewable energy in the North Sea.

A Little Help From Their Friends

I notice that in some reports, they have joined forces with the University of Cambridge. As Cambridge colleges are big local landowners, this can only be to the benefit of the concept.

A Hydrogen Freeport

This article on the Eadt Anglian Daily Times is entitled Top Ports Could Be Powered By Hydrogen In Major Project.

The project is well-described in the article with this infographic, that shows how nuclear power from Siewell and wind power from the North Sea can come together to decarbonise shipping and the port.

This paragraph sums up the hydrogen project.

At its peak, the power project, which will be delivered in partnership with Ryse-Hydrogen and EDF, developers of the proposed Sizewell C nuclear power station, will produce 1GW of hydrogen – 20% of the 5GW target in the Prime Minister’s Ten Point Plan for a Green Industrial Revolution.

Suffolk is thinking big again!

It certainly does appear, that several ports are following the hydrogen route. On this blog I have mentioned Antwerp, Holyhead and Portsmouth recently.

So what will the hydrogen be used for?

The East Anglian article says this.

The clean fuel would be used to power port equipment, ships, trucks and trains.

Port Equipment

I think the interesting one is port equipment.

  • The chairman of JCB is Anthony Bamford.
  • His son; Jo Bamford owns Ryse Hydrogen.
  • JCB have recently released a hydrogen-powered digger.
  • JCB is mentioned on the infographic.

Could we be seeing a range of hydrogen-powered port equipment, that has been developed by JCB?

Other companies like Hyster are certainly developing hydrogen-powered port equipment.

Ships

Decarbonisation of ships is difficult, as they need a lot of power and it usually comes from that most noxious of fuels; bunker oil.

The Wikipedia entry for bunker oil, has a section called Environmental Issues, where this is said.

Emissions from bunker fuel burning in ships contribute to air pollution levels in many port cities, especially where the emissions from industry and road traffic have been controlled. The switch of auxiliary engines from heavy fuel oil to diesel oil at berth can result in large emission reductions, especially for SO2 and PM. CO2 emissions from bunker fuels sold are not added to national GHG emissions. For small countries with large international ports, there is an important difference between the emissions in territorial waters and the total emissions of the fuel sold.

A lot of work is being done to power ships with hydrogen.

Provide refuelling for hydrogen-powered ships and you’ll get the business.

Trucks

Diesel trucks hauling goods to and from ports contribute to the pollution in the port, but if they are powered by hydrogen, the pollution for workers and neighbours is less.

I can see some freight terminals adopting a policy of No Hydrogen – No Load, with hauliers.

In Holyhead Hydrogen Hub Planned For Wales, I talked about a hydrogen hub at Holyhead. Will the ports of Dover, Felixstowe and Immingham need to have hydrogen refuelling facilities to handle hydrogen trucks hauling goods between the island of Ireland and Europe?

Trains

It is my belief, that hydrogen freight locomotives will be developed, so Felixstowe will need facilities to fuel the trains.

Imagine two highly-automated ports at Felixstowe and Holyhead, both with large supplies of hydrogen.

  • A hydrogen-powered freight train would link the two ports.
  • Hydrogen-powered handling equipment would load and unload the containers.

How many trucks would that take off the roads between Holyhead and Felixstowe?

Conclusion

The Port of Felixstowe is going to use hydrogen to become more efficient and zero-carbon, and make it more attractive to shippers wanting to pay more than lip-service to decarbonisation.

The EU have constantly accused Boris of turning the UK into Singapore-on-Thames!

But here we are creating Singaport-on-the-Haven.

The EU has freeports, so I guess it’s OK.

February 20, 2021 Posted by | Hydrogen, Transport, World | , , , , , , , , , , | 4 Comments

Hydrogen Fuel ‘In Time For COP26’ For Glasgow

The title of this post, is the same as that of this article on Brinkwire.

This is the introductory paragraph.

The companies behind the plans for a new £ 45 million hydrogen production facility in central Scotland have announced the site of the facility, which is planned to be partially operational prior to the delayed COP26 conference in Glasgow next year.

The article gives a lot of useful information including.

  1. The plant is at Lesmahagow as I reported in Plans For £45m Scottish Green Hydrogen Production Plant Revealed.
  2. It will initially have a 9 MW electrolyser, which could be upgraded to 20 MW.
  3. When fully-developed is could create a thousand tonnes of hydrogen per year.The hydrogen will be used to power buses in Aberdeen and Glasgow.

Construction could start this year.

January 5, 2021 Posted by | Hydrogen | , , , , , , , | Leave a comment

All Aboard The Bamford Hydrogen Bus Revolution

The title of this post, is the same as that of this article on Air Quality News.

This is the introductory paragraph.

Air Quality News editor Jamie Hailstone talks to JCB heir and hydrogen advocate, Jo Bamford, about why it is the fuel of the future for buses.

It is a good read, as Jo Bamford details his vision to change public transport with thousands of hydrogen-powered buses.

He talks in a common-sense manner, about the economics and practicalities of zero emission buses, of which this paragraph is typical.

‘I have a bus manufacturing business,’ he adds. ‘We make a diesel bus, a battery double-decker and a hydrogen double-decker. A battery double-decker will do 60% of the distance of a diesel bus and take 4.5 hours to charge. A hydrogen bus will do the same distance as a diesel bus and take seven minutes to fill up. If you are running a bus for 22 hours a day, you can’t afford to charge them up for 4.5 hours a day.

Jo Bamford finishes with.

I think hydrogen is a sexy, cool thing to be looking at.

I agree with him and we should get started on lots of hydrogen buses and their hydrogen supply network.

As I wrote in Daimler Trucks Presents Technology Strategy For Electrification – World Premiere Of Mercedes-Benz Fuel-Cell Concept Truck, Mercedes are going the hydrogen route with big trucks and these trucks will need a hydrogen supply network to be built in the UK.

So surely, we should look at decarbonisation of buses and heavy trucks in an holistic way, by creating that hydrogen supply network in the UK.

Ryse have now obtained planning permission for their first big electrolyser at Herne Bay and it now has its own web site, which includes this video, explaining Ryse Hydrogen’s philosophy.

Let’s hope that this first electrolyser, grows into the network the country needs.

 

October 3, 2020 Posted by | Hydrogen, Transport | , , , , , , | Leave a comment

Green Bus Maker Reveals Plan For Scottish Hydrogen Fuel Production Facility

\the title of this post, is the same as that of this article on the Herald.

Thwaw are the introductory paragraphs.

Jo Bamford, chief of Ryse Hydrogen, has revealed plans to create a hydrogen production facility in Scotland.

He said the production unit will be sited outside Glasgow and it is expected to be operational by November next year when the rescheduled COP26 climate event is due to take place in the city.

Mr Bamford earlier said Glasgow could run 300 hydrogen-powered buses, while Aberdeen is set put a fleet of hydrogen powered double deckers on the road.

You can’t fault Jo Bamford’s ambitions.

August 19, 2020 Posted by | Hydrogen, Transport | , , , , , , | Leave a comment

JCB Unveils World’s First Hydrogen Digger

The title of this post is the same as that of this article on International Vehicle Technology.

The signs have been there for some time.

  • JCB are one of the backers of ITM Power, who make large scale electrolysers in Rotherham.
  • Jo Bamford has a hydrogen company called Ryse.
  • Jo Bamford took over Wrightbus and is saying he’ll be building thousands of hydrogen buses a year.
  • Ryse have planning permission for a giant hydrogen electrolyser at Herne Bay.

To me, it is totally logical, that JCB build a hydrogen-powered digger.

And it appears they have got there first!

July 2, 2020 Posted by | Hydrogen | , , , , , , , | Leave a comment

Ryse Hydrogen-Suttons Tankers Partnership To Supply Hydrogen To Transport for London

The title of this post, is the same as that of this article on H2 View.

From reading the article, it looks like London’s new hydrogen buses will be on the road by the end of the year.

Sadly, in some ways, the hydrogen will have to be driven from Runcorn, as the Herne Bay electrolyser won’t be completed for a couple of years.

I would assume, that the hydrogen is coming from the plant where I worked around 1970, or more likely its successor.

July 1, 2020 Posted by | Hydrogen, Transport | , , | Leave a comment