The Anonymous Widower

Keadby 3 Low-Carbon Power Station

This article on Business Live is entitled Huge Green Power Station Proposed By SSE As It Embraces Hydrogen And Carbon Capture.

SSE Thermal is working on a low-carbon 910 MW gas-fired power station to join Keadby and Keadby 2 power stations in a cluster near Scunthorpe.

A spokesman for SSE is quoted as saying they will not build the plant without a clear route to decarbonisation.

On this page of their web site,  SSE Thermal, say this about Keadby 3.

As part of our commitment to a net zero emissions future, Keadby 3 will only be built with a clear route to decarbonisation, either using hydrogen as a low-carbon fuel, or equipping it with post-combustion carbon capture technology. The project is at the early stages of development and no final investment decision has been made.

It should also be noted that SSE Renewables have also built a wind farm at Keadby. The web site describes it like this.

Keadby Wind Farm is England’s largest onshore wind farm. This 68MW renewable energy generation site can power approximately 57,000 homes.

There are a lot of good intentions here and I think that SSE haven’t disclosed the full picture.

It would seem inefficient to use hydrogen to power a gas-fired power station to achieve zero-carbon power generation.

  • If you are using hydrogen created from steam reforming of methane, this creates a lot of carbon-dioxide.
  • If you are using green hydrogen produced by electrolysis, then, why don’t you store the electricity in a battery?

Perhaps, SSE are trying out a new process?

This Google Map shows the area of Keadby to the West of Scunthorpe.

Note.

The River Trent meandering through the area.

  1. Althorpe station is in the bend of the River,
  2. I’m fairly certain, that I remember an old airfield in the area.
  3. Keadby power station is a bit to the North of the waterway running West from the River and close to where the railway crosses the waterway.

This second Google Map shows a close-up of the power station.

This visualisation from SSE Thermal shows how the site might look in the future.

For me the interesting location is the village of Althorpe, where C and myself had friends.

They were always getting tourists arriving in the village looking for Princess Diana’s grave!

Carbon Capture And Storage At Keadby

If SSE have three large power stations at Keadby, a shared carbon capture and storage system could be worthwhile.

  • There are numerous gas fields in the area and a big gas terminal at Theddlethorpe, to where they all connect.
  • I was surprised to see, that one of thee fields; Saltfleetby is owned by President Putin’s favourite gas company; Gazprom.
  • Some of these fields are actually on-shore.
  • The power stations probably get their gas from the same terminal.

Some of these gas fields that connect to Theddlethorpe could be suitable for storing the carbon dioxide.

As there is masses of space at Keadby, I can see more gas-fired power stations being built at Keadby.

All would feed into the same carbon capture and storage system.

If gas was needed to be imported in a liquified form, there is the Port of Immingham nearby.

Absorption Of Carbon Dioxide By Horticulture

Consider.

  • Increasingly, horticulture is getting more automated and efficient.
  • Automatic harvesters are being developed for crops like tomatoes and strawberries.
  • Instead of storing the carbon-dioxide in worked-out gas fields, it can also be fed directly to fruit and vegetables that are being grown in greenhouses.
  • Keadby is surrounded by the flat lands of Lincolnshire.

How long will it be before we see tomatoes, strawberries, peppers and cucumbers labelled as British zero-carbon products?

Offshore Hydrogen

I’ll repeat what I said in ITM Power and Ørsted: Wind Turbine Electrolyser Integration.

This is from a press release from ITM Power, which has the same title as the linked article.

This is the introductory paragraph.

ITM Power (AIM: ITM), the energy storage and clean fuel company, is pleased to share details of a short project sponsored by the Department for Business, Energy & Industrial Strategy (BEIS), in late 2019, entitled ‘Hydrogen supply competition’, ITM Power and Ørsted proposed the following:  an electrolyser placed at the wind turbine e.g. in the tower or very near it, directly electrically connected to the DC link in the wind turbine, with appropriate power flow control and water supplied to it. This may represent a better design concept for bulk hydrogen production as opposed to, for instance, remotely located electrolysers at a terminal or platform, away from the wind turbine generator, due to reduced costs and energy losses.
Some points from the remainder of the press release.

  • Costs can be saved as hydrogen pipes are more affordable than under-water power cables.
  • The proposed design reduced the need for AC rectification.

After reading the press release, it sounds like the two companies are performing a serious re-think on how wind turbines and their links to get energy on-shore are designed.

  • Will they be using redundant gas pipes to bring the hydrogen ashore?
  • Will the hydrogen come ashore at Theddlethorpe and use the existing gas network to get to Keadby?

It sounds inefficient, but then the steelworks at Scunthorpe will probably want masses of hydrogen for carbon-free steel making and processing.

Boosting Power Station Efficiency

There is also a section in the Wikipedia entry for Combined Cycle Power Plant called Boosting Efficiency, where this is said.

The efficiency of CCGT and GT can be boosted by pre-cooling combustion air. This is practised in hot climates and also has the effect of increasing power output. This is achieved by evaporative cooling of water using a moist matrix placed in front of the turbine, or by using Ice storage air conditioning. The latter has the advantage of greater improvements due to the lower temperatures available. Furthermore, ice storage can be used as a means of load control or load shifting since ice can be made during periods of low power demand and, potentially in the future the anticipated high availability of other resources such as renewables during certain periods.

So is the location of the site by the Trent, important because of all that cold water?

Or will they use surplus power from the wind farm to create ice?

The Proposed North Sea Wind Power Hub

The North Sea Wind Power Hub is a proposed energy island complex on the Eastern part of the Dogger Bank.

  • The Dutch, Germans and Danes are leading the project.
  • Along with the Belgians, we have been asked to join.
  • Some reporting on the Hub has shown, airstrips in the middle of the complex to bring the workforce to the site.
  • A Dutch report, says that as much as 110 GW of wind power could be developed by 2050.
  • We are also looking at installing wind farms on our section of the Dogger Bank.

Geography says, that one of the most convenient locations to bring all this electricity or hydrogen gas ashore is North Lincolnshire

A Very Large Battery

I would also put a very large battery on the site at Keadby.

One of Highview Power‘s proposed 1 GWh CRYOBatteries would be a good start. This will be four times the size of the 250 MWh CRYOBattery, which the company is currently designing and building at Carrington in Greater Manchester.

Conclusion

The three power stations at Keadby are the following sizes

  • Keadby 1 – 734 MW
  • Keadby 2 – 803.7 MW
  • Keadby 3 – 010 MW

This adds up to a total of 2447.7 MW. And if they fit carbon capture and storage it will be zero-carbon.

Note.

  • Hinckley Point C is only 3200 MW and will cost around £20 billion or £6.25 billion per GW.
  • Keadby 2 power station is quoted as costing £350 million. or £0.44 billion per GW.

These figures don’t include the cost of carbon capture and storage, but they do show the relatively high cost of nuclear.

 

 

 

July 11, 2020 Posted by | Energy, Energy Storage, Hydrogen | , , , , | 6 Comments

What Does the Future of Offshore Wind Energy Look Like?

The title of this post, is the same as that of this article on Real Clear Energy.

These topics are covered.

  • Improved efficiency
  • Aerodynamic blades
  • Sturdiness and durability
  • Big data, the cloud and artificial intelligence
  • Drones
  • Floating turbines and deeper waters
  • Complicated coastal climate zones of which North America has eight.

Some topics weren’t covered.

The author finishes with this statement.

The integration of wind energy, in any form, can ultimately benefit all 50 states in the US by 2050 if it starts now.

In 1962, Bob Dylan, wrote this famous phrase.

The answer, my friend, is blowin’ in the wind.

Fifty-eight years later he’s been proven right, in a big way!

 

July 2, 2020 Posted by | Energy | , , , | Leave a comment

Fracking Hell…Is It The End?

The title of this post, is the same as that of this article in yesterday’s Sunday Times.

The article is an interesting read.

These two paragraphs are key.

Activism by Extinction Rebellion and growing public concern about climate change have weakened the chances of an industry once expected to create 64,500 jobs ever getting off the ground.

Cuadrilla Resources, the fracking company most active in Britain, has in recent days been removing equipment from its sole operating site in Lancashire. Petrochemicals tycoon Sir Jim Ratcliffe has vowed to pursue shale gas exploration overseas because of “archaic” and “unworkable” regulations at home.

But I think it’s more complicated than that!

I sometimes go to lectures at the Geological Society of London and two stand were about fracking.

Two were about fracking.

Fracked or fiction: so what are the risks associated with shale gas exploitation?- Click for more.

This is a video of the lecture.

What Coal Mining Hydrogeology Tells us about the Real Risks of Fracking – Click for more.

This is a video of the lecture.

This is a must-watch video from a good speaker.

I have also written several posts about fracking, with some of the earliest being in 2012-2013.

I have just re-read all of my posts.

  • In the posts I have tried to give information and at times, I have said we should start fracking.
  • But we should only start if we know what we’re doing.
  • In several places I ask for more research.

However, there are some interesting facts and inconvenient truths about fracking and natural gas in general.

  • Russia earns about €300billion a year or twenty percent of its GDP from gas exports to Europe. See Should We Nuke Russia?.
  • Putin backs the anti-fracking movement. See Russia ‘secretly working with environmentalists to oppose fracking’.
  • Fracking techniques  is used in the Scottish Highlands to obtain clean water from deep underground. See the second Geological Society of London video.
  • About forty per cent of gas usage is to heat housing. See the second  video.
  • The eighteen percent of the UK population, who don’t have a gas supply are more likely to be in fuel poverty. See the second  video.
  • Scotland has more need for energy to provide heat. See the second  video.
  • Natural gas with carbon capture and storage has a similar carbon footprint to solar power. See the second video.
  • Cowboy fracking, as practised in the United States, would not be allowed in the UK or the EU. See the second  video.
  • We have no historic earthquake database of the UK, which would help in regulation and research of fracking. See the second video.
  • Fracking has brought down the price of gas in North America.
  • In the United States fracked gas is cutting the need to burn coal, which produces more pollution and carbon dioxide to generate the same amount of energy. See A Benefit Of Fracking.

The article in the Sunday Times says pressure against fracking has started the shutdown of the industry in the UK.

But there is another big pressure at work.replacement of natural gas with hydrogen.

  • This would reduce carbon emissions.
  • It can be used as a chemical feedstock.
  • It could be delivered using the existing gas network.
  • The gas network could be changed from natural gas to hydrogen on a phased basis, just as the change from town to natural gas was organised around fifty years ago.

But it would mean that all gas users would need to change their boilers and other equipment.

Put yourself in the position of Jim Ratcliffe; the major owner and driving force behind INEOS.

INEOS needs feedstocks for chemical plants all over the world and affordable natural gas is one that is very suitable, as it contains two of the major elements needed in hydrocarbons and many useful chemicals; carbon and hydrogen.

If local sources are not available, then liquefied natural gas can be shipped in.

The Hydrogen Economy

It is possible to replace natural gas in many applications and processes with hydrogen.

  • It can be used for heating and cooking.
  • Important chemicals like ammonia can be made from hydrogen.
  • It can be transported in existing natural gas etworks.
  • Hydrogen can also replace diesel in heating and transport applications.

There is also a possibility of measures like carbon taxes being introduced, which using hydrogen would reduce.

There’s more in the Wikipedia entry for Hydrogen economy.

Have Jim Ratcliffe and others done their predicting and decided that the demand for locally sourced natural gas will decline and that the hydrogen economy will take over?

But there will need to be a readily available source of large amounts of hydrogen.

I used to work in a hydrogen factory at Runcorn, which was part of ICI, that created hydrogen and chlorine, by the electrolysis of brine. In some ways, the hydrogen was an unwanted by-product, back in the late 1960s, but similar and more efficient processes can be used to convert electricity into hydrogen.

The latest idea, is to cluster offshore wind farms around gas rigs in the seas around the UK. The electricity produced would be used to electrolyse water to extract the hydrogen, which would then be piped to the shore using existing gas pipelines.

It would be a way of reusing infrastructure associated with gas fields, that have no gas left to extract.

There would be no need to build an expensive electricity cable to the shore.

The Dutch, Danes and the Germans are proposing to build the North Sea Wind Power Hub, which is described like this in Wikipedia.

North Sea Wind Power Hub is a proposed energy island complex to be built in the middle of the North Sea as part of a European system for sustainable electricity. One or more “Power Link” artificial islands will be created at the northeast end of the Dogger Bank, a relatively shallow area in the North Sea, just outside the continental shelf of the United Kingdom and near the point where the borders between the territorial waters of Netherlands, Germany, and Denmark come together. Dutch, German, and Danish electrical grid operators are cooperating in this project to help develop a cluster of offshore wind parks with a capacity of several gigawatts, with interconnections to the North Sea countries. Undersea cables will make international trade in electricity possible.

Later, Wikipedia says that ultimately 110 GW of electricity capacity could be developed.

So could these planned developments create enough hydrogen to replace a sizeable amount of the natural gas used in Western Europe?

I suspect a lot of engineers, company bosses and financiers are working on it.

Conclusion

I have come to the following conclusions.

  • Fracking for hydrocarbons is a technique that could be past its sell-by date.
  • The use of natural gas will decline.
  • INEOS could see hydrogen as a way of reducing their carbon footprint.
  • The heating on all new buildings should be zero carbon, which could include using hydrogen from a zero-carbon source.

There are reasons to think, that electricity from wind-farms creating hydrogen by electrolysis could replace some of our natural gas usage.

 

 

October 15, 2019 Posted by | World | , , , , , | Leave a comment

New Windfarms Will Not Cost Billpayers After Subsidies Hit Record Low

The title of this post, is the same as that of this article on The Guardian.

This is the first paragraph.

The UK’s next wave of offshore wind farms will generate clean electricity at no extra cost to consumers after record low-subsidy deals fell below the market price for the first time.

I have deliberately chosen to print this report from the Guardian, as they generally research carefully what they print and wouldn’t print anything that was parroting government PR.

Until they or another trusted source says otherwise, I’ll believe that we’ll be getting cheap wind-generated electricity.

There is another fact about this announcement; the timing!

Did the government deliberately time, something that even The Guardian would feel is good news to appear on the day when everyone is travelling to the Labour Conference in Brighton?

September 21, 2019 Posted by | World | , | 2 Comments

North Sea Wind Power Hub

I have just found the web site for the North Sea Wind Power Hub.

The Aim

This introductory paragraph details the aim of the project.

A coordinated roll-out of North Sea Wind Power Hubs facilitates an accelerated deployment of large scale offshore wind in the North Sea required to support realizing the Paris Agreements target in time, with minimum environmental impact and at the lowest cost for society (urgency & cost savings), while maintaining security of supply.

There is a lot to read on the site, however this article on the Daily Mail gives a good summary with lots of drsawings.

This is the sub-headline.

The world’s biggest wind farm? ‘Crazy’ artificial power island in the North Sea that could supply renewable energy to 80 million people in Europe is set to open in 2027.

Crazy comes from this paragraph of the article.

In an interview at the time, Torben Glar Nielsen, Energinet’s technical director, told the Independent: ‘Maybe it sounds a bit crazy and science fiction-like but an island on Dogger Bank could make the wind power of the future a lot cheaper and more effective.’

Another quote sums up the engineering problems as the Dutch sea it.

Addressing the engineering challenge ahead, Mr Van der Hage said: ‘Is it difficult? In the Netherlands, when we see a piece of water we want to build islands or land. We’ve been doing that for centuries. That is not the biggest challenge.’

Having spoken to one of the engineers, who planned and developed the Dutch sea defences after the floods of the 1950s, I’ll agree with that statement.

September 21, 2019 Posted by | World | , , , | Leave a comment

Climate change: Offshore Wind Expands At Record Low Price

The title of this post, is the same as that of this article on BBC News.

These are the first paragraphs.

A record amount of new offshore wind power has been announced in the UK – at record low prices.

The new projects will power more than seven million homes for as little as £39.65 per megawatt hour.

Compare this price with the £92.50 per MWh for the nuclear Hinckley Point C.

Note that all prices are in 2012 prices.

I have no argument with the engineering of nuclear power stations, but they do have issues that must be addressed.

  • They shouldn’t be built in possible earthquake zones.
  • They have a very high cost.
  • They can be an eyesore in parts of the UK.

But they do provide a good power zero-carbon baseload, once they are constructed.

Dogger Bank Wind Farm

The Dogger Bank Wind Farm would appear to be the centrepiece of the energy developments South of the Scottish Border.

It will be three separate 1.2 gigawatt wind farms developed on the relatively shallow seas around the Dogger Bank.

  • Creyke Beck A
  • Creyke Beck B
  • Teesside A

Wikipedia says this about the first two wind farms.

They would connect to the existing Creyke Beck substation near Cottingham, in the East Riding of Yorkshire.[6] The two sites lie 131 kilometres (81 mi) from the East Yorkshire coast.

Both have an area of around two hundred square miles.

Teeside A is further North and would be connected to a substation near Redcar.

North Sea Wind Power Hub

The three fields I’ve listed are all in UK waters and according to Wikipedia will or could be joined by more wind farms in the same area.

But just across the maritime border between the United Kingdom and the European Union, Denmark, Germany and The Netherlands have plans to develop the North Sea Wind Power Hub.

Wikipedia introduces the project like this.

North Sea Wind Power Hub is a proposed energy island complex to be built in the middle of the North Sea as part of a European system for sustainable electricity. One or more “Power Link” artificial islands will be created at the northeast end of the Dogger Bank, a relatively shallow area in the North Sea, just outside the continental shelf of the United Kingdom and near the point where the borders between the territorial waters of Netherlands, Germany, and Denmark come together. Dutch, German, and Danish electrical grid operators are cooperating in this project to help develop a cluster of offshore wind parks with a capacity of several gigawatts, with interconnections to the North Sea countries. Undersea cables will make international trade in electricity possible.

These points are also made.

  • Six square mile islands will be built surrounded by thousands of wind turbines.
  • The Dutch have estimated that 110 gigawatts of wind power could be produced at the Dogger Bank location.
  • We are not a member of the consortium, but it is hoped that Norway, Belgium and the UK will join.
  • The Dutch have suggested converting some of the electricity produced to hydrogen.
  • Completion date is set for 2050.

I am excited by this project.

We may not be part of the North Sea Wind Power Hub consortium and in a month or so, we may or may not be part of the European Union, but today’s announcement of new wind power projects in our section of the Dogger Bank  is effectively a substantial marker, that compliments the European plan.

Consider.

  • We are putting 3.6 GW of wind turbines on the Dogger Bank.
  • We are connecting it to the UK electricity grid. at Creyke Beck.
  • It would be easy to create another bi-directional electricity interconnector between the UK’s planned and the EU’s possible wind farms.

This is the sort of project that works, whether Brexit happens or doesn’t!

Six Scottish Wind Farms

.There is also a second article on the BBC, which is entitled Six Scottish Wind Farms Awarded Contracts.

These are the first paragraphs.

Six Scottish wind farm projects are set to go ahead after being awarded UK government contracts to sell the electricity they would produce.

The schemes include Forthwind and SSE Renewables’ Seagreen Phase 1, which are both proposed for the Firth of Forth.

Four onshore wind farms – Muaitheabhal and Druim Leathann in Lewis and Hesta Head and Costa Head in Orkney – have also secured contracts.

All farms are expected to be built by 2025 and provide enough energy for 265,000 homes.

Price Summary For Offshore Wind

This page on Offshore Wind gives the strike prices for the six offshore wind farms.

Creyke Bank A – £39.65 per MWh – 1200 MW

Creyke Bank B – £41.61 per MWh – 1200 MW

Teeside A – £41.61 per MWh – 1200 MW

Teeside B (Sophia) – £41.65 per MWh – 1400 MW

Forthwind – £39.65 per MWh – 12 MW

Seagreen Phase 1 – £41.61 per MWh – 454 MW

The size of each farm is also given.

Conclusion

The lights will stay on and we will need to develop more energy storage.

September 20, 2019 Posted by | World | , , , , | 1 Comment