The Anonymous Widower

Low Carbon Construction Of Sizewell C Nuclear Power Station

Sizewell C Nuclear Power Station is going to be built on the Suffolk Coast.

Wikipedia says this about the power station’s construction.

The project is expected to commence before 2024, with construction taking between nine and twelve years, depending on developments at the Hinkley Point C nuclear power station, which is also being developed by EDF Energy and which shares major similarities with the Sizewell plant.

It is a massive project and I believe the construction program will be designed to be as low-carbon as possible.

High Speed Two is following the low-carbon route and as an example, this news item on their web site, which is entitled HS2 Completes Largest Ever UK Pour Of Carbon-Reducing Concrete On Euston Station Site, makes all the right noises.

These three paragraphs explain in detail what has been done on the Euston station site.

The team constructing HS2’s new Euston station has undertaken the largest ever UK pour of Earth Friendly Concrete (EFC) – a material that reduces the amount of carbon embedded into the concrete, saving over 76 tonnes of CO2 overall. John F Hunt, working for HS2’s station Construction Partner, Mace Dragados joint venture, completed the 232 m3 concrete pour in early September.

The EFC product, supplied by Capital Concrete, has been used as a foundation slab that will support polymer silos used for future piling works at the north of the Euston station site. Whilst the foundation is temporary, it will be in use for two years, and historically would have been constructed with a more traditional cement-based concrete.

The use of the product on this scale is an important step forward in how new, innovative environmentally sustainable products can be used in construction. It also helps support HS2’s objective of net-zero construction by 2035, and achieve its goal of halving the amount of carbon in the construction of Britain’s new high speed rail line.

Note.

  1. Ten of these slabs would fill an Olympic swimming pool.
  2. I first wrote about Earth Friendly Concrete (EFC) in this post called Earth Friendly Concrete.
  3. EFC is an Australian invention and is based on a geopolymer binder that is made from the chemical activation of two recycled industrial wastes; flyash and slag.
  4. HS2’s objective of net-zero construction by 2035 is laudable.
  5. It does appear that this is a trial, but as the slab will be removed in two years, they will be able to examine in detail how it performed.

I hope the Sizewell C project team are following High Speed Two’s lead.

Rail Support For Sizewell C

The Sizewell site has a rail connection and it appears that this will be used to bring in construction materials for the project.

In the January 2023 Edition of Modern Railways, there is an article, which is entitled Rail Set To Support Sizewell C Construction.

It details how sidings will be built to support the construction, with up to four trains per day (tpd), but electrification is not mentioned.

This is surprising to me, as increasingly, big construction projects are being managed to emit as small an amount of carbon as possible.  Sizewell C may be an isolated site, but in Sizewell B, it’s got one of the UK’s biggest independent carbon-free electricity generators a couple of hundred metres away.

The writer of the Modern Railways article, thinks an opportunity is being missed.

I feel the following should be done.

  • Improve and electrify the East Suffolk Line between Ipswich and Saxmundham Junction.
  • Electrify the Aldeburgh Branch Line and the sidings to support the construction or agree to use battery-electric or hydrogen zero-carbon locomotives.

Sizewell C could be a superb demonstration project for low-carbon construction!

Sizewell C Deliveries

Sizewell C will be a massive project and and will require a large number of deliveries, many of which will be heavy.

The roads in the area are congested, so I suspect rail is the preferred method for deliveries.

We already know from the Modern Railways article, that four tpd will shuttle material to a number of sidings close to the site. This is a good start.

Since Sizewell A opened, trains have regularly served the Sizewell site to bring in and take out nuclear material. These occasional trains go via Ipswich and in the last couple of years have generally been hauled by Class 88 electro-diesel locomotives.

It would be reasonable to assume that the Sizewell C sidings will be served in the same manner.

But the route between Westerfield Junction and Ipswich station is becoming increasingly busy with the following services.

  • Greater Anglia’s London and Norwich services
  • Greater Anglia’s Ipswich and Cambridge services
  • Greater Anglia’s Ipswich and Felixstowe services
  • Greater Anglia’s Ipswich and Lowestoft services
  • Greater Anglia’s Ipswich and Peterborough services
  • Freight services serving the Port of Felixstowe, which are expected to increase significantly in forthcoming years.

But the Modern Railways article says this about Saxmundham junction.

Saxmundham junction, where the branch meets the main line, will be relaid on a slightly revised alignment, retaining the existing layout but with full signalling giving three routes from the junction protecting signal on the Down East Suffolk line and two in the Down direction on the bidirectional Up East Suffolk line. Trap points will be installed on the branch to protect the main line, with the exit signal having routes to both running lines.

Does the comprehensive signalling mean that a freight train can enter or leave the Sizewell sidings to or from either the busy Ipswich or the quieter Lowestoft direction in a very safe manner?

I’m no expert on signalling, but I think it does.

  • A train coming from the Lowestoft direction needing to enter the sidings would go past Saxmundham junction  on the Up line. Once clear of the junction, it would stop and reverse into the branch.
  • A train coming from the Ipswich direction needing to enter the sidings would approach in the wrong direction on the Up line and go straight into the branch.
  • A train leaving the sidings in the Lowestoft direction would exit from the branch and take the Up line until it became single track. The train would then stop and reverse on to the Down line and take this all the way to Lowestoft.
  • A train leaving the sidings in the Ipswich direction would exit from the branch and take the Up line  all the way to Ipswich.

There would need to be ability to move the locomotive from one end to the other inside the Sizewell site or perhaps these trains could be run with a locomotive on both ends.

The advantage of being able to run freight trains between Sizewell and Lowestoft becomes obvious, when you look at this Google Map, which shows the Port of Lowestoft.

Note.

  1. The Inner Harbour of the Port of Lowestoft.
  2. The East Suffolk Line running East-West to the North of the Inner Harbour.
  3. Lowestoft station at the East side of the map.

I doubt it would be the most difficult or expensive of projects to build a small freight terminal on the North side of the Inner Harbour.

I suspect that the easiest way to bring the material needed to build the power station to Sizewell would be to do the following.

  • Deliver it to the Port of Lowestoft by ship.
  • Tranship to a suitable shuttle train for the journey to the Sizewell sidings.
  • I estimate that the distance is only about 25 miles and a battery or hydrogen locomotive will surely be available in the UK in the next few years, that will be able to provide the motive power for the return journey.

In The TruckTrain, I wrote about a revolutionary freight concept, that could be ideal for the Sizewell freight shuttle.

In addition, there is no reason, why shuttle trains couldn’t come in from anywhere connected to the East Suffolk Line.

Zero-Carbon Construction

Sizewell C could be the first major construction site in the UK to use electricity rather than diesel simply because of its neighbour.

Conclusion

I shall be following the construction methods at Sizewell C, as I’m fairly sure they will break new ground in the decarbonisation of the Construction industry.

December 28, 2022 Posted by | Energy, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Could Greater Anglia Run A Comprehensive Service For East Anglia?

Consider.

  • In the last fifty years, there have been direct trains between London Liverpool Street and Lowestoft stations.
  • In the last forty years, there have been direct trains between London Liverpool Street and Peterborough stations.
  • Greater Anglia currently run an hourly train between London Liverpool Street and Ipswich stations, with stops at Stratford, Shenfield, Chelmsford, Hatfield Peverel, Witham, Kelvedon, Marks Tey, Colchester and Manningtree
  • Frequencies on both routes were not high and less than four trains per day (tpd), but they must have been a demand for these services.
  • Greater Anglia promised to run a Lowestoft service, when they successfully reapplied for the franchise.
  • Greater Anglia have 38 Class 755 trains, of which 14 are three-cars and 24 are four-cars.
  • Class 755 trains can run in twoses and possibly threeses. (Suffolk dialect for twins and triplets!)

Could these elements be assembled to provide a comprehensive East Anglia service?

  • A pair of Class 755 trains would leave Liverpool Street for Ipswich.
  • They would takeover some of the paths of the hourly Liverpool Street and Ipswich service and run possibly about four or five tpd, according to demand.
  • Between Liverpool Street and Ipswich the trains could stop at Stratford, Shenfield, Chelmsford, Hatfield Peverel, Witham, Kelvedon, Marks Tey, Colchester and Manningtree
  • The services would splitgoing North and join going South at Ipswich
  • One train would go to Peterborough with stops at Needham Market, Stowmarket, Elmswell, Thurston, Bury St. Edmunds, Soham, Ely, Manea, March and Whittlesea.
  • The other would go to Lowestoft with stops at Woodbridge, Melton, Wickham Market, Saxmundham, Darsham, Halesworth, Brampton, Beccles and Oulton Broad South.

Note.

  1. The Class 755 trains would use electricity, where electrification exists.
  2. They would use diesel on lines without electrification.
  3. They would be able to hold 100 mph, so wouldn’t delay other trains.
  4. Seventeen towns would get new direct services to and from London.
  5. A Class 745 train is 236.6 metres long, whereas a pair of four-car Class 755 trains is only 161.4 metres.
  6. A three-train formation of Class 755 trains is only 5.5 metres longer than a single Class 745 train.

I am fairly sure no new substantial infrastructure would be required.

I have some further thoughts.

Example Timings

These timings to and from London are based on current timings of the Class 745 and 755 trains.

  • Ipswich – 60 mins
  • Stowmarket -70 mins
  • Bury St. Edmunds – 88 mins
  • Soham – 108 mins
  • Ely – 117 mins
  • March – 136 mins
  • Peterborough – 158 mins
  • Woodbridge – 75 mins
  • Melton – 80 mins
  • Wickham Market – 86 mins
  • Saxmundham – 97 mins
  • Darsham – 104 mins
  • Halesworth – 113 mins
  • Brampton – 119 mins
  • Beccles – 128 mins
  • Oulton Broad South – 138 mins
  • Lowestoft – 146 mins

Notes.

  1. Times to and from Ipswich are based on typical services at the current time.
  2. I have assumed that there are no stops South of Ipswich.
  3. Saxmundham is the closest station to Sizewell and could be important in bringing in construction workers for Sizewell C.

I think some of the times like those to and from Bury St. Edmunds, Ipswich, Lowestoft, Saxmundham and Woodbridge could create popular routes.

Battery-Electric Trains

Consider.

These sections of lines are not electrified on the routes I have talked about.

  • Haughley Junction and Ely – 38 miles
  • Ely and Peterborough – 30.5 miles
  • Westerfield and Lowestoft – 38 miles

As there is electrification at Ely, Haughley, Peterborough and Westerfield and South to London, I am fairly certain the route could be run by battery-electric trains.

Electrification To Sizewell C

In the January 2023 Edition of Modern Railways, there is an article, which is entitled Rail Set To Support Sizewell C Construction.

It details how sidings will be built to support the construction, with up to four trains per day (tpd), but the electrification word is not mentioned.

This is surprising to me, as increasingly, big construction projects are being managed to emit as small an amount of carbon as possible. High Speed Two is being built this way and I suspect Rolls-Royce’s SMR design will minimise carbon emissions during manufacture and construction. It will be very surprising if Sizewell C doesn’t follow High Speed Two’s example. After all, it may be an isolated site, but in Sizewell B, it’s got one of the UK’s biggest carbon-free electricity generators a couple of hundred metres away.

The writer of the Modern Railways article, thinks an opportunity is being missed.

I feel the following should be done.

  • Improve and electrify the East Suffolk Line between Ipswich and Saxmundham Junction.
  • Electrify the Aldeburgh Branch Line and the sidings to support the construction or agree to use battery-electric or hydrogen zero-carbon locomotives.

One of the collateral benefits of electrifying from Ipswich to Saxmundham Junction, is that it will make it easier for battery-electric Class 755 trains to work Ipswich and Lowestoft services.

  • If the trains were to leave Saxmundham Junction going North with a full battery, they should be able to travel to Lowestoft and return.
  • Battery-electric Class 755 trains could bring in workers from Ipswich or Lowestoft and further afield.
  • It could even leave behind a zero-carbon branch line to Sizewell, Leiston and Aldeburgh, with two tph to Ipswich.

Sizewell C could be a superb demonstration project for low-carbon construction!

The Lowestoft-Great Yarmouth Conurbation

The Wikipedia entry for Lowestoft says this about the town.

The estimated population in the built-up area exceeds 70,000. Its development grew with the fishing industry and as a seaside resort with wide sandy beaches. As fishing declined, oil and gas exploitation in the North Sea in the 1960s took over. While these too have declined, Lowestoft is becoming a regional centre of the renewable energy industry.

Whilst the Wikipedia entry for Great Yarmouth says this about the town.

Great Yarmouth, often called Yarmouth, is a seaside town and unparished area in, and the main administrative centre of, the Borough of Great Yarmouth in Norfolk, England; it straddles the River Yare and is located 20 miles (30 km) east of Norwich. A population of 38,693 in the 2011 Census made it Norfolk’s third most populous. Its fishing industry, mainly for herring, shrank after the mid-20th century and has all but ended.[3] North Sea oil from the 1960s supplied an oil-rig industry that services offshore natural gas rigs; more recently, offshore wind power and other renewable energy industries have ensued.

Wikipedia also said this about the population of the wider Great Yarmouth.

The wider Great Yarmouth borough had a population of around 92,500, which increased to 97,277 at the 2011 census.

Taken together they are one of the largest conurbations in East Anglia.

The main means of transport between the two towns is by road.

Surely, two towns of over 70,000 people, who are only a few miles apart need a rail connection.

Onward From Lowestoft To Great Yarmouth

If the comprehensive East Anglia service, I’m discussing is to be truly comprehensive, it must serve the Norfolk Broads and Great Yarmouth.

This would also improve the connectivity between two of the largest coastal towns in East Anglia, that I indicated in the last section.

This OpenRailwayMap shows a cunning plan proposed by Network Rail to connect Lowestoft and Great Yarmouth.

Note.

  1. Great Yarmouth is in the North East corner of the map.
  2. Two lines lead West from Great Yarmouth station, with the more Northerly route going direct to Norwich and the more Southerly one going to Norwich via Berney Arms and Reedham.
  3. Lowestoft is in the South East corner of the map.
  4. Two lines lead West from Lowestoft station, with the Northern route going to Norwich via Reedham and the Southern one going to Ipswich via Oulton Broad South.
  5. The route of a coastal railway connecting the two towns is also shown.

Network Rail’s cunning plan is indicated on this second  nap from OpenRailwayMap.

Note.

  1. Reedham station is in the North-West corner of the map on the line to Norwich.
  2. To the East of the station is a triangular junction.
  3. The track from the North-East corner of the junction is the line to Great Yarmouth.
  4. The track from the Southern corner of the junction is the line to Lowestoft.
  5. Unfortunately, the South-Eastern leg of the junction was removed in 1880.

In Norfolk Rail Line To Remain Closed As £68m Upgrade Project Overruns, I said this.

Network Rail are talking about reinstating the Reedham Chord to create a more direct route between East Anglia’s largest North-Eastern towns. This is said about the Reedham Chord in Direct Yarmouth Services in the Wikipedia entry for Lowestoft station.

In January 2015, a Network Rail study proposed the reintroduction of direct services between Lowestoft and Yarmouth by reinstating a spur at Reedham. Services could once again travel between two East Coast towns, with an estimated journey time of 33 minutes, via a reconstructed 34-chain (680 m) north-to-south arm of the former triangular junction at Reedham, which had been removed in c. 1880. The plans also involve relocating Reedham station nearer the junction, an idea which attracted criticism.

This sounds a good plan to me.

  • It would allow direct services between Lowestoft and Great Yarmouth.
  • It would allow direct services between Ipswich and Great Yarmouth with a reverse at Lowestoft in about two hours.
  • With possible charging at Lowestoft and/or Great Yarmouth, a scenic route could be created between Ipswich and Norwich for battery-electric Class 755 trains. If that doesn’t get people out of their cars then nothing will!
  • Various leisure, tourism and work-related opportunities  would be created.

Never in the field of railway engineering would such a small chord have given so much.

Sizewell C Issues

Sizewell C will be a massive project and I also suspect that like High Speed Two, it will be built in a manner that will be zero-carbon where possible.

We already know from the Modern Railways article, that four tpd will shuttle material to a number of sidings close to the site. This is a good start.

Since Sizewell A opened, trains have regularly served the Sizewell site to bring in and take out nuclear material. These occasional trains go via Ipswich and in the last couple of years have generally been hauled by Class 88 electro-diesel locomotives.

It would be reasonable to assume that the Sizewell C sidings will be served in the same manner.

But the route between Westerfield Junction and Ipswich station is becoming increasingly busy with the following services.

  • Greater Anglia’s London and Norwich services
  • Greater Anglia’s Ipswich and Cambridge services
  • Greater Anglia’s Ipswich and Felixstowe services
  • Greater Anglia’s Ipswich and Lowestoft services
  • Greater Anglia’s Ipswich and Peterborough services
  • Freight services serving the Port of Felixstowe, which are expected to increase significantly in forthcoming years.

But the Modern Railways article says this about Saxmundham junction.

Saxmundham junction, where the branch meets the main line, will be relaid on a slightly revised alignment, retaining the existing layout but with full signalling giving three routes from the junction protecting signal on the Down East Suffolk line and two in the Down direction on the bidirectional Up East Suffolk line. Trap points will be installed on the branch to protect the main line, with the exit signal having routes to both running lines.

Does the comprehensive signalling mean that a freight train can enter or leave the Sizewell sidings to or from either the busy Ipswich or the quieter Lowestoft direction in a very safe manner?

I’m no expert on signalling, but I think it does.

  • A train coming from the Lowestoft direction needing to enter the sidings would go past Saxmundham junction  on the Up line. Once clear of the junction, it would stop and reverse into the branch.
  • A train coming from the Ipswich direction needing to enter the sidings would approach in the wrong direction on the Up line and go straight into the branch.
  • A train leaving the sidings in the Lowestoft direction would exit from the branch and take the Up line until it became single track. The train would then stop and reverse on to the Down line and take this all the way to Lowestoft.
  • A train leaving the sidings in the Ipswich direction would exit from the branch and take the Up line  all the way to Ipswich.

There would need to be ability to move the locomotive from one end to the other inside the Sizewell site or perhaps these trains could be run with a locomotive on both ends.

The advantage of being able to run freight trains between Sizewell and Lowestoft becomes obvious, when you look at this Google Map, which shows the Port of Lowestoft.

Note.

  1. The Inner Harbour of the Port of Lowestoft.
  2. The East Suffolk Line running East-West to the North of the Inner Harbour.
  3. Lowestoft station at the East side of the map.

I doubt it would be the most difficult or expensive of projects to build a small freight terminal on the North side of the Inner Harbour.

I suspect that the easiest way to bring the material needed to build the power station to Sizewell would be to do the following.

  • Deliver it to the Port of Lowestoft by ship.
  • Tranship to a suitable shuttle train for the journey to the Sizewell sidings.
  • I estimate that the distance is only about 25 miles and a battery or hydrogen locomotive will surely be available in the UK in the next few years, that will be able to provide the motive power for the return journey.

In The TruckTrain, I wrote about a revolutionary freight concept, that could be ideal for the Sizewell freight shuttle.

Great Yarmouth Racecourse

Great Yarmouth Racecourse is one of my favourite racecourses and I believe it is one of the attractions in Great Yarmouth, that would benefit from an improved rail service between Lowestoft and Great Yarmouth, as it would almost double those with efficient public transport access to the racecourse.

The walking distance between Great Yarmouth station and the racecourse is walkable for many and I remember doing it since C died.

With the train connection to Lowestoft and perhaps a courtesy bus from the station, I wouldn’t be surprised to see that a Lowestoft-Yarmouth rail connection being very good for the racecourse. Especially as road traffic between the two towns can be not the best.

Finishing At Norwich

There are operational reasons to carry on to Norwich, where Crown Point, is the home base for the Class 755 trains.

But it would also link a lot of places that are dependant on tourism and are also heavily involved in East Anglia’s energy industry.

Onward From Peterborough To Lincoln

If the Lowestoft service can extend to Great Yarmouth, an extension of the Peterborough service to Lincoln via Spalding and Sleaford might be possible.

But with LNER also serving Lincoln from Kings Cross, I doubt the route would carry many passengers to and from London.

Conclusion

A service from London, that splits into two trains at Ipswich for Lowestoft and Peterborough has possibilities.

 

 

 

December 27, 2022 Posted by | Sport, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , | 9 Comments

What Is A Freight Skate?

The Freight Skate was one of the winners in the First Of A Kind 2022 competition run by Innovate UK.

The Description In The First Of A Kind 2022 Winners Document

In this document, this is said.

Project No: 10039606

Project title: “Freight Skate” a self-powered freight bogie and platform
Lead organisation: TDI (EUROPE) LIMITED
Project grant: £400,000

Public description: Governments have recognised that the continued dependence on the motor/freight vehicles is unsustainable and that modal shift to low and zero-carbon public transport solutions, both for passengers and freight, is essential if legislative commitments to Net Zero are to be met.

The Freight Skate provides a sustainable, low cost, reliable and high-quality rail freight experience which will drive down emissions and increase profits to freight companies and assist in bringing about the much-needed modal shift from road to train. To achieve this objective, it required us to use different ways of thinking across every aspect of the programme – design, supply, build and system implementation. This approach has yielded the desired results.

The skate chassis was originally designed with steering axles for passenger trains. It is a unique and tested design which we believe lends itself to operating as an independent 4-wheel unit that can be virtually coupled to form a platform for 10′, 20′,30′ or 40′ containers. The study would also allow us to optimise loading for 9’6″ HC units; Three units could also be used to carry 2 x 40′ containers. An individual unit would carry a 10′ container.

TDI plans to commercialise the Freight Skate vehicle over the next 3 years, with the product entering freight terminal service in 2025.

My Thoughts And Conclusions

If you search the Internet for “Freight Skate” you find nothing, but I think the concept is a development of the TruckTrain, which I wrote about in The TruckTrain, as both concepts are from Coventry.

I really liked the TruckTrain concept, when I saw it earlier this year.

November 17, 2022 Posted by | Transport/Travel | , , , , , | 4 Comments

The TruckTrain

Note that I first came across the TruckTrain, when I wrote Innovative Composite Masts Look To Reduce Cost And Increase Efficiency Of Rail Electrification.

I have now decided that the concept could be so revolutionary, that it needs its own post.

The TruckTrain

TruckTrain is a concept with roots in Coventry University that could be off-beam enough to become a new normal.

The TruckTrain Web Site

The TruckTrain web site is the main source of information for the TruckTrain.

A sales leaflet for the TruckTrain can be accessed from the Home page.

The About page on the web site, gives this description of the TruckTrain.

TruckTrains® are short, fast, bi-directional self-propelled fixed freight train formations able to operate at passenger train speeds. Train sets can work in multiple in response to operational and commercial imperatives. Each vehicle is powered and all axles are powered to deliver the acceleration and braking required to achieve and to sustain this demanding level of performance. The initial configuration will use diesel-electric power to ensure freedom of operation over the national network. A hybrid design able to operate on electrified lines has also been developed together with an all-electric variant capable of extremely high-speed performance.

The Specifications page on the web site gives a detailed specification  of the TruckTrain.

These are my thoughts.

The Basic Design Concept

This leaflet on their web site describes the concept.

This visualisation at the bottom of the leaflet shows four TruckTrains forming a train carrying twelve intermodal containers, each of which I suspect are each 20 feet long.

Note.

  1. Each of the four TruckTrains appears to be carrying three intermodal containers.
  2. A 20 foot container is 6.096 metres long, so three are 18.288 metres long.
  3. Each TruckTrain has two bogies and four axles.
  4. The cabs at the two ends of each TruckTrain are different sizes.
  5. The longest carriages in use on the UK rail network are the 26 metre carriages used by Hitachi in their Class 800 and other trains.

I can deduce that with a twenty metre load space, a TruckTrain would accommodate any of the following.

  • Three twenty-foot containers.
  • A forty foot container and a twenty foot container.
  • Large numbers of pallets.
  • Ability to handle roll-cages as regularly used by supermarkets.
  • A curtain-sided load space.

Any of these would give six metres for the two cabs.

This should be enough space for two cabs, but there are other possibilities.

  • The longer cab could have a pantograph on the roof to use 25 KVAC electrification.
  • The space behind the driver cab in the longer cab could be used for power-train gubbins.
  • There must also be space under the load space for more power-train gubbins.

I feel certain, that an electrically-powered TruckTrain is more than a possibility.

The Width And Height Of A TruckTrain

This sentence from the Wikipedia entry for intermodal container, says this about their size.

Intermodal containers exist in many types and a number of standardized sizes, but ninety percent of the global container fleet are so-called “dry freight” or “general purpose” containers – durable closed rectangular boxes, made of rust-retardant Corten steel; almost all 8 feet (2.44 m) wide, and of either 20 or 40 feet (6.10 or 12.19 m) standard length, as defined by International Organization for Standardization (ISO) standard 668:2020. The worldwide standard heights are 8 feet 6 inches (2.59 m) and 9 feet 6 inches (2.90 m) – the latter are known as High Cube or Hi-Cube (HC / HQ) containers.

The Specifications page for the TruckTrain says this.

2-7 car Freight multiple unit capable of carrying combinations of 6 to 21 TEU of ISO containers, Hi-cube containers or swap bodies or 175 cubic meters of palletised cargo per vehicle with refrigeration available for both variants.

And the sales leaflet for the TruckTrain says this.

Performance and train path profile similar to a Turbostar passenger DMU.

Does that also mean that the width and height of a TruckTrain are no greater than that of a Class 170 train, which are respectively 2.69 and 3.77 metres?

It appears that international standards allow for a wagon floor height of 0.94 metres, which gives the following train heights to the top of the container.

  • Standard container – 3.53 metres
  • High Cube container – 3.84 metres

It will be a tight fit, but companies like Stadler use smaller wheels on some of their UK trains, which also have a height of 3.95 metres

I suspect that with a bit of selective bridge-raising TruckTrains will be able to go anywhere a Turbostar can go.

Connecting TruckTrains Together

The pictures of the TruckTrain on the web-site and the leaflet appears to show a standard multiple unit coupler like a Dellner.

The Specifications page for the TruckTrain says this.

2-7 car Freight multiple unit capable of carrying combinations of 6 to 21 TEU of ISO containers.

Is seven the maximum or just a marketing limit?

The technology and software to connect the trains and run them as a formation has been well and truly tested in many multiple units.

Motive Power Of TruckTrains

The About page for the TruckTrain says this.

The initial configuration will use diesel-electric power to ensure freedom of operation over the national network. A hybrid design able to operate on electrified lines has also been developed together with an all-electric variant capable of extremely high-speed performance.

As I said earlier, the pantograph could go on the roof of the longer cab for electric operation and the diesel engine could go under the load, as it does on most diesel multiple units.

I would think though, that one of the best variants would mount batteries under the load space.

Hydrogen would probably be a no-no, as this would limit the availability of the train to serve certain routes.

Performance Of TruckTrains

The Specifications page for the TruckTrain says this.

Maximum speed 140 kph for the inter-modal version, 160 kph for the pallet carrier.

As some of the routes, where these trains would be used is out of Felixstowe, where there is a 100 mph operating speed on the Great Eastern Main Line, I suspect that TruckTrains will sell better with a 100 mph (160 kph) operating speed on electric power.

125 mph Truck Trains

If they were running on a fully electrified route, I suspect the technology is available to run TruckTrains at 125 mph, which would make them ideal for parcels and light freight.

Manufacture Of TruckTrains

I don’t see that there would be many problems in manufacturing TruckTrains.

  • 100 mph (160 kph) bogies are readily available for freight trains.
  • A wagon manufacturer would probably be happy to design and build the chassis.
  • The cabs could possibly be a standard multiple unit design.
  • There shouldn’t be any problems with the power-train.
  • Multiple running and splitting/joining technology is very much proven.

Certified rail components would probably be available for other parts and uses.

Combi TruckTrains

Combi Aircraft is defined in Wikipedia like this.

Combi aircraft in commercial aviation are aircraft that can be used to carry either passengers as an airliner, or cargo as a freighter, and may have a partition in the aircraft cabin to allow both uses at the same time in a mixed passenger/freight combination.

Would a Combi TruckTrain have applications on some routes in the world, where a passenger route carries the occasional container up and down the route?

Several ideas might be possible.

  • The simplest would probably to have a twenty or forty foot passenger module, which could be lifted in and out like a standard intermodal freight container.
  • TruckTrains could also be built with the load space fitted out for passengers, so they became a Class 153 replacement, that could be coupled to a freight TruckTrain.
  • Could a TruckTrain be fitted out as a specialised work train to take workers and equipment to a work site, which had difficult road access?

It could almost be like a rail equivalent of Thunderbird 2.

Point-To-Point TruckTrains

The classic point-to-point train, could be run by someone like Toyota, where the engines for their cars are made in North Wales and the cars are assembled at Burnaston near Derby. I know there is a doubt over the future of Toyota’s engine plant, due to the stopping of manufacture of cars running on fossil fuels, but surely, an appropriate number of TruckTrains shuttling on the route would give advantages over a fleet of trucks, like, speed and reliability.

In the leaflet, they mention that the TruckTrain has been designed to use single-track short-terminals. These would surely be ideal for a company that decides to use TruckTrain as a point-to-point train between an important supplier and their main factory or distribution centre.

TruckTrains Could Use Stations

There has been a lot of talk recently about using major stations as freight terminals at night.

I doubt that a TruckTrain would have any problems using stations.

International TruckTrains

Why not? In Kraft Heinz And Freight Innovation, I talked about an international freight movement, that would be ideal for TruckTrains.

TruckTrains And Ferries

Could we even see the revival of train ferries?

Imagine a terminal at a port in Ireland, which could load and unload containers between standard gauge TruckTrains and trucks.

  • A short length of standard gauge track would lead from the terminal to the quay, so that the TruckTrains could be driven on and off the ferry, either using a shunter or the TruckTrains’ own battery or diesel power.
  • On the other side of the water, the TruckTrain would use the UK railways to get to its destination.

This concept would allow freight to go between most of Western Europe and Ireland with only a transfer to and from trucks at both ends.

It could even be improved with dual-gauge TruckTrains, which might be able to run between Ireland and Spain, through the Channel Tunnel.

Conclusion

I like the concept and I can’t see why it would not be successful worldwide.

 

April 7, 2022 Posted by | Transport/Travel | , , , , , , , | 13 Comments

Innovative Composite Masts Look To Reduce Cost And Increase Efficiency Of Rail Electrification

The title of this post is the same as that of this article on New Civil Engineer.

This is the sub-title.

Engineering consultancy Furrer+Frey will this week unveil its innovative composite masts for rail electrification, which could revolutionise the way that rail electrification is undertaken.

Other points from the article include.

  • Development has been undertaken with Cranfield, Southampton and Newcastle Universities and Prodrive and TruckTrain.
  • The project was part funded by the Department for Transport and Innovate UK through the First Of A Kind competition.
  • The first composite masts have been created and tested at St Bride’s feeder station, just outside Newport in Wales.

This Google Map shows the area, where the test will take place.

Note.

  1. The South Wales Main Line crossing the South-East corner of the map.
  2. Newport station is to the East and Cardiff station is to the West.
  3. The St. Brides feeder station alongside the railway, by the Green Lane bridge.

I would assume that the connection to the National Grid is via the St. Brides 25 kV Substation in the North-West corner of the map.

The article lists the features of the design.

  • A typical steel mast weighs 750 Kg., whereas a composite mast weight just 80 Kg.
  • I suspect that these masts can be lifted around by a couple of average workers.
  • They have lower wind resistance.
  • Piles can be less deep. The prototype piles are 1.25 m., as against many that are over four metres on recent schemes.
  • The piles have sensors to detect, when they are out of kilter and need replacing.
  • Currently, wonky masts need to be identified by hands-on measurement or observant drivers.
  • Two masts have been tested to destruction, to see if they match the theory.

But this to me as an Electrical Engineer is the clincher.

Furrer+Frey GB head of UK projects Noel Dolphin says this about the new design.

When they do take it to a mass manufacturing stage, it will be without carbon fibre inside, which presents another opportunity. The other ultimate goal is that the structure is insulating in itself. It’s another big saving if you can remove the insulators on the electrification cantilevers, as they’re expensive in themselves.

It’s all going the way of much more affordable electrification.

I have a few further thoughts.

The Involvement Of Prodrive

Prodrive are best known for their involvement in motorsport, as the home page of their web site indicates.

But as their site also indicates they get involved in other forms of high-performance disruptive engineering, where their experience is relevant.

Prodrive build the prototypes, but won’t build the production masts, although I suspect, their expertise will be used.

The TruckTrain

TruckTrain is a concept with roots in Coventry University that could be off-beam enough to be the new normal.

I have updated my thoughts on the TruckTrain and it is now in a post called The TruckTrain.

My Conclusion About TruckTrains

I like the concept and I can’t see why it would not be successful worldwide.

The Involvement Of TruckTrain With Furrer+Frey

This puzzled me for a time, as undoubtedly, the TruckTrain will be able to use standard electrification.

But in the TruckTrain leaflet, they mention that the TruckTrain has been designed to use single-track short-terminals.

So did they approach Furrer+Frey to find out about electrifying short terminals and the Swiss company felt TruckTrain was a concept they could support?

Obviously, if the TruckTrain is developed to be a battery-electric train, some mini freight terminals will need the ability to charge the TruckTrain.

Could A TruckTrain Be Used to Support Electrification?

Would a TruckTrain be the ideal support vehicle to erect or repair electrification?

If you take the problem, when the wires have been damaged, a TruckTrain could get to the site at 100 mph, much faster than a truck on the road. It could also have a platform to lift the engineers for inspection and repair.

A TruckTrain could be more than just a transport system.

Conclusion

Furrer + Frey’s lightweight composite electrification masts are a good idea.

Teamed with TruckTrains, they could prove a very powerful freight concept, where new mini freight terminals are needed.

 

 

April 5, 2022 Posted by | Transport/Travel | , , , , , , , , , , | 8 Comments