The Anonymous Widower

Vattenfall Selects Norfolk Offshore Wind Zone O&M Base

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

Vattenfall has selected Peel Ports as the preferred bidder, and its port at Great Yarmouth as the location for the operations and maintenance base of the Norfolk Offshore Wind Zone in the UK.

This was said about the competition to host the facility.

Vattenfall said that the competition was fierce to secure the agreement with an excellent bid from Lowestoft and Associated British Ports. With both ports offering excellent services it is clear that East Anglia’s potential as a superpower of offshore wind is secure.

I have a few thoughts.

Lowestoft In Suffolk And Great Yarmouth In Norfolk Must Work Together

This Google Map shows the coast between the two ports.

Note.

  1. Great Yarmouth is at the top of the map.
  2. Lowestoft is at the bottom of the map.
  3. The two towns are less than twelve miles apart.
  4. The Great Yarmouth Outer Harbour, is towards the top of the map.

The Google Map shows the port in more detail.

Note.

  1. Great Yarmouth Outer Harbour only opened in 2009.
  2. It has an average depth of 10 metres.
  3. It was planned as a container port, but the ships didn’t materialise.
  4. Some consider it to be a bit of a white elephant.

Could the Outer Harbour be used to assemble floating wind turbines?

I think it could but at present, there are no plans to use floating wind turbines off the coast of Norfolk.

I suspect though, if someone decided to build floating wind farms to the East of the Vattenfall’s Norfolk Zone fields, that Great Yarmouth Outer Harbour could be used to assemble the floating wind turbines.

This Google Map shows the Port of Lowestoft.

Note.

  1. There is over a kilometre of quays.
  2. It doesn’t have the water depth of Great Yarmouth.
  3. There is a lot of brownfield sites along the River Waveney.
  4. The East Anglia One wind farm is managed from Lowestoft.

Both harbours have their good and bad points.

  • Both have good rail connections to Norwich.
  • Lowestoft has a rail connection to Ipswich and has been promised a London service.
  • Road connections to Ipswich and Norwich need improvement.

I suspect that it was a close contest, as to the port that got the Vattenfall contract.

A Lowestoft And Great Yarmouth Rail Connection

This map from Open RailwayMap between the two towns.

Note.

  1. The existing railways are shown in yellow.
  2. Former railways are shown in black dotted lines.
  3. There was even a railway along the coast.

The only rail connection between the ports is via Reedham, where the track layout is shown on this second OpenRailwayMap.

Note.

  1. Reedham station is in the North West corner on the line to Norwich.
  2. The line going North-East goes to Great Yarmouth.
  3. The line going South goes to Lowestoft.

There used to be a chord connecting Great Yarmouth and Lowestoft, but it was cancelled by Beeching’s grandfather.

There is certainly scope to improve the rail connection between the two ports.

  • There could be a convenient change at Reedham, if the timetables were adjusted.
  • Trains could reverse at Reedham.
  • The chord could be reopened to allow direct trains.

It wouldn’t be the most challenging rail project to have an hourly rail service between the two ports.

A Lowestoft And London Rail Service

This was promised with a frequency of something like four trains per day (tpd)

I think it should run between London and Yarmouth with a reverse at Lowestoft.

March 17, 2023 Posted by | Energy | , , , , , , , , , , | 4 Comments

Kittiwake Compensation

The title of this post, is the same as that of this page of Ørsted’s Hornsea Three web site.

The first section of the page gives the background.

Hornsea 3 Offshore Wind Farm received planning permission in December 2020. As part of our Development Consent Order, a requirement was included for ecological compensation measures for a vulnerable seabird species whose populations could be affected by wind farms – the Black-legged kittiwake (Rissa tridactyla).

Our compensation plan focusses on providing artificial nesting structures for kittiwake along the east coast of England. This project is the first of its kind and we are working on new and innovative designs for the artificial nesting structures. Each structure will be purpose-built, bespoke and specific to the landscape characteristics of each location. The structures also present an educational opportunity, allowing researchers to better understand kittiwake.

Developing effective environmental compensation measures is essential to ensure the UK Government’s targets for offshore wind can be realised, to deliver a net zero-carbon future.

So kittiwakes are not being paid compensation, as I don’t suspect many have bank accounts.

But they are being built a few new nesting structures.

Wikipedia has an entry on kittiwakes.

It notes that all European kittiwakes are of the black-legged variety and this is a picture, I took of some on the Baltic in Newcastle.

I’ve seen several pictures of kittiwakes lined up like these.

The document goes on to describe the work being done for the kittiwakes and this is said about work in East Suffolk.

Lowestoft and Sizewell are the only locations between Kent and Humberside with thriving kittiwake colonies. Kittiwake normally nest on steep cliffs with narrow ledges. East Anglia doesn’t have these natural nesting spaces, so kittiwake have reverted to colonising urban areas, for example on windowsills and ledges of buildings. Kittiwake breeding for the first time are most likely to find artificial structures that are situated close to these urban areas. They are less likely to find structures in places where there are not already kittiwake. Lowestoft and Sizewell are therefore two of the few places in East Anglia where artificial structures could be colonised quickly. These purpose-built nesting sites would improve breeding conditions for kittiwake, whilst successfully achieving our compensation requirements to unlock the world’s biggest offshore wind farm.

I took this picture of kittiwakes at Sizewell.

It doesn’t seem too unlike the structure on the Hornsea 3 web site.

February 4, 2023 Posted by | Energy | , , , , , , | Leave a comment

Disused Railway Land In Lowestoft Gets A New Lease Of Life

The title of this post, is the same as that of this article on Rail Advent.

This is the sub-heading.

The land has been cleared and 30 willow trees planted by a Network Rail team in a bid to increase biodiversity.

I can see many small pieces of land getting a similar treatment.

February 3, 2023 Posted by | Transport/Travel | , , | Leave a comment

Low Carbon Construction Of Sizewell C Nuclear Power Station

Sizewell C Nuclear Power Station is going to be built on the Suffolk Coast.

Wikipedia says this about the power station’s construction.

The project is expected to commence before 2024, with construction taking between nine and twelve years, depending on developments at the Hinkley Point C nuclear power station, which is also being developed by EDF Energy and which shares major similarities with the Sizewell plant.

It is a massive project and I believe the construction program will be designed to be as low-carbon as possible.

High Speed Two is following the low-carbon route and as an example, this news item on their web site, which is entitled HS2 Completes Largest Ever UK Pour Of Carbon-Reducing Concrete On Euston Station Site, makes all the right noises.

These three paragraphs explain in detail what has been done on the Euston station site.

The team constructing HS2’s new Euston station has undertaken the largest ever UK pour of Earth Friendly Concrete (EFC) – a material that reduces the amount of carbon embedded into the concrete, saving over 76 tonnes of CO2 overall. John F Hunt, working for HS2’s station Construction Partner, Mace Dragados joint venture, completed the 232 m3 concrete pour in early September.

The EFC product, supplied by Capital Concrete, has been used as a foundation slab that will support polymer silos used for future piling works at the north of the Euston station site. Whilst the foundation is temporary, it will be in use for two years, and historically would have been constructed with a more traditional cement-based concrete.

The use of the product on this scale is an important step forward in how new, innovative environmentally sustainable products can be used in construction. It also helps support HS2’s objective of net-zero construction by 2035, and achieve its goal of halving the amount of carbon in the construction of Britain’s new high speed rail line.

Note.

  1. Ten of these slabs would fill an Olympic swimming pool.
  2. I first wrote about Earth Friendly Concrete (EFC) in this post called Earth Friendly Concrete.
  3. EFC is an Australian invention and is based on a geopolymer binder that is made from the chemical activation of two recycled industrial wastes; flyash and slag.
  4. HS2’s objective of net-zero construction by 2035 is laudable.
  5. It does appear that this is a trial, but as the slab will be removed in two years, they will be able to examine in detail how it performed.

I hope the Sizewell C project team are following High Speed Two’s lead.

Rail Support For Sizewell C

The Sizewell site has a rail connection and it appears that this will be used to bring in construction materials for the project.

In the January 2023 Edition of Modern Railways, there is an article, which is entitled Rail Set To Support Sizewell C Construction.

It details how sidings will be built to support the construction, with up to four trains per day (tpd), but electrification is not mentioned.

This is surprising to me, as increasingly, big construction projects are being managed to emit as small an amount of carbon as possible.  Sizewell C may be an isolated site, but in Sizewell B, it’s got one of the UK’s biggest independent carbon-free electricity generators a couple of hundred metres away.

The writer of the Modern Railways article, thinks an opportunity is being missed.

I feel the following should be done.

  • Improve and electrify the East Suffolk Line between Ipswich and Saxmundham Junction.
  • Electrify the Aldeburgh Branch Line and the sidings to support the construction or agree to use battery-electric or hydrogen zero-carbon locomotives.

Sizewell C could be a superb demonstration project for low-carbon construction!

Sizewell C Deliveries

Sizewell C will be a massive project and and will require a large number of deliveries, many of which will be heavy.

The roads in the area are congested, so I suspect rail is the preferred method for deliveries.

We already know from the Modern Railways article, that four tpd will shuttle material to a number of sidings close to the site. This is a good start.

Since Sizewell A opened, trains have regularly served the Sizewell site to bring in and take out nuclear material. These occasional trains go via Ipswich and in the last couple of years have generally been hauled by Class 88 electro-diesel locomotives.

It would be reasonable to assume that the Sizewell C sidings will be served in the same manner.

But the route between Westerfield Junction and Ipswich station is becoming increasingly busy with the following services.

  • Greater Anglia’s London and Norwich services
  • Greater Anglia’s Ipswich and Cambridge services
  • Greater Anglia’s Ipswich and Felixstowe services
  • Greater Anglia’s Ipswich and Lowestoft services
  • Greater Anglia’s Ipswich and Peterborough services
  • Freight services serving the Port of Felixstowe, which are expected to increase significantly in forthcoming years.

But the Modern Railways article says this about Saxmundham junction.

Saxmundham junction, where the branch meets the main line, will be relaid on a slightly revised alignment, retaining the existing layout but with full signalling giving three routes from the junction protecting signal on the Down East Suffolk line and two in the Down direction on the bidirectional Up East Suffolk line. Trap points will be installed on the branch to protect the main line, with the exit signal having routes to both running lines.

Does the comprehensive signalling mean that a freight train can enter or leave the Sizewell sidings to or from either the busy Ipswich or the quieter Lowestoft direction in a very safe manner?

I’m no expert on signalling, but I think it does.

  • A train coming from the Lowestoft direction needing to enter the sidings would go past Saxmundham junction  on the Up line. Once clear of the junction, it would stop and reverse into the branch.
  • A train coming from the Ipswich direction needing to enter the sidings would approach in the wrong direction on the Up line and go straight into the branch.
  • A train leaving the sidings in the Lowestoft direction would exit from the branch and take the Up line until it became single track. The train would then stop and reverse on to the Down line and take this all the way to Lowestoft.
  • A train leaving the sidings in the Ipswich direction would exit from the branch and take the Up line  all the way to Ipswich.

There would need to be ability to move the locomotive from one end to the other inside the Sizewell site or perhaps these trains could be run with a locomotive on both ends.

The advantage of being able to run freight trains between Sizewell and Lowestoft becomes obvious, when you look at this Google Map, which shows the Port of Lowestoft.

Note.

  1. The Inner Harbour of the Port of Lowestoft.
  2. The East Suffolk Line running East-West to the North of the Inner Harbour.
  3. Lowestoft station at the East side of the map.

I doubt it would be the most difficult or expensive of projects to build a small freight terminal on the North side of the Inner Harbour.

I suspect that the easiest way to bring the material needed to build the power station to Sizewell would be to do the following.

  • Deliver it to the Port of Lowestoft by ship.
  • Tranship to a suitable shuttle train for the journey to the Sizewell sidings.
  • I estimate that the distance is only about 25 miles and a battery or hydrogen locomotive will surely be available in the UK in the next few years, that will be able to provide the motive power for the return journey.

In The TruckTrain, I wrote about a revolutionary freight concept, that could be ideal for the Sizewell freight shuttle.

In addition, there is no reason, why shuttle trains couldn’t come in from anywhere connected to the East Suffolk Line.

Zero-Carbon Construction

Sizewell C could be the first major construction site in the UK to use electricity rather than diesel simply because of its neighbour.

Conclusion

I shall be following the construction methods at Sizewell C, as I’m fairly sure they will break new ground in the decarbonisation of the Construction industry.

December 28, 2022 Posted by | Energy, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Norfolk Wind Farms Offer ‘Significant Benefit’ For Local Economy

The title of this post, is the same as that of this article on the BBC.

This is a comprehensive article, which looks at the benefits of the huge Norfolk Boreas and Norfolk Vanguard wind farms will have to the economy of Norfolk.

The last section is devoted to Norfolk Nimby; Raymond Pearce.

This is the section.

Following the re-approval of the decision by the government, Mr Pearce says he is considering a new appeal over what he calls “a very poor decision”.

He is also sceptical of claims the two new wind farms will bring the economic gains promised by Vattenfall.

“It’s renewable energy at any cost and the cost here is to the environment in Norfolk,” he says.

“I don’t blame them for being positive about it, it’s their industry but they’re not looking at it holistically.”

He says he is not against renewable energy but thinks a better plan is needed to connect the offshore windfarms and minimise the number of cables and substations onshore.

It’s his money if he appeals, but we do need more wind, solar and other zero-carbon energy to combat global warming and its effects like the encroachment of the sea around Norfolk.

I believe, that building wind farms off the coast of Essex, Suffolk and Norfolk is a good move, as in the future, if we have spare electricity, it will be easy to export energy to Europe, through existing interconnectors.

But I do agree with him, that a better plan is needed to connect the offshore windfarms and minimise the number of cables and substations onshore.

A Norfolk Powerhouse

This map from Vattenfall, the developer of the two wind farms, shows the position of the farms and the route of the cable to the shore.

Note.

  1. The purple line appears to be the UK’s ten mile limit.
  2. Norfolk Boreas is outlined in blue.
  3. Norfolk Vanguard is outlined in orange.
  4. Cables will be run in the grey areas.
  5. Both wind farms are planned to have a capacity of 1.8 GW

Landfall will be just a few miles to the South of the Bacton gas terminal.

Bacton Gas Terminal

Bacton gas terminal is much more than a simple gas terminal.

With the need to decarbonise, I can’t help feeling that the Bacton gas terminal is very much on the decline and the site will need to be repurposed in the next few years.

Blending Hydrogen With Natural Gas

If you blend a proportion of hydrogen into natural gas, this has two beneficial effects.

  • Gas used in domestic and industrial situations will emit less carbon dioxide.
  • In the near future we will be replacing imported natural gas with hydrogen.

The hydrogen could be produced by a giant electrolyser at Bacton powered by the electricity from the two Norfolk wind farms.

At the present time, a research project call HyDeploy is underway, which is investigating the blending of hydrogen into the natural gas supply.

  • Partners include Cadent, Northern Gas Networks, the Health and Safety Executive, Keele University and ITM Power and Progessive Energy.
  • A first trial at Keele University has been hailed as a success.
  • It showed up to twenty percent of hydrogen by volume can be added to the gas network without the need to change any appliances or boilers.

Larger trials are now underway.

A Giant Electrolyser At Bacton

If hydrogen were to be produced at Bacton by a giant electrolyser, it could be used or distributed in one of the following ways.

  • Blended with natural gas for gas customers in Southern England.
  • Stored in a depleted gas field off the coast at Bacton. Both Baird and Deborah gas fields have been or are being converted to gas storage facilities, connected to Bacton.
  • Distributed by truck to hydrogen filling stations and bus and truck garages.
  • Greater Anglia might like a hydrogen feed to convert their Class 755 trains to hydrogen power.
  • Sent by a short pipeline to the Port of Great Yarmouth and possibly the Port of Lowestoft.
  • Exported to Europe, through one of the interconnectors.

Note.

  1. If the electrolyser were to be able to handle the 3.6 GW of the two wind farms, it would be the largest in the world.
  2. The size of the electrolyser could be increased over a few years to match the output of the wind farms as more turbines are installed offshore.
  3. There is no reason, why the electrical connection between Bacton and the landfall of the wind farm cable couldn’t be offshore.

If ITM Power were to supply the electrolyser, it would be built in the largest electrolyser factory in the World, which is in Sheffield in Yorkshire.

A Rail Connection To The Bacton Gas Terminal

This Google Map shows the area between North Walsham and the coast.

Note.

  1. North Walsham is in the South-Western corner of the map.
  2. North Walsham station on the Bittern Line is indicated by the red icon.
  3. The Bacton gas terminal is the trapezoidal-shaped area on the coast, at the top of the map.

I believe it would be possible to build a small rail terminal in the area with a short pipeline connection to Bacton, so that hydrogen could be distributed by train.

How Much Hydrogen Could Be Created By The Norfolk Wind Farms?

In The Mathematics Of Blending Twenty Percent Of Hydrogen Into The UK Gas Grid, I said the following.

Ryze Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

The electrolyser will consume 552 MWh to produce ten tonnes of hydrogen, so creating one tonne of hydrogen needs 55.2 MWh of electricity.

Each of the Norfolk wind farms, if they were working flat out would produce 43.2 GWh  of electricity in a day.

Dividing the two figures gives a daily production rate of 782.6 tonnes of hydrogen per day.

But what happens if the wind doesn’t blow?

This is where the gas storage in the Baird, Deborah and other depleted gas fields comes in.In times of maximum wind, hydrogen is stored for use when the wind doesn’t blow.

Conclusion

I believe a plan like this, would be much better for Norfolk, the UK and the whole planet.

Using the existing gas network to carry the energy away from Norfolk, could mean that the electricity connection across Norfolk could be scaled back.

 

 

February 17, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , | 5 Comments

Is There A Need For A Norfolk-Suffolk Interconnector?

The coast of East Anglia from the Wash to the Haven Ports of Felixstowe, Harwich and Ipswich is becoming the Energy Coast of England.

Starting at the Wash and going East and then South, the following energy-related sites or large energy users are passed.

Bicker Fen Substation

Bicker may only be a small hamlet in Lincolnshire, but it is becoming increasingly important in supplying energy to the UK.

Nearby is Bicker Fen substation, which connects or will connect the following to the National Grid.

  • The 26 MW Bicker Fen onshore windfarm.
  • The 1,400 MW interconnector from Denmark called Viking Link.
  • The proposed 857 MW offshore wind farm Triton Knoll.

This Google Map shows the location of Bicker Fen with respect to The Wash.

Bicker Fen is marked by the red arrow.

The Google Map shows the substation.

It must be sized to handle over 2 GW, but is it large enough?

Dudgeon Offshore Wind Farm

The Dudgeon offshore wind farm is a 402 MW wind farm, which is twenty miles off the North Norfolk coast.

  • It has 67 turbines and an offshore substation.
  • It is connected to the shore at Weybourne on the coast from where an underground cable is connected to the National Grid at Necton.
  • It became operational in Oct 2017.
  • Equinor and Statkraft are part owners of the windfarm and this is the home page of the wind farm’s web site.
  • Equinor is the operator of the wind farm.

This Google Map shows the location of Weybourne on the coast.

Note.

  1. Weybourne is in the middle on the coast.
  2. Sheringham is on the coast in the East.
  3. Holt is on the Southern edge of the map almost South of Weybourne.

This second map shows the location of the onshore substation at Necton, with respect to the coast.

Note.

  1. The Necton substation is marked by a red arrow.
  2. Holt and Sheringham can be picked out by the coast in the middle.
  3. Weybourne is to the West of Sheringham.
  4. Necton and Weybourne are 35 miles apart.

Digging in the underground cable between Necton and Weybourne might have caused some disruption.

Looking at Weybourne in detail, I can’t find anything that looks like a substation. So is the Necton substation connected directly to Dudgeon’s offshore substation?

Sheringham Shoal Offshore Wind Farm

The Sheringham Shoal offshore wind farm is a 316.8 MW wind farm, which is eleven miles off the North Norfolk coast.

  • It has 88 turbines and two offshore substations.
  • As with Dudgeon, it is connected to the shore at Weybourne on the coast.
  • But the underground cable is connected to an onshore substation at Salle and that is connected to the National Grid at Norwich.
  • It became operational in Sept 2012.
  • Equinor and Statkraft are part owners of the windfarm and this is the home page of the wind farm’s web site.
  • Equinor is the operator of the wind farm.

This second map shows the location of the onshore substation at Salle, with respect to the coast.

Note.

  1. The Salle substation is marked by a red arrow.
  2. Holt, Weybourne and Sheringham can be picked out by the coast in the middle.
  3. Weybourne is to the West of Sheringham.
  4. Salle and Weybourne are 13.5 miles apart.

Could the following two statements be true?

  • As the Sheringham Shoal wind farm was built first, that wind farm was able to use the shorter route.
  • It wasn’t built large enough to be able to handle the Dudgeon wind farm.

The statements would certainly explain, why Dudgeon used a second cable.

Extending The Dudgeon And Sheringham Shoal Wind Farms

Both the Dudgeon And Sheringham Shoal web sites have details of the proposed join extension of both wind farms.

This is the main statement on the Overview page.

Equinor has been awarded an Agreement for Lease by the Crown Estate, the intention being to seek consents to increase the generating capacity of both the Sheringham Shoal Offshore Wind Farm and the Dudgeon Offshore Wind Farm.

They then make three points about the development.

  • Equinor is proposing a joint development of the two projects with a common transmission infrastructure.
  • As part of the common DCO application, the Extension Projects have a shared point of connection at the National Grid Norwich Main substation.
  • These extension projects will have a combined generating capacity of 719MW which will make an important contribution to the UK’s target of 30GW of electricity generated by offshore wind by 2030.

This statement on the Offshore Location page, describes the layout of the wind farms.

The Sheringham Shoal Offshore Wind Farm extension is to the north and the east of the existing wind farm, while its Dudgeon counterpart is to the north and south east of the existing Dudgeon Offshore Wind Farm site. The proposed extension areas share the boundaries with its existing wind farm site.

They then make these two important points about the development.

  • Equinor is seeking to develop the extension project with a joint transmission infrastructure. A common offshore substation infrastructure is planned to be located in the Sheringham Shoal wind farm site.
  • The seabed export cable which will transmit the power generated by both wind farm extensions will make landfall at Weybourne.

There is also this map.

Note.

  1. The purple line appears to be the UK’s ten mile limit.
  2. The Sheringham Shoal Extension is outlined in red.
  3. The Dudgeon Extension is outlined in blue.
  4. The black lines appear to be the power cables.

I suspect the dotted blue lines are shipping routes sneaking their way through the turbines.

This statement on the Onshore Location page, describes the layout of the offshore and onshore cables.

A new seabed export cable will bring the electricity generated by both the Sheringham Shoal and Dudgeon Offshore Wind Farm extensions to shore at Weybourne, on the coast of Norfolk.

They then make these two important points about the development.

  • From there a new underground cable will be installed to transmit that power to a new purpose built onshore substation, which will be located within a 3km radius of the existing Norwich main substation, south of Norwich. This will be the National Grid network connection point for the electricity from both wind farm extensions.
  • The power will be transmitted from landfall to the substation using an HVAC system which eliminates the need for any relay stations along the onshore cable route.

There is also this map.

It will be a substantial undertaking to build the underground cable between Weybourne and South of Norwich.

Bacton Gas Terminal

The Bacton gas terminal is a complex of six gas terminals about ten miles East of Cromer.

  • It lands and processes gas from a number of fields in the North Sea.
  • It hosts the UK end of the BBL pipeline to The Netherlands.
  • It hosts the UK end of the Interconnector to Zeebrugge in Belgium.
  • The Baird and Deborah fields, which have been developed as gas storage, are connected to the gas terminal. They are both mothballed.

This Google Map shows the location of the terminal.

Note.

  1. The Bacton gas terminal is marked by a red arrow.
  2. Sheringham is in the North West corner of the map.
  3. Cromer, Overstrand, Trimingham and Mundesley are resort towns and villages along the coast North of Bacton.

This second map shows the Bacton gas terminal in more detail.

Would you want to have a seaside holiday, by a gas terminal?

Norfolk Boreas And Norfolk Vanguard

Norfolk Boreas and Norfolk Vanguard are two wind farms under development by Vattenfall.

  • Norfolk Boreas is a proposed 1.8 GW wind farm, that will be 45 miles offshore.
  • Norfolk Vanguard is a proposed 1.8 GW wind farm, that will be 29 miles offshore.

This map shows the two fields in relation to the coast.

Note.

  1. The purple line appears to be the UK’s ten mile limit.
  2. Norfolk Boreas is outlined in blue.
  3. Norfolk Vsnguard is outlined in orange.
  4. Cables will be run in the grey areas.

This second map shows the onshore cable.

Note.

  1. The cables are planned to come ashore between Happisburgh and Eccles-on-Sea.
  2. Bacton gas terminal is only a short distance up the coast.
  3. The onshore cable is planned to go from here across Norfolk to the Necton substation.

But all of this has been overturned by a legal ruling.

This article on the BBC is entitled Norfolk Vanguard: Ministers Wrong Over Wind Farm Go-Ahead, Says Judge.

These are the first four paragraphs.

A High Court judge has quashed permission for one of the world’s largest offshore wind farms to be built off the east coast of England.

The Norfolk Vanguard Offshore Wind Farm was granted development consent in July by the Secretary of State for Business, Energy and Industrial Strategy (BEIS).

But Mr Justice Holgate overturned the decision following legal action from a man living near a planned cable route.

A Department for BEIS spokeswoman said it was “disappointed by the outcome”.

I bet the spokeswoman was disappointed.

Vattenfall and the BEIS will go back to the drawing board.

But seriously, is it a good idea to dig an underground cable all the way across Norfolk or in these times build a massive overhead cable either?

Perhaps the solution is to connect the Norfolk Boreas And Norfolk Vanguard wind farms to a giant electrolyser at Bacton, which creates hydrogen.

  • The underground electricity cable across Norfolk would not be needed.
  • Bacton gas terminal is only a few miles up the coast from the cable’s landfall.
  • The UK gets another supply of gas.
  • The hydrogen is blended with natural gas for consumption in the UK or Europe.
  • A pure hydrogen feed can be used to supply hydrogen buses, trucks and other vehicles, either by tanker or pipeline.
  • Excess hydrogen could be stored in depleted gas fields.

The main benefit though, would be that it would transform Bacton gas terminal from a declining asset into Norfolk’s Hydrogen Powerhouse.

Great Yarmouth And Lowestoft

Great Yarmouth Outer Harbour and the Port of Lowestoft have not been the most successful of ports in recent years, but with the building of large numbers of wind farms, they are both likely to receive collateral benefits.

I wouldn’t be surprised to see the support ships for the wind farms switching to zero-carbon power, which would require good electrical connections to the ports to either charge batteries or power electrolysers to generate hydrogen.

Sizewell

Sizewell has only one nuclear power station at present; Sizewell B, but it could be joined by Sizewell C or a fleet of Small Modular Reactors (SMR).

The Sizewell Overhead Transmission Line

Sizewell also has a very high capacity overhead power line to Ipswich and the West.

I doubt, it would be possible to build an overhead transmission line like this today.

Sizewell And Hydrogen

EdF, who own the site are involved with Freeport East and may choose to build a large electrolyser in the area to create hydrogen for the Freeport.

East Anglia Array

The East Anglia Array will be an enormous wind farm., comprising up to six separate projects.

It will be thirty miles offshore.

It could generate up to 7.2 GW.

The first project East Anglia One is in operation and delivers 714 MW to a substation in the Deben Estuary, which connects to the Sizewell high-capacity overhead power line.

Most projects will be in operation by 2026.

Freeport East

As the Freeport develops, it will surely be a massive user of both electricity and hydrogen.

Problems With The Current Electricity Network

I don’t believe that the current electricity network, that serves the wind farms and the large energy users has been designed with the number of wind farms we are seeing in the North Sea in mind.

Every new windfarm seems to need a new connection across Norfolk or Suffolk and in Norfolk, where no high-capacity cables exist, this is stirring up the locals.

There is also no energy storage in the current electricity network, so at times, the network must be less than efficient and wind turbines have to be shut down.

Objections To The Current Policies

It is not difficult to find stories on the Internet about objections to the current policies of building large numbers of wind farms and the Sizewell C nuclear power station.

This article on the East Anglia Daily Times, which is entitled Campaigners Unite In Calling For A Pause Before ‘Onslaught’ Of Energy Projects ‘Devastates’ Region is typical.

This is the first paragraph.

Campaigners and politicians have called on the Government to pause the expansion of the energy industry in Suffolk, which they fear will turn the countryside into an “industrial wasteland” and hit tourism.

The group also appear to be against the construction of Sizewell C.

I feel they have a point about too much development onshore, but I feel that if the UK is to thrive in the future we need an independent zero carbon energy source.

I also believe that thousands of wind farms in the seas around the UK and Ireland are the best way to obtain that energy.

Blending Hydrogen With Natural Gas

Blending green hydrogen produced in an electrolyser  with natural gas is an interesting possibility.

  • HyDeploy is a project to investigate blending up to 20 % of green hydrogen in the natural gas supply to industrial and domestic users.
  • Partners include Cadent, ITM Power, Keele University and the Health and Safety Executive.
  • Natural gas naturally contains a small amount of hydrogen anyway.
  • The hydrogen gas would be distributed to users in the existing gas delivery network.

I wrote about HyDeploy in a post called HyDeploy.

Thje only loser, if hydrogen were to be blended with natural gas would be Vlad the Poisoner, as he’d sell less of his tainted gas.

An Interconnector Between Bicker Fen And Freeport East

I believe that an electricity interconnector between at least Bicker Fen and Freeport East could solve some of the problems.

My objectives would be.

  • Avoid as much disruption on the land as possible.
  • Create the capacity to deliver all the energy generated to customers, either as electricity or hydrogen.
  • Create an expandable framework, that would support all the wind farms that could be built in the future.

The interconnector would be a few miles offshore and run along the sea-bed.

  • This method of construction is well proven.
  • It was used for the Western HVDC Link between Hunterston in Scotland and Connah’s Quay in Wales.
  • Most wind farms seem to have existing substations and these would be upgraded to host the interconnector.

Connections en route would include.

Dudgeon Offshore Wind Farm

The interconnector would connect to the existing offshore substation.

Sheringham Shoal Wind Farm

The interconnector would connect to the existing offshore substation.

Dudgeon and Sheringham Shoal Extension Offshore Wind Farms

These two wind farms could be connected directly to the interconnector, if as planned, they shared an offshore substation in the Sheringham Shoal Extension offshore wind farm.

Bacton Gas Terminal

I would connect to the Bacton Gas Terminal, so that a large electrolyser could be installed at the terminal.

The hydrogen produced could be.

  • Stored in depleted gas fields connected to the terminal.
  • Blended with natural gas.
  • Exported to Europe through an interconnector.
  • Supplied to local users by truck or pipeline.

After all, the terminal has been handling gas for over fifty years, so they have a lot of experience of safe gas handling.

Norfolk Boreas And Norfolk Vanguard

These two wind farms could be connected directly to the interconnector, if they shared an offshore substation.

It would also help to appease and silence the objectors, if there was no need to dig up half of Norfolk.

Great Yarmouth And Lowestoft

It might be better, if these ports were supplied from the interconnector.

  • Either port could have its own electrolyser to generate hydrogen, which could be.
  • Used to power ships, trucks and port equipment.
  • Liquefied and exported in tankers.
  • Used to supply local gas users.
  • Hydrogen could be supplied to a converted Great Yarmouth power station.

Both Great Yarmouth and Lowestoft could become hydrogen hub towns.

Sizewell

This site has a high-capacity connection to the National Grid. This connection is a big eyesore, but it needs to run at full capacity to take electricity from the Energy Coast to the interior of England.

That electricity can come from Sizewell B and/or Sizewell C nuclear power stations or the offshore wind farms.

East Anglia Array

There would probably need to be a joint offshore substation to control the massive amounts of electricity generated by the array.

Currently, the only wind farm in operation of this group is East Anglia One, which uses an underground cable connection to the Sizewell high-capacity connection to the Bullen Lane substation at Bramford.

Freeport East, Ipswich And Bullen Lane Substation

This Google Map shows the area between Ipswich and the coast.

Note.

  1. Sizewell is in the North-East corner of the map.
  2. Felixstowe, Harwich and Freeport East are at the mouth of the rivers Orwell and Stour.
  3. The Bullen Lane substation is to the West of Ipswich and shown by the red arrow.

I would certainly investigate the possibility of running an underwater cable up the River Orwell to connect the Southern end of the interconnector Between Bicker Fen And Freeport East.

This Google Map shows the Bullen Lane Substation.

It looks impressive, but is it big enough to handle all the electricity coming ashore from the offshore wind farms to the East of Suffolk and the electricity from the power stations at Sizewell?

Conclusion

I believe there are a lot of possibilities, that would meet my objectives.

In addition, simple mathematics says to me, that either there will need to be extra capacity at both Bicker Fen and Bullen Lane substations and onward to the rest of the country, or a large electrolyser to convert several gigawatts of electricity into hydrogen for distribution, through the gas network.

 

 

January 30, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , , , , | 7 Comments