The Anonymous Widower

Ryse Hydrogen’s Suffolk Freeport Hydrogen Vision Takes Shape

The title of this post, is the same as that of this article on S & P Global.

This is the introductory paragraph.

Ryse Hydrogen plans to install a 6 MW electrolyzer at the Sizewell nuclear site in Suffolk as a launchpad for mass production of low carbon hydrogen in and around the future freeport of Felixstowe, company founder Jo Bamford told S&P Global.

Ryse Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

This would mean that Sizewell’s 6 MW electrolyser could be producing around a thousand tonnes of hydrogen per year or 2.6 tonnes per day.

Note that the port and the power station are only about thirty miles apart.

Suffolk is thinking big again!

The last part of the article is where Jo Bamford discusses the cost of hydrogen and hydrogen buses and how he intends to sell them to the UK and ultimately the world.

Suffolk and Jo Bamford appear to be made for each other, with complementary ambitions.

March 4, 2021 Posted by | Hydrogen | , , , , , , , | Leave a comment

Are Hydrogen-Fuelled Vehicles A Waste Of Our Time And Energy?

The title of this post, is the same as that of this article on Engineering & Technology, which is the magazine of the Institution of Engineering and Technology. So it should be authoritative.

This is the concluding paragraph.

Cars account for 61 per cent of surface transport emissions, HGVs only 17 per cent, buses 3 per cent, and rail 2 per cent (CCC, December 2020) so for cost/benefit it cannot be worthwhile switching to hydrogen fuel cell buses and trains. Through any impartial lens of engineering science, hydrogen fuel cell cars do not appear to be a transport winner and the Government should revisit decisions it has made about related funding. But then there is political virtue signalling.

It is a must-read contribution to the debate, as to whether hydrogen or battery power, is best for surface transport.

I don’t believe there is a simple answer, because for some applications, battery electric power is not feasible because of reasons of power or range.

  • Would a battery-electric truck, be able to haul a forty-four tonne load between the Channel Tunnel and Scotland?
  • Would a battery-electric locomotive be able to haul a thousand tonne aggregate or stone train for anything but a few tens of miles?
  • Is it possible to design a a battery-electric double-deck bus, that can carry seventy passengers?

I believe there are applications, where battery-electric is not a feasible alternative to the current diesel traction.

It is worth noting, that truck-maker; Daimler is planning to have both battery and hydrogen heavy trucks in its product line.

Users will choose, what is the best zero-carbon transport for their needs.

The Black Cab Driver’s Answer

It is always said, that, if you want to know the answer to a difficult question, you ask the opinion of a black cab driver.

So as the new electric black taxis, are the most common electric vehicle, that the average Londoner uses, what do the guys up-front say about their expensive vehicles.

  • Regularly, cab drivers complain to me about the range and having to use the diesel engine to charge the battery or power the car.
  • Some suggest to me, that hydrogen might be a better way to make the vehicles zero-carbon.

I think they may have a point about hydrogen being a better method of powering a black taxi, when you look at the pattern of journeys and the battery size and charging limitations of the vehicle.

These limitations may reduce in the future, as the technology gets better, with higher density batteries and faster charging.

We could even see a design and sales war between battery and hydrogen black cabs.

It always pays to follow the money!

February 17, 2021 Posted by | Energy, Hydrogen, Transport | , , , , , , | 4 Comments

Diesel Engine Giant Cummins Plans Hydrogen Future–With Trains Coming Before Trucks

The title of this post, is the same as that of this article on Forbes.

It is very much a must-read article about how Cummins, who are a traditional diesel engine manufacturer is embracing hydrogen technology.

Trains Before Trucks

As the title says, they are starting with trains rather than trucks.

They have started by building a factory to make fuel cells for Alstom’s Coradia iLint, as I wrote about in Cummins To Build Railway Fuel Cell Factory.

Reading the Forbes article, it appears that the decision has been made to focus on trains and buses, is because they run fixed subsidised routes and you only need a couple of hydrogen filling stations at the ends of the route. But for trucks, you need full infrastructure.

November 17, 2020 Posted by | Hydrogen | , , , , , | Leave a comment

Ireland’s First Green Hydrogen Project To Come On Stream ‘In Weeks’

The title of this post, is the same as that of this article on the Irish Times.

This is the first two paragraphs.

Belfast is set to receive Ireland’s first hydrogen-powered double-decker buses in coming weeks using fuel coming from wind energy generated in nearby north Antrim.

The initiative is the first “green hydrogen” project on the island of Ireland and the first step to decarbonise Northern Ireland’s public transport by 2040, according to Mark Welsh, energy services manager with Energia, which is generating the hydrogen at its wind farm near Ballymena.

Green hydrogen is produced by an electrolyser powered by renewable electricity.

The article gives a good summary of the use of hydrogen in Ireland in the future.

But isn’t all hydrogen created and used on the island of Ireland green?

November 4, 2020 Posted by | Energy, Hydrogen, Transport | , , , , , | Leave a comment

Plans For £45m Scottish Green Hydrogen Production Plant Revealed

The title of this post, is the same as that of this article on H2 View.

This is the opening paragraph.

UK-built hydrogen buses powered by Scottish-made green hydrogen, transporting COP26 delegates around Glasgow in 2021: that’s the vision of a new £45m project unveiled today (3rd Nov).

Some details of the plant are also given.

  • It will be built at Lesmahagow.
  • It will be co-located with wind turbines and solar panels.
  • It will have an initial capacity of 9 MW, with a possible increase to 20 MW.
  • It will produce 800 tonnes of hydrogen per annum.
  • The company behind it, is called Hy2Go

It sounds like the electrolyser is the one mentioned in Green Hydrogen For Scotland, which was announced in a press release from ITM Power.

Although, that electrolyser may be situated at Whitelee Wind Farm, which is a few miles closer to the coast.

Will Scotland Have Two Electrolysers To the South Of Glasgow?

Consider.

  • Whitelee is the UK’s largest onshore wind farm with a capacity of 539 MW.
  • It is planned to install a large battery at Whitelee. See Super Battery Plan To Boost UK’s Biggest Onshore Windfarm on this page on the Scottish Power web site.
  • Lesmahagow’s turbines and solar panels have not been installed yet.
  • Much of the wind power in the South of Scotland and the North of England is mainly onshore, rather than onshore.
  • The location of the Lesmahagow electrolyser will be close to the M74.
  • The location of the Whitelee electrolyser will be close to the M77.
  • There is a good motorway network linking the electrolysers’ to the major cities in the South of Scotland and the North of England.
  • Newcastle might be a bit difficult to supply, but that may receive hydrogen from Teesside or the Humber.

Perhaps, the economics of onshore wind, with electrolysers nearby, makes for an affordable source of plentiful green hydrogen.

I would expect that if Scotland built two large electrolysers South of Glasgow, they wouldn’t have too much trouble using the hydrogen to reduce the country’s and the North of England’s carbon footprint.

Have These Two Projects Merged?

Consider.

  • The Lesmahagow site is stated in the article to possibly have two electrolysers with a total capacity of 20 MW.
  • The Lesmahagow site is in an excellent position close to a junction to the M74 motorway, with easy access to Edinburgh, Glasgow and England.
  • The Lesmahagow site could probably have a pipeline to a hydrogen filling station for trucks and other vehicles on the M74.
  • The Whitelee wind farm is huge.
  • Lesmahagow and Whitelee are about twenty miles apart.
  • More wind turbines might be possible between the two sites.
  • There must also be a high-capacity grid connection at Whitelee.

Combining the two projects could have advantages.

  • There could be cost savings on the infrastructure.
  • It might be easier to add more wind turbines.

There may be time savings to be made, so that hydrogen is available for COP26.

Conclusion

Scotland is making a bold green statement for COP26.

A network of very large hydrogen electrolysers is stating to emerge.

  • Glasgow – Lesmahagow.
  • Herne Bay for London and the South East – Planning permission has been obtained.
  • Humber – In planning
  • Runcorn for North West England – Existing supply
  • Teesside – Existing supply

Joe Bamford’s dream of thousands of hydrogen-powered buses, is beginning to become a reality.

November 4, 2020 Posted by | Energy, Energy Storage, Hydrogen, Transport | , , , , , , , , , | 3 Comments

Permali To Develop Composite For Fuel Cell Retrofits

The title of this post, is the same as that of this article on Power Train Technology International.

This is the two opening paragraphs.

Composites engineering specialist Permali has won UK government funding to develop a lightweight composite solution, which is aimed at allowing existing diesel-powered buses to be retrofitted with zero-emission hydrogen powertrains.

According to the company, its R&D team, located at its main site in Gloucester, will be working on this development project in collaboration with hydrogen and fuel cell specialist company Arcola Energy and the UK National Composites Centre (NCC). The partnership is initially aimed at buses, but the new technology concept should be transferable to a wider range of vehicles, such as heavy-duty goods vehicles, trains and even aircraft.

That is an impressive introduction.

I shall be watching Permali.

 

October 29, 2020 Posted by | Hydrogen, Transport | , , | Leave a comment

Birmingham Announces Hydrogen Bus Pilot

The title of this post, is the same as that of this article on SmartCitiesWorld.

This is the introductory paragraph.

The city council has bought 20 new hydrogen double-decker buses as part of its Clean Air Hydrogen Bus Pilot to kick-start the hydrogen market as a viable zero-emission fuel.

The buses will be built by Wrightbus.

October 7, 2020 Posted by | Hydrogen, Transport | , , | Leave a comment

All Aboard The Bamford Hydrogen Bus Revolution

The title of this post, is the same as that of this article on Air Quality News.

This is the introductory paragraph.

Air Quality News editor Jamie Hailstone talks to JCB heir and hydrogen advocate, Jo Bamford, about why it is the fuel of the future for buses.

It is a good read, as Jo Bamford details his vision to change public transport with thousands of hydrogen-powered buses.

He talks in a common-sense manner, about the economics and practicalities of zero emission buses, of which this paragraph is typical.

‘I have a bus manufacturing business,’ he adds. ‘We make a diesel bus, a battery double-decker and a hydrogen double-decker. A battery double-decker will do 60% of the distance of a diesel bus and take 4.5 hours to charge. A hydrogen bus will do the same distance as a diesel bus and take seven minutes to fill up. If you are running a bus for 22 hours a day, you can’t afford to charge them up for 4.5 hours a day.

Jo Bamford finishes with.

I think hydrogen is a sexy, cool thing to be looking at.

I agree with him and we should get started on lots of hydrogen buses and their hydrogen supply network.

As I wrote in Daimler Trucks Presents Technology Strategy For Electrification – World Premiere Of Mercedes-Benz Fuel-Cell Concept Truck, Mercedes are going the hydrogen route with big trucks and these trucks will need a hydrogen supply network to be built in the UK.

So surely, we should look at decarbonisation of buses and heavy trucks in an holistic way, by creating that hydrogen supply network in the UK.

Ryse have now obtained planning permission for their first big electrolyser at Herne Bay and it now has its own web site, which includes this video, explaining Ryse Hydrogen’s philosophy.

Let’s hope that this first electrolyser, grows into the network the country needs.

 

October 3, 2020 Posted by | Hydrogen, Transport | , , , , , , | Leave a comment

Linde And RVK Unveil New Hydrogen Station For Buses

The title of this post, is the same as that of this article on H2 View.

This is the introductory paragraphs.

Linde and regional transport company Regionalverkehr (RVK) today presented an innovative hydrogen station for fuel cell buses to the public.

With a capacity of up to 20 refills per day, the new station located near Cologne, Germany features, for the first time, a new high-pressure storage technology developed by Linde: constant pressure tubes ensure that the refuelling pressure always remains at a constant level, even as the storage tank volume decreases.

It does appear that Linde is going to be big in hydrogen, as they already are an investor in electrolyser company;ITM Power.

August 27, 2020 Posted by | Hydrogen, Transport | , , | Leave a comment

Solving The Problem With Electric Bus Design

The title of this post, is the same as that of this article on Electric & Hybrid Vehicle Technology International.

The article opens with this paragraph.

A number of European cities have committed to securing only zero-emission buses by 2025. However, to achieve this objective, manufacturers must make bold design choices, radically changing bus componentry, systems, and bodywork. Here, it looks at the debate for greater electric bus design standardization.

Standardisation is one thing, but the article doesn’t talk about the major problem with electric bus design – For many countries like the UK, Hong Kong, Singapore and Germany, where there are lots of double-decker or articulated high-capacity buses, battery electric buses are just not big enough.

Battery-electric buses are also generally not big enough to compete with the latest designs of tram and metro systems.

These pictures show the Chinese double-deck electric double-deck buses, that ran in London.

Half of the downstairs was take up by batteries.

Where are they now?

The Belgian firm; Van Hool have a product called Exquicity. This video shows them working in Pau in France.

But these buses are powered by hydrogen.

Similar buses running in Belfast are diesel-electric.

In both the Pau and Belfast applications, I wonderwhy they didn’t use trolley-bus versions of the WxquiCity or conventional trams.

Conclusion

Until we get more efficient battery storage, electric buses will have difficulty competing economically in the high-capacity bus sector.

August 25, 2020 Posted by | Transport | , , , | 8 Comments