The Anonymous Widower

Masdar To Invest In Iberdrola’s 1.4 GW East Anglia Offshore Wind Project

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

Iberdrola and Masdar have signed a strategic partnership agreement to evaluate the joint development of offshore wind and green hydrogen projects in Germany, the UK, and the US, which also includes an investment in Iberdrola’s 1.4 GW East Anglia 3 offshore wind project in the UK.

These first two paragraphs outline the del.

After the parties’ successful co-investment in the Baltic Eagle offshore wind farm in Germany, the new milestone of this alliance will be to achieve a further co-investment concerning the 1.4 GW East Anglia 3 offshore wind project in the UK, said the companies.

According to the partners, the deal has been under negotiation for the last few months and could be signed by the end of the first quarter of 2024. Masdar’s stake in the wind farm could be 49 per cent.

This deal appears to be very similar to Masdar’s deal with RWE, that I wrote about in RWE Partners With Masdar For 3 GW Dogger Bank South Offshore Wind Projects.

  • The Iberdrola deal involves the 1.4 GW East Anglia 3 wind farm, which has a Contract for Difference at £37.35 £/MWh and is scheduled to be completed by 2026.
  • The RWE deal involves the 3 GW Dogger Bank South wind farm, which doesn’t have a Contract for Difference and is scheduled to be completed by 2031.
  • Both deals are done with wind farm developers, who have a long track record.
  • Both wind farms are the latest to be built in mature clusters of wind farms, so there is a lot of production and maintenance data available.

I suspect, that many capable engineers and accountants can give an accurate prediction of the cash flow from these wind farms.

I will expect that we’ll see more deals like this, where high quality wind farms are sold to foreign energy companies with lots of money.

Just over five years ago, I wrote World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, which described how and why Aviva were investing in the Hornsea 1 wind farm.

Conclusion

It appears that Masdar are doing the same as Aviva and usind wind farms as a safe investment for lots of money.

December 5, 2023 Posted by | Energy, Finance, Hydrogen | , , , , , , , | Leave a comment

RWE Partners With Masdar For 3 GW Dogger Bank South Offshore Wind Projects

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

RWE has signed an agreement with UAE’s Masdar as a partner for its 3 GW Dogger Bank South (DBS) offshore wind projects in the UK.

These three paragraphs outline the deal.

The partners acknowledged the signing of the new partnership during a ceremony at COP28 in Dubai.

Masdar will acquire a 49 per cent stake in the landmark renewables projects while RWE, with a 51 per cent share, will remain in charge of development, construction, and operation throughout the life cycle of the projects.

RWE’s proposed DBS offshore wind project is made up of two offshore wind farms, Dogger Bank South East and Dogger Bank South West (DBS East and DBS West), each 1.5 GW, which are located over 100 kilometres offshore in the shallow area of the North Sea known as Dogger Bank.

Note.

  1. Masdar is an energy company headquartered in Abu Dubai.
  2. The Chairman of Masdar is President of COP28.

Does this deal indicate that wind farms are good investments for those individuals, companies and organisations with money?

December 4, 2023 Posted by | Energy, Finance | , , , , , , | 3 Comments

Plans for Hydrogen Development At Dogger Bank D Gain Ground

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

Dogger Bank D, the potential fourth phase of the world’s largest offshore wind farm under construction, Dogger Bank Wind Farm, has awarded contracts to engineering consultants to support the feasibility and optimization of a large-scale green hydrogen development option on the project

These three paragraphs outline the project.

SSE Renewables and Equinor, the developers of the Dogger Bank wind farm in the UK, awarded contracts for green hydrogen concept and engineering and optimization studies to Genesis, H2GO Power, and Fichtner.

If progressed for delivery, Dogger Bank D would be located in the North Sea around 210 kilometers off the northeast coast of England. Subject to the successful outcome of further technical studies, the project could be capable of generating up to around 2 GW of renewable power.

The 2 GW offshore wind farm is currently planned to comprise 128 wind turbines and up to six offshore platforms.

Note.

According to the article, this would be one of the UK’s largest green hydrogen production facilities.

The partners said, that the project could contribute to the UK Government’s electrolytic hydrogen ambitions for 5 GW by 2030.

This is said about the studies.

Using AI machine learning and robust modeling, these studies will investigate the multitude of interdependent variables required to optimize a potential green hydrogen production facility, such as offshore wind farm sizing, electrolysis capacity, transport and storage capacity, water availability, and offtake optionality.

I was using robust modelling on projects such as these fifty years ago, both with Artemis and bespoke software.

To my mind, SSE Renewables and Equinor are doing the right thing. If anybody has a similar project with lots of variables, I’d love to give my opinion.

I have some thoughts.

How Much Hydrogen Will Be Produced?

Ryze Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

The electrolyser will consume 552 MWh to produce ten tonnes of hydrogen, so creating one tonne of hydrogen needs 55.2 MWh of electricity.

 

This would mean that if the Japanese built one Herne Bay-size electrolyser, then it would produce around three hundred tonnes of hydrogen in an average month.

Consider.

  • Dogger Bank D is likely to be a 2 GW wind farm.
  • This document on the OFGEM web site, says that the Dogger Bank wind farms will have a capacity factor of 45 %.
  • This means that Dogger Bank D wind farm will produce an average of 900 MW over a year.
  • This works out at 7,884 GWh of electricity in a year.

As each tonne of hydrogen needs 55.2 MWh to be produced, this means if all the electricity produced by Dogger Bank D, is used to create green hydrogen, then 142,826.1 tonnes will be produced.

How Will The Hydrogen Be Brought Ashore?

142,826.1 tonnes is a lot of green hydrogen and the easiest ways to transfer it to the shore would be by a pipeline  or a tanker.

I wouldn’t be surprised to see the use of tankers, as this would give more flexibility and allow the export of hydrogen to countries in need of hydrogen.

Will There Be Hydrogen Storage In The Dogger Bank D Wind Farm?

This would surely be a possibility, but there are security considerations.

Cost would also be a factor!

The Location Of The Dogger Bank D Wind Farm

I clipped this map of Dogger Bank A, B, C and D wind farms from this page of the Dogger Bank D web site.

Note.

  1. RWE’s Dogger Bank South wind farm is not shown on the map.
  2. Dogger Bank D wind farm is the most Easterly of the four wind farms being developed by SSE Renewables and Equinor.
  3. Dogger Bank D wind farm must be the closest of the Dogger Bank wind farms to the Eastern border of the UK’s Exclusive Economic  Zone or EEZ.

Dogger Bank D wind farm would appear to be ideally placed to supply hydrogen to a number of places, by either pipeline or tanker.

Could Dogger Bank South Wind Farm Also Produce Hydrogen?

In RWE Partners With Masdar For 3 GW Dogger Bank South Offshore Wind Projects, I talked about the change of ownership of the Dogger Bank South wind farm.

I would assume that the Dogger Bank South wind farm will be located to the South of the Dogger Bank A,B, C and D wind farms.

Whether it will produce hydrogen will be a matter for the owners and market conditions.

I do believe though, that it could share some facilities with the those that might be built for Dogger Bank D wind farm.

Conclusion

After this brief look, Dogger Bank D could be an ideal place to build a large hydrogen production facility.

 

December 4, 2023 Posted by | Computing, Energy, Hydrogen | , , , , , , , , , , , | 1 Comment

UK And Germany Boost Offshore Renewables Ties

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

A new partnership between the UK and German governments has been agreed on 3 November to help secure safe, affordable, and clean energy for consumers in both nations for the long-term and bolster energy security. Both countries commit to strengthening cooperation in renewables, notably offshore wind and electricity interconnection.

These two paragraphs introduce the deal.

Under the new partnership signed in London by Energy Security Secretary Claire Coutinho and Germany’s Vice Chancellor, Robert Habeck, the UK and Germany have reaffirmed their shared ambition and commitment to net zero and progressing the energy transition.

Europe’s two largest economies have also doubled down on commitments made under the Paris Agreement to limit global warming to 1.5 degrees.

i think this could be a worthwhile follow-up to the relationship, that Boris Johnson and Olaf Scholz seemed to encourage after their high profile meeting in April 2022.

This press release from Downing Street is entitled PM meeting with German Chancellor Olaf Scholz: 8 April 2022 and this is the first two paragraphs.

The Prime Minister welcomed German Chancellor Olaf Scholz to Downing Street this afternoon to discuss the West’s response to Putin’s barbaric invasion of Ukraine.

The two leaders shared their disgust at the Russian regime’s onslaught and condemned Putin’s recent attacks.

I wrote Armoured Vehicles For Ukraine based on some of the things said in the press conference after what seemed to be a very wide discussion.

But it was these paragraphs in the press release that caught my eye.

They also agreed on the need to maximise the potential of renewable energy in the North Sea and collaborate on climate ambitions and green energy.

The Prime Minister said he wanted to further deepen the UK’s relationship with Germany, and intensify its cooperation across defence and security, innovation and science.

After Boris and Olaf’s meeting at Downing Street, I have been able to write these posts about the Anglo-German energy relationship and also make some other observations.

Claire Coutinho and Robert Habeck seem to be wanting to continue the co-operation, judging by this paragraph from the article on offshoreWIND,biz.

The energy and climate partnership sees both countries commit to enhancing cooperation in renewables, particularly in offshore wind and electricity interconnection, including offshore hybrid interconnection.

The most significant part of this paragraph is the mention of offshore hybrid interconnection.

If you want more details on their meeting, this document is the official UK Government declaration.

I have my thoughts.

What Is Meant By Offshore Hybrid Interconnection?

Type “Offshore Hybrid Interconnection” into Google and the first page is this page from National Grid, that is entitled Offshore Hybrid Assets, that has this sub-heading.

How the North Sea has the potential to become Europe’s green energy ‘powerhouse’

This is the introductory paragraph.

Now more than ever we need more renewable energy to make energy cleaner, more affordable, and more secure. The North Sea offers an incredible opportunity for the UK and our European neighbours to deliver huge increases in offshore wind. But delivering new offshore wind will require more infrastructure, which will have an impact on communities.

Hybrid is all-purpose comfort word like cashmere, platinum or puppies.

The page on the National Grid web site describes The Next Generation Interconnector with these paragraphs.

Interconnectors already provide a way to share electricity between countries safely and reliably. But what if they could do much more than that? What if interconnectors could become an offshore connection hub for green energy?

Instead of individual wind farms connecting one by one to the shore, offshore hybrid assets (OHAs) will allow clusters of offshore wind farms to connect all in one go, plugging into the energy systems of neighbouring countries.

And then there is this section entitled Tomorrow’s Solution: Offshore Wind And Interconnectors In Harmony, where this is said.

Today, offshore wind and interconnectors operate alongside each other, connecting to the shore individually. In the future, offshore hybrid assets could enable offshore wind and interconnection to work together as a combined asset.

We now call this type of infrastructure an offshore hybrid asset (OHA), but we used to refer to it as a multi-purpose interconnector (MPI). We changed it because we work so closely together with Europe, it made sense to use the same terminology.

The page on the National Grid web site also has an interactive graphic, which shows the benefit of the approach.

LionLink

National Grid are already developing LionLink, with Dutch grid operator; TenneT, which will be a multi-purpose interconnector linking the UK and the Netherlands.

LionLink is described on this page from National Grid, where this is the sub-heading.

We’re developing a first-of-its-kind electricity link to connect offshore wind between the UK and the Netherlands.

This is the introductory paragraph.

Designed together with our Dutch partners TenneT, LionLink (formerly known as EuroLink) is an electricity link that can supply around 1.8 gigawatts of clean electricity, enough to power approximately 1.8 million British homes. By connecting Dutch offshore wind to Dutch and British markets via subsea electricity cables called interconnectors, LionLink will strengthen our national energy security and support the UK’s climate and energy goals.

Will we be planning a similar electric handshake with the Germans?

How Much Offshore Wind Power Are We Talking About?

This is answered by the last two paragraphs of the article on offshoreWIND.biz.

Around 75 per cent of installed offshore wind capacity in the North Sea is in German and British waters. This is helping to drive the UK’s ambition for up to 50 GW of offshore wind, including up to 5 GW of floating wind, by 2030, the governments said.

Germany is aiming at installing 30 GW by 2030.

That is an Anglo-German starter for eighty GW.

Electrolysers In The Middle If The North Sea

Why Not?

This is a clip from  National Grid’s graphic on the page that introduces Offshore Hybrid Assets,

It shows an offshore hydrogen electrolyser.

  • You could have an offshore hybrid asset that went between say Bacton in Norfolk and Hamburg via these assets.
  • One or more wind farms in UK territorial waters.
  • A mammoth offshore electrolyser, with hydrogen storage, possibly in a depleted gas field.
  • One or more wind farms in German territorial waters.

Electricity will be able to go three ways; to the UK, to Germany or to the electrolyser.

The Involvement Of German Energy Companies In UK Territorial Waters

Wikipedia lists offshore fifteen wind farms, that have German owners in UK territorial waters, that total 12,960 MW.

This compares with.

  • Equinor – 6 wind farms totalling 6466 MW.
  • Ørsted – 15 wind farms totalling 9683 MW.
  • Scottish Power – 2 wind farms totalling 5,000 MW.
  • SSE Renewables – 15 wind farms totalling 15,591 MW.
  • Vattenfall – 6 wind farms totalling 4384 MW.

As there is a number of partnerships, these figures only show the relative sizes of the investment by individual companies.

But at nearly 13 GW, the amount of total German investment in UK territorial waters is substantial.

Is This Solely An Anglo-German Club Or Can Others Join?

Consider.

  • It seems to me, that because of the LionLink, the Dutch are already involved.
  • TenneT is also a large electricity distributor in Germany.
  • Countries with substantial shares of the water and winds of the North Sea in addition to Germany, the Netherlands and the UK, include Belgium, Denmark and Norway.
  • The UK has interconnectors with Belgium, Denmark, France, Germany, Norway and the Netherlands.

It appears that the world’s largest multi-national power generator is evolving by stealth.

North Sea Wind Power Hub

This concept seems to have developed around 2017, by Danish, Dutch and German interests.

The Wikipedia entry introduces it like this.

North Sea Wind Power Hub is a proposed energy island complex to be built in the middle of the North Sea as part of a European system for sustainable electricity. One or more “Power Link” artificial islands will be created at the northeast end of the Dogger Bank, a relatively shallow area in the North Sea, just outside the continental shelf of the United Kingdom and near the point where the borders between the territorial waters of Netherlands, Germany, and Denmark come together. Dutch, German, and Danish electrical grid operators are cooperating in this project to help develop a cluster of offshore wind parks with a capacity of several gigawatts, with interconnections to the North Sea countries. Undersea cables will make international trade in electricity possible.

Currently, the UK is developing these wind farms on their portion of the Dogger Bank.

  • Doggerbank A – 1235 MW – Started producing electricity in 2023.
  • Doggerbank B – 1235 MW – Planned commissioning in 2024.
  • Doggerbank C – 1218 MW – Planned commissioning in 2025.
  • Doggerbank D – 1320 MW – Being planned.
  • Doggerbank South – 3000 MW – Being planned.

Note.

  1. That’s a total of 8 GW.
  2. A, B, C and D are being developed by a consortium of SSE Renewables and Equinor.
  3. South is being developed by RWE.
  4. This web site is for Dogger Bank D.
  5. This web site is for Dogger Bank South.

This map from the European Atlas of the Seas, shows the various exclusive economic zones (EEZ) in the North Sea.

Note.

  1. The pinkish zone to the East of the UK, is the UK’s EEZ.
  2. The light blue zone at the top is Norway’s EEZ.
  3. The greenish zone in the North-East corner of the map is Denmark’s EEZ.
  4. The light blue zone below Denmark’s EEZ is Germany’s EEZ.
  5. Then we have the EEZs for The Netherlands, Belgium and France.

The Dogger Bank is situated where the British, Dutch, German and Norwegian EEZs meet.

All five Dogger Bank wind farms are in British waters.

The Wikipedia entry for the Dogger Bank says this about its size.

The bank extends over about 17,600 square kilometres (6,800 sq mi), and is about 260 by 100 kilometres (160 by 60 mi) in extent. The water depth ranges from 15 to 36 metres (50 to 120 ft), about 20 metres (65 ft) shallower than the surrounding sea.

This probably makes it easy to accommodate a large fixed-foundation wind farm.

Overlaying the map in the Wikipedia entry, with the EEZ map, I’m fairly sure that the northeast end of the Dogger Bank is close to where the EEZs meet.

Progress On The North Sea Wind Power Hub

The North Sea Wind Power Hub has a web site, but it seems to be more about thinking than doing.

It seems to have been hijacked by that august body; The Institute of Meetings Engineers.

This page on the web site, which is entitled Explore The Future Energy Highways, has a simple interactive map.

This shows its vision for 2030.

Note.

  1. Yellow is electricity links to be built before 2030.
  2. Blue is hydrogen links to be built before 2030.
  3. Feint lines indicate the EEZ boundaries.

There are two problems with this layout.

  • It doesn’t connect to the Dogger Bank area, where the original plan as detailed in Wikipedia talked about “Power Link” artificial islands.
  • No hydrogen is delivered direct to Germany.

This shows its vision for 2050.

Note.

  1. Yellow, blue and feint lines are as before.
  2. White is electricity links to be built before 2050.
  3. There appears to be a node on the Dogger Bank in the German EEZ. This node could be connected to the “Power Link” artificial islands.
  4. The Southernmost connection to East Anglia could be Bacton.
  5. The other Norfolk connection could be where wind farms are already connected.
  6. The Northern connection could be Teesside, where some of the Dogger Bank wind farms connect.
  7. If the Northern connection to England is Teesside, then first node, which is in the British EEZ,  could be one of the offshore sub-stations in the Dogger Bank wind farm complex.

This all seems a lot more feasible.

A New Offshore Hybrid Asset Between Teesside And Germany

Consider.

  • A new offshore sub-station will be needed in the German EEZ to connect the “Power Link” artificial islands to the power network.
  • The new offshore sub-station will eventually have three interconnectors to the German coast.
  • Only the 1218 MW Dogger Bank C wind farm will be connected to the Teesside onshore substation.
  • Germany has a power supply problem, after shutting down nuclear power stations and building more coal-fired power stations.

A new Offshore Hybrid Asset between Teesside and Germany could be created by building the following.

  • A the new offshore sub-station in the German EEZ to connect the “Power Link” artificial islands to the power network.
  • An interconnector between a sub-station of the Dogger Bank wind farm complex and the new sub-station
  • A second interconnector to connect the new sub-station for the “Power Link” artificial islands to the German electricity grid.

All of the work would be done mainly in the German EEZ, with a small amount in the British EEZ.

Where Does Dogger Bank South Fit In?

Consider.

  • Dogger Bank South is planned to be a 3 GW wind farm.
  • It will need a 3 GW connection to the onshore electricity grid.
  • Creyke Beck substation is the proposed location for the onshore connection.
  • It is owned by German electricity company; RWE.

Could it be that some of the electricity produced by Dogger Bank South is going to be sent to Germany or to another node to produce hydrogen?

It certainly illustrates the value of an Offshore Hybrid Asset.

November 4, 2023 Posted by | Energy, Hydrogen | , , , , , , , , , , , , , , , , , , , | 2 Comments

RWE Conducting Seabed Habitat Survey For 3 GW Offshore Wind Farm In UK

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

RWE is performing a benthic survey off the northeast coast of the UK, where the company plans to build its 3 GW Dogger Bank South (DBS) Offshore Wind Farm.

That sounds like another 3 GW will soon be on its way.

In How Long Does It Take To Build An Offshore Wind Farm?, I said that six years from planning permission to commissioning was typical, so as this wind farm is applying for planning permission in 2024, I would expect that a completion date of 2030 is possible.

March 15, 2023 Posted by | Energy | , , , | 1 Comment

Dogger Bank – The Joke That Is Growing Up To Be A Wind Powerhouse

The Wikipedia entry for the Dogger Bank, describes it like this.

Dogger Bank is a large sandbank in a shallow area of the North Sea about 100 kilometres (62 mi) off the east coast of England.

But many of my generation remember it from its use in the Shipping Forecast and as a joke place like the Balls Pond Road, Knotty Ash and East Cheam, in radio and TV comedy from the 1950s and 1960s.

But now it is being turned into one of the largest wind powerhouses!

According to Wikipedia’s list of the UK’s offshore wind farms, these wind farms are being developed on the Dogger Bank.

  • Sofia Offshore Wind Farm – 1400 MW – Under Construction – Commissioning in 2023/26 – £39.65/MWh – RWE
  • Dogger Bank A – 1235 MW – Under Construction – Commissioning in 2023/24 – £39.65/MWh – SSE/Equinor
  • Dogger Bank B – 1235 MW – Pre-Construction – Commissioning in 2024/25 – £41.61/MWh – SSE/Equinor
  • Dogger Bank C – 1218 MW – Pre-Construction – Commissioning in 2024/25 – £41.61/MWh – SSE/Equinor
  • Dogger Bank D – 1320 MW – Early Planning – SSE/Equinor
  • Dogger Bank South – 3000 MW – Early Planning – RWE

Note.

  1. These total up to 9408 MW.
  2. The Dogger Bank wind farms have their own web site.
  3. The Sofia offshore wind farm has its own web site.
  4. The Dogger Bank South wind farms have their own web site.
  5. Dogger Bank A and Dogger Bank B will connect to the National Grid at Creyke Beck to the North of Hull.
  6. Sofia and Dogger Bank C will connect to the National Grid at Lazenby on Teesside.

But this is only the start on the British section of the Dogger Bank.

This map, which comes courtesy of Energy Network Magazine and 4C Offshore is entitled 2001 UK Offshore Windfarm Map shows all UK offshore wind farms and their status. It looks to my naive mind, that there could be space for more wind farms to the North and West of the cluster of Digger Bank wind farms.

The North Sea Wind Power Hub

The UK doesn’t have full territorial rights to the Dogger Bank we share the bank with the Danes, Dutch and Germans.

In the Wikipedia entry for the Dogger Bank wind farm, this is said about the North Sea Wind Power Hub.

Dutch, German, and Danish electrical grid operators are cooperating in a project to build a North Sea Wind Power Hub complex on one or more artificial islands to be constructed on Dogger Bank as part of a European system for sustainable electricity. The power hub would interconnect the three national power grids with each other and with the Dogger Bank Wind Farm.

A study commissioned by Dutch electrical grid operator TenneT reported in February 2017 that as much as 110 gigawatts of wind energy generating capacity could ultimately be developed at the Dogger Bank location.

Note.

  1. 110 GW shared equally would be 27.5 GW.
  2. As we already have 9.4 GW of wind power, under construction or in planning around the Dogger Bank, could we find space for the other 18.1 GW?
  3. I suspect we could squeeze it in.

If we can and the Danes, Dutch and Germans can generate their share, the four countries would each have a 27.5 GW wind farm.

What would put the icing on the cake, would be if there could be a massive battery on the Dogger Bank. It wouldn’t be possible now and many would consider it a joke. But who knows what the capacity of an underwater battery based on concrete, steel, seawater and masses of ingenuity will be in a few years time.

Where Does Norway Fit In To The North Sea Wind Power Hub?

It could be argued that Norway could also connect to the North Sea Wind Power Hub.

  • 110 GW shared equally would be 22 GW.
  • Norway can build massive pumped storage hydroelectric power stations close to the landfall of an interconnector to the North Sea Wind Power Hub.
  • the British, Danes, Dutch and Germans can’t do that, as they don’t have any handy mountains.
  • Norway is a richer country the others involved in the project.

I can see Norway signing up to the North Sea Wind Power Hub.

The North Sea Link

The Wikipedia entry for the North Sea Link, introduces it like this.

The North Sea Link is a 1,400 MW high-voltage direct current submarine power cable between Norway and the United Kingdom.

At 720 km (450 mi) it is the longest subsea interconnector in the world. The cable became operational on 1 October 2021.

It runs between Kvilldal in Norway and Blyth in Northumberland.

I wouldn’t be surprised to see that the North Sea Link is modified, so that it has a connection to the North Sea Wind Power Hub.

 

 

November 22, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , , | 5 Comments

Plans Emerge For 8 GW Of Offshore Wind On Dogger Bank

Wikipedia has an entry, which is a List Of Offshore Wind Farms In The United Kingdom.

The totals are worth a look.

  • Operational – 13279 MW
  • Under Construction – 4125 MW
  • Proposed Under The UK Government’s Contracts For Difference Round 3 – 2412 MW
  • Proposed Under The UK Government’s Contracts For Difference Round 4 – 7026 MW
  • Exploratory Phase, But No Contract for Difference – Scotland – 24,826 MW
  • Exploratory Phase, But No Contract for Difference – England – 14,500 MW

Note.

  1. That gives a Grand Total of 66,168 MW or 66.168 GW.
  2. The government’s target is 50 GW of offshore wind by 2030.
  3. The typical UK power need is around 23 GW, so with nuclear and solar, we could be approaching three times the electricity generation capacity that we currently need.

The figures don’t include projects like Berwick Bank, Cerulean Wind, Norfolk Vanguard or Northern Horizons, which are not mentioned in Wikipedia’s list.

I regularly look at the list of wind farms in this Wikipedia entry and noticed that the number of Dogger Bank wind farms had increased.

They are now given as.

  • Dogger Bank A – 1200 MW – Completion in 2023/24
  • Dogger Bank B – 1200 MW – Completion in 2024/25
  • Dogger Bank C – 1200 MW – Completion in 2024/25
  • Dogger Bank D – 1320 MW – No Completion Given
  • Dogger Bank South – 3000 MW – No Completion Given

Note, that gives a Grand Total of 7920 MW or 7.920 GW.

This article on offshoreWIND.biz is entitled BREAKING: SSE, Equinor Plan 1.3 GW Dogger Bank D Offshore Wind Project.

It was published on the October 6th, 2022 and starts with this summary.

SSE Renewables and Equinor are looking into building what would be the fourth part of Dogger Bank Wind Farm, the world’s largest offshore wind farm, whose three phases (A, B and C) are currently under construction. Surveys are now underway at an offshore site where the partners want to develop Dogger Bank D, which would bring Dogger Bank Wind Farm’s total capacity to nearly 5 GW if built.

Obviously, there are a few ifs and buts about this development, but it does look like SSE Renewables and Equinor are serious about developing Dogger Bank D.

More Dogger Bank Gigawatts for UK As RWE Moves Forward With Two 1.5 GW Projects

This subheading describes, the 3 GW wind farm, that I listed earlier as Dogger Bank South.

These three paragraphs describe the projects.

RWE is now moving forward with two new offshore wind farms in the Zone, each with a 1.5 GW generation capacity, after the company obtained approval from the UK Secretary of State for Business, Energy and Industrial Strategy (BEIS) to enter into an Agreement for Lease with The Crown Estate this Summer, following the Round 4 leasing process.

The wind farms will be built at two adjacent sites located just southwest of the Dogger Bank A offshore wind farm and are dubbed Dogger Bank South (DBS) East and Dogger Bank South (DBS) West.

RWE has also started with geophysical seabed surveys within the wind turbine array areas for its two new projects.

It appears that they have already got the leasing process started.

When Will Dogger Bank D And Dogger Bank South Be Operational?

Consider.

  • In How Long Does It Take To Build An Offshore Wind Farm?, showed that a lot of offshore wind farms have gone from planning permission to first operation in six years.
  • I don’t think that there will be planning permission problems on the Dogger Bank.
  • The two wind farms are a continuation of Dogger Bank A, B and C and the Sofia wind farms.
  • A lot of the construction, would be more of the same.

With average luck, I can see Dogger Bank D and Dogger Bank South in full production before the end of 2028.

October 16, 2022 Posted by | Energy | , , , , , , , , , , , | Leave a comment