The Anonymous Widower

Dogger Bank – The Joke That Is Growing Up To Be A Wind Powerhouse

The Wikipedia entry for the Dogger Bank, describes it like this.

Dogger Bank is a large sandbank in a shallow area of the North Sea about 100 kilometres (62 mi) off the east coast of England.

But many of my generation remember it from its use in the Shipping Forecast and as a joke place like the Balls Pond Road, Knotty Ash and East Cheam, in radio and TV comedy from the 1950s and 1960s.

But now it is being turned into one of the largest wind powerhouses!

According to Wikipedia’s list of the UK’s offshore wind farms, these wind farms are being developed on the Dogger Bank.

  • Sofia Offshore Wind Farm – 1400 MW – Under Construction – Commissioning in 2023/26 – £39.65/MWh – RWE
  • Dogger Bank A – 1235 MW – Under Construction – Commissioning in 2023/24 – £39.65/MWh – SSE/Equinor
  • Dogger Bank B – 1235 MW – Pre-Construction – Commissioning in 2024/25 – £41.61/MWh – SSE/Equinor
  • Dogger Bank C – 1218 MW – Pre-Construction – Commissioning in 2024/25 – £41.61/MWh – SSE/Equinor
  • Dogger Bank D – 1320 MW – Early Planning – SSE/Equinor
  • Dogger Bank South – 3000 MW – Early Planning – RWE

Note.

  1. These total up to 9408 MW.
  2. The Dogger Bank wind farms have their own web site.
  3. The Sofia offshore wind farm has its own web site.
  4. The Dogger Bank South wind farms have their own web site.
  5. Dogger Bank A and Dogger Bank B will connect to the National Grid at Creyke Beck to the North of Hull.
  6. Sofia and Dogger Bank C will connect to the National Grid at Lazenby on Teesside.

But this is only the start on the British section of the Dogger Bank.

This map, which comes courtesy of Energy Network Magazine and 4C Offshore is entitled 2001 UK Offshore Windfarm Map shows all UK offshore wind farms and their status. It looks to my naive mind, that there could be space for more wind farms to the North and West of the cluster of Digger Bank wind farms.

The North Sea Wind Power Hub

The UK doesn’t have full territorial rights to the Dogger Bank we share the bank with the Danes, Dutch and Germans.

In the Wikipedia entry for the Dogger Bank wind farm, this is said about the North Sea Wind Power Hub.

Dutch, German, and Danish electrical grid operators are cooperating in a project to build a North Sea Wind Power Hub complex on one or more artificial islands to be constructed on Dogger Bank as part of a European system for sustainable electricity. The power hub would interconnect the three national power grids with each other and with the Dogger Bank Wind Farm.

A study commissioned by Dutch electrical grid operator TenneT reported in February 2017 that as much as 110 gigawatts of wind energy generating capacity could ultimately be developed at the Dogger Bank location.

Note.

  1. 110 GW shared equally would be 27.5 GW.
  2. As we already have 9.4 GW of wind power, under construction or in planning around the Dogger Bank, could we find space for the other 18.1 GW?
  3. I suspect we could squeeze it in.

If we can and the Danes, Dutch and Germans can generate their share, the four countries would each have a 27.5 GW wind farm.

What would put the icing on the cake, would be if there could be a massive battery on the Dogger Bank. It wouldn’t be possible now and many would consider it a joke. But who knows what the capacity of an underwater battery based on concrete, steel, seawater and masses of ingenuity will be in a few years time.

Where Does Norway Fit In To The North Sea Wind Power Hub?

It could be argued that Norway could also connect to the North Sea Wind Power Hub.

  • 110 GW shared equally would be 22 GW.
  • Norway can build massive pumped storage hydroelectric power stations close to the landfall of an interconnector to the North Sea Wind Power Hub.
  • the British, Danes, Dutch and Germans can’t do that, as they don’t have any handy mountains.
  • Norway is a richer country the others involved in the project.

I can see Norway signing up to the North Sea Wind Power Hub.

The North Sea Link

The Wikipedia entry for the North Sea Link, introduces it like this.

The North Sea Link is a 1,400 MW high-voltage direct current submarine power cable between Norway and the United Kingdom.

At 720 km (450 mi) it is the longest subsea interconnector in the world. The cable became operational on 1 October 2021.

It runs between Kvilldal in Norway and Blyth in Northumberland.

I wouldn’t be surprised to see that the North Sea Link is modified, so that it has a connection to the North Sea Wind Power Hub.

 

 

November 22, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , , | 5 Comments

How Is The XLinks Project Progressing?

 

The Wikipedia entry for the XLinks project has this introductory paragraph.

The Xlinks Morocco-UK Power Project is a proposal to create 10.5 GW of renewable generation, 20 GWh of battery storage and a 3.6 GW high-voltage direct current interconnector to carry solar and wind-generated electricity from Morocco to the United Kingdom. Morocco has far more consistent weather, and so should provide consistent solar power even in midwinter.

I ask the question in the title of this post, as there are two articles about the XLinks project in The Times today.

This article is optimistic and is entitled Xlinks Morocco Project Could Throw Britain A Renewable Energy Lifeline.

On the other hand this article is more pessimistic and is entitled Britain ‘Risks Losing Out’ On Green Energy From The Sahara.

This is the first paragraph of the second article.

Sir Dave Lewis has complained of “frustratingly slow” talks with the government over an £18 billion plan to generate power in the Sahara and cable it to Britain. The former Tesco chief executive has warned that the energy could be routed elsewhere unless ministers commit to the scheme.

It appears there have been little agreement on the price.

I have some thoughts.

Will XLinks Get Funding?

Xlinks is going to be privately funded, but I have doubts about whether the funding will be made available.

As an engineer, who was involved in many of the major offshore projects of the last forty years of the last century, I believe that the XLinks project is feasible, but it is only 3.6 GW.

These wind farm projects are also likely to be privately funded.

  • SSE’s Berwick Bank project opposite Berwick is 4.1 GW
  • Aker’s Northern Horizon off Shetland is 10 GW.
  • The Scotwind Leasing Round is 25 GW.
  • There is talk of 10 GW being possible off East Anglia.
  • 50 GW may be being possible in the Celtic Sea.
  • BP is planning 3 GW in Morecambe Bay.

Many of these enormous wind power projects are looking for completion on or before 2030, which is the date given for the Morocco cable.

I do wonder, if those financing these energy projects will find these and other projects better value than a link to Morocco.

Is the Project Bold Enough?

Consider.

  • Spain has high levels of solar, wind and hydro power.
  • France is developing wind to go with their nuclear.
  • Both countries and Portugal, also have mountains for sensibly-sized pumped-storage hydroelectric power stations.
  • France, Spain, Portugal and Ireland also have the Atlantic for wind, tidal and wave power.

Perhaps, the solution, is an Atlantic interconnector linking the UK, Ireland, France, Spain, Portugal and Gibraltar to West Africa.

Any excess power would be stored in the pumped-storage hydroelectric power stations and withdrawn as required.

In the UK, the National Grid are already using the huge 7800 GWh Ulla-Førre pumped-storage hydroelectric power station to store excess wind-generated energy using the North Sea Link from Blyth.

To my mind XLinks is just a UK-Morocco project.

BP’s Project In Mauretania

In bp And Mauritania To Explore Green Hydrogen At Scale, I discussed BP’s deal to create green hydrogen in Mauretania.

Is this a better plan, as hydrogen can be taken by tanker to where it is needed And for the best price.

Conclusion

I wouldn’t be surprised to see the XLinks project change direction.

November 14, 2022 Posted by | Energy, Energy Storage, Finance, Hydrogen | , , , , , , , , , | 8 Comments

National Grid’s North Sea Link Strengthens Electricity Supply And Repays Its Carbon Cost In Just Six Months

The title of this post, is the same as that of this press release from National Grid.

These are three bullet points from the press release.

  • World’s longest subsea electricity cable has been in operation since Oct 2021.
  • 5.7 terawatt (TWh) hours of clean power have been shared between GB and Norway, strengthening security of supply for consumers in both countries.
  • It has saved 800,000 tonnes of carbon in the first year, paying off its carbon cost after only six months of operation.

This must surely be considered a good start.

These two paragraphs describe the operation in the first year.

During its first year of operation, the link has imported 4.6 TWh of clean electricity – enough to power 1.5 million British homes for a year.

North Sea Link has also exported 1.1 TWh to Norway, demonstrating the vital role that interconnectors play in strengthening energy security and maximising the benefits of clean energy sources for consumers across the UK and Europe.

In The Monster In The Mountains That Could Save Europe’s Winter, I describe what makes the North Sea Link so important.

It gives the UK access to the Norwegian Bank Of Electricity or Ulla-Førre, which is a complex of five hydroelectric power stations and a massive lake in the Norwegian mountains to the East of Stavanger.

  • The power stations have a total generating capacity of 2.1 GW.
  • Lake Blåsjø is able to hold enough water to generate 7800 GWh of electricity.
  • Ulla-Førre can also supply electricity to Germany, through the 1.4 GW NordLink.

If Ulla-Førre has a problem, it is that if Norwegian weather is dry, the filling of Lake Blåsjø could be difficult, which is where the interconnector comes into its own, as excess UK wind power or the 1,185 MW Hartlepool nuclear power station, can be used to send electricity to Norway for storage.

In An Update To Will We Run Out Of Power This Winter?, I predicted we will add the following capacity to our renewable generation in the next three years.

  • 2023 – 2925 MW
  • 3024 – 3726 MW
  • 2025 – 6476 MW

This is a total of 13,127 MW.

As a Control Engineer, I can see the following happening.

  • Several of the UK’s gas-fired power stations will be mothballed.
  • Some of the UK’s gas-fired power stations will be fitted with advanced control systems so they can supply more precise amounts of electricity.
  • Some UK electricity is stored in Ulla-Førre for onward sale to Germany.
  • Some UK electricity is stored in Ulla-Førre for withdrawal back to the UK, when needed.

One of Ulla-Førre’s main tasks could be to ensure that no UK electricity is wasted.

Conclusion

With all these wind generated electricity and electricity transfers, the Crown Estate, National Grid and the Treasury should be coining it.

The Germans are already building the 1.4 GW NeuConnect between the Isle of Grain and Wilhelmshaven to import more electricity.

But I do believe that another interconnector will be needed.

 

 

 

October 20, 2022 Posted by | Energy | , , , , , , , | 1 Comment

The Monster In The Mountains That Could Save Europe’s Winter

 

Ulla-Førre is a complex of five hydroelectric power stations and a massive lake in the Norwegian mountains to the East of Stavanger.

  • The power stations have a total generating capacity of 2.1 GW.
  • Lake Blåsjø is able to hold enough water to generate 7800 GWh of electricity.
  • The complex is at the Norwegian end of the North Sea Link to Blyth in England.

This YouTube video from Statkraft, explains how Ulla-Førre was built.

I have some further explanation and thoughts.

What Is The Operating Philosophy Of The North Sea Link?

This press release from National Grid says this.

The Norwegian power generation is sourced from hydropower plants connected to large reservoirs, which can respond faster to fluctuations in demand compared to other major generation technologies. However, as the water level in reservoirs is subject to weather conditions, production varies throughout seasons and years.

When wind generation is high and electricity demand low in Britain, NSL will enable renewable power to be exported from the UK, conserving water in Norway’s reservoirs. When demand is high in Britain and there is low wind generation, hydro power can be imported from Norway, helping to ensure secure, affordable and sustainable electricity supplies for UK consumers.

It almost seems to me, that the North Sea Link is part of a massive pumped-storage system, where we can bank some of our wind-generated electricity in Norway and draw it out when we need it.

Suppose There Is No Wind In The UK And Norway’s Giant Reservoirs Need Filling?

We could always throw on a substitute, which is the 1,185 MW Hartlepool nuclear power station.

But over the next few years these wind farms will be connected to the North-East.

  • Sofia wind farm should commission the 1.4 GW Phase 1, which connects to Teesside in 2023.
  • Dogger Bank wind farm should commission 3.6 GW, which connects to Teesside and Humberside in 2025.
  • The 4.1 GW Berwick Bank wind farm will have a second connection to Blyth by 2030. Say 2 GW!

There’s more than enough wind there to fill up Norway’s reservoirs and replace Hartlepool nuclear station.

Will Ulla-Førre Be Expanded?

It does sound to me that the video does imply that Ulla-Førre will be expanded.

 

October 8, 2022 Posted by | Energy, Energy Storage | , , , , , | 3 Comments

Will Norwegian Pumped Storage Hydro Help Us Through The Winter?

In UK To Norway Sub-Sea Green Power Cable Operational, I discussed the North Sea Link interconnector to Norway.

The North Sea Link is no ordinary interconnector, as it is a lot more than a 1.4 GW cable linking the electricity grids of the UK and Norway.

  • At the UK end, there is an increasing amount of wind power. The UK has added 3.5 GW in 2022.
  • At the Norway end, there is the 2.1 GW Ulla-Førre hydropower complex.
  • The water to generate electricity at Ulla-Førre comes from the artificial Lake Blåsjø, which contains enough water to generate 7.8 TWh of electricity.
  • The storage capacity at Ulla-Førre is 857 times greater than that at the UK’s largest pumped storage hydroelectric power station at Dinorwig in North Wales.
  • The power complex consists of five power stations and some can also be used as a pump powered by UK electricity to fill Lake Blåsjø with water.

Effectively, the North Sea Link, the Ulla-Førre power complex and Lake Blåsjø are a giant pumped storage hydro battery, that can either be filled by Norwegian precipitation and water flows or by using surplus UK electricity, through the North Sea Link, which opened a year ago.

If the Norwegian precipitation goes on strike, the only way to fill Lake Blåsjø is to use surplus UK power, which I suspect will be British wind and nuclear in the middle of the night!

But then I thought we will be short of electricity this winter.

  • I suspect we will be at times, but then at others there will be a surplus.
  • So the surplus will be pumped to Norway to top up the reservoir at Lake Blåsjø.
  • When we are short of electricity, the Norwegians will turn water back into electricity and send it back through the North Sea Link.

It will be more sophisticated than that, but basically, I believe it provides us with the electricity we need, at the times, when we need it.

I wouldn’t be surprised to be told, that we’ve been squirreling away overnight wind energy to Norway over the last few months.

I have written more about Ulla-Førre in The Monster In The Mountains That Could Save Europe’s Winter.

It includes a video about the building of the complex.

 

October 7, 2022 Posted by | Energy, Energy Storage | , , , , , | 6 Comments

Renewable Power’s Effect On The Tory Leadership Election

I wouldn’t normally comment on the Tory Leadership Election, as I don’t have a vote and my preference has already been eliminated.

But after reading this article on the Telegraph, which is entitled Britain Will Soon Have A Glut Of Cheap Power, And World-Leading Batteries To Store It, I feel I have to comment both about this election and the General Election, that will follow in a few years.

These two paragraphs from the article illustrate the future growth of offshore wind power.

It is a point about the mathematical implications of the UK’s gargantuan push for renewables. Offshore wind capacity is going to increase from 11 to 50 gigawatts (GW) by 2030 under the Government’s latest fast-track plans.

RenewableUK says this country currently has a total of 86GW in the project pipeline. This the most ambitious rollout of offshore wind in the world, ahead of China at 78GW, and the US at 48GW.

If we assume that there is eight years left of this decade, that means that we should install about 4.9 GW of offshore wind every year until 2030. If we add in planned solar and onshore wind developments, we must be looking at at least 5 GW of renewable energy being added every year.

We have also got the 3.26 GW Hinckley Point C coming on stream.

I think we can say, that when it comes to electricity generation, we will not be worried, so Liz and Rishi can leave that one to the engineers.

If we have an electricity problem, it is about distribution and storage.

  • We need more interconnectors between where the wind farms are being built and where the electricity will be used.
  • National Grid and the Government have published plans for two interconnectors between Scotland and England, which I wrote about in New Electricity ‘Superhighways’ Needed To Cope With Surge In Wind Power.
  • We need energy storage to back up the wind and solar power, when the wind isn’t blowing and the sun isn’t shining.

I think it is reasonable to assume, that we will get the interconnectors we need and the Telegraph article puts forward a very feasible and affordable solution to the energy storage problem, which is described in these two paragraphs from the article.

That is now in sight, and one of the world leaders is a British start-up. Highview Power has refined a beautifully simple technology using liquid air stored in insulated steel towers at low pressure.

This cryogenic process cools air to minus 196 degrees using the standard kit for LNG. It compresses the volume 700-fold. The liquid re-expands with a blast of force when heated and drives a turbine, providing dispatchable power with the help of a flywheel.

The article also talks of twenty energy storage systems, spread around the UK.

  • They will have a total output of 6 GW.
  • In total they will be able to store 600 GWh of electricity.

The first one for Humberside is currently being planned.

Surely, building these wind and solar farms, interconnectors and energy storage systems will cost billions of pounds.

Consider.

  • Wind and solar farms get paid for the electricity they generate.
  • , Interconnectors get paid for the electricity they transfer.
  • Energy storage systems make a profit by buying energy when it’s cheap and selling it, when the price is better.
  • In World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, I talked about how Aviva were funding the world’s largest wind farm at Hornsea.
  • National Grid has a history of funding interconnectors like the North Sea Link from large financial institutions.

I believe that the islands of Great Britain and Ireland and the waters around our combined shores will become the largest zero-carbon power station in the world.

This will attract engineering companies and financial institutions from all over the world and we will see a repeat of the rush for energy that we saw for oil and gas in the last century.

If we get the financial regime right, I can see a lot of tax money flowing towards the Exchequer.

The big question will be what do we do with all this energy.

  • Some will be converted into hydrogen for transport, the making of zero-carbon steel and cement and for use as a chemical feedstock.
  • Industries that use a lot of electricity may move to the UK.
  • A large supply of electricity and hydrogen will make it easy to decarbonise housing, offices and factories.

The Telegraph article also says this.

Much can be exported to the Continent through interconnectors for a fat revenue stream, helping to plug the UK’s trade deficit, and helping to rescue Germany from the double folly of nuclear closures and the Putin pact. But there are limits since weather patterns in Britain and Northwest Europe overlap – partially.

I suspect that more energy will be exported to Germany than most economists think, as it will be needed and it will be a nice little earner for the UK.

Given the substantial amount of German investment in our wind industry, I do wonder, if Boris and Olaf did a deal to encourage more German investment, when they met in April this year.

  • BP have been backed with their wind farms by a German utility company.
  • RWE are developing the Sofia wind farm.
  • Only last week, the deal for the NeuConnect interconnector between the Isle of Grain and Wilhelmshaven was signed.
  • Siemens have a lot of investments in the UK.

I wouldn’t be surprised to see more German investments in the next few months.

The Golden Hello

Has there ever been a Prime Minister, who will receive such a golden hello, as the one Liz or Rishi will receive in September?

The Tory Leadership Election

Some of the candidates said they would reduce taxes , if they won and Liz Truss is still saying that.

I wonder why Rishi isn’t saying that he would reduce taxes, as he must know the cash flow that is coming. It may be he’s just a more cautious soul.

 

 

 

July 30, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , , , , , , , , | 2 Comments

How Britannia With Help From Her Friends Can Rule The Waves And The Wind

The Government doesn’t seem to have published its future energy plans yet, but that hasn’t stopped the BBC speculating in this article on their web site, which is entitled Energy Strategy: UK Plans Eight New Nuclear Reactors To Boost Production.

These are the first two paragraphs.

Up to eight more nuclear reactors could be delivered on existing sites as part of the UK’s new energy strategy.

The plan, which aims to boost UK energy independence and tackle rising prices, also includes plans to increase wind, hydrogen and solar production.

Other points include.

  • Up to 95% of the UK’s electricity could come from low-carbon sources by 2030.
  • 50 gigawatts (GW) of energy through offshore wind farms, which  would be more than enough to power every home in the UK.
  • One of the big points of contention is thought to have been the construction of onshore wind turbines.
  • Targets for hydrogen production are being doubled to help provide cleaner energy for industry as well as for power, transport and potentially heating.
  • A new licensing round for North Sea oil and gas projects.
  • A heat pump accelerator program.

In this post I shall only be looking at one technology – offshore wind and in particular offshore floating wind.

Who Are Our Friends?

I will start with explaining, who I see as our friends, in the title of this post.

The Seas Around Us

If we are talking about offshore winds around the the UK, then the seas around the UK are surely our biggest and most-needed friend.

The Island Of Ireland

The seas are shared with the island of Ireland and the UK and the Republic must work together to maximise our joint opportunities.

As some of the largest offshore wind farm proposals, between Wales and Ireland involve a Welsh company called Blue Gem Wind, who are a partnership between Irish company; Simply Blue Energy, and French company; TotalEnergies, we already seem to be working with the Irish and the French.

The City Of London

Large insurance and pension companies, based in the City of London like, abrdn, Aviva, L & G and others are always looking for investments with which to provide income to back their insurance business and our pensions.

In World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, I describe why and how, Aviva back wind farms.

Germany

Germany are certainly on our side, despite being in a mess of Mutti Merkel’s making, because she got the country too deeply dependant on Vlad the Mad’s tainted gas.

  • German utilities are providing finance to build wind farms in British waters.
  • German company; Siemens is manufacturing turbine blades in Hull.
  • Germany wouldn’t mind buying any electricity and hydrogen we have spare. Especially, as we haven’t invaded them since 1944.

I suspect a mutually-beneficial relationship can be negotiated.

Norway

I have customised software for a number of countries, including Iran, Saudi Arabia, South Korea and the United States and despite selling large numbers of systems to Norway, the Norwegians never requested any modifications.

They are generally easy-going people and they are great friends of the UK. They were certainly a fertile country for the sale of Artemis systems.

Just as the UK worked together with the Norwegians to deliver North Sea Oil, we are now starting to work together to develop renewable energy in the North Sea.

In UK To Norway Sub-Sea Green Power Cable Operational, I describe how we have built the North Sea Link with the Norwegians, which will link the British and Norwegian energy networks to our mutual benefit.

In Is This The World’s Most Ambitious Green Energy Solution?, I describe an ambitious plan called Northern Horizons, proposed by Norwegian company; Aker Solutions to build a 10 GW floating wind farm, which will be 120 km to the North-East of the Shetlands.

Floating Wind Turbines

This is the introduction of the Wikipedia entry for floating wind turbines.

A floating wind turbine is an offshore wind turbine mounted on a floating structure that allows the turbine to generate electricity in water depths where fixed-foundation turbines are not feasible. Floating wind farms have the potential to significantly increase the sea area available for offshore wind farms, especially in countries with limited shallow waters, such as Japan, France and US West coast. Locating wind farms further offshore can also reduce visual pollution, provide better accommodation for fishing and shipping lanes, and reach stronger and more consistent winds.

At its simplest a floating wind farm consists of a semi-submersible platform, which is securely anchored to the sea-bed to provide a firm platform on which to erect a standard wind turbine.

There are currently two operational floating wind farms off the East Coast of Scotland and one in the Atlantic off the Portuguese coast.

  • These wind farms are fairly small and use between three and five turbines to generate between 25-50 MW.
  • The largest current floating turbines are the 9.5 MW turbines in the Kincardine Wind Farm in Scotland, but already engineers are talking of 14 MW and 20 MW floating turbines.
  • Experience of the operation of floating wind turbines, indicates that they can have capacity factors in excess of 50 %.
  • Floating wind turbines can be erected on their floats in the safety of a port using a dockside crane and then towed into position.
  • Floating wind turbines can be towed into a suitable port for servicing and upgrading.

Many serious engineers and economists, think that floating wind farms are the future.

The Energy Density of Fixed Foundation And Floating Wind Farms

In ScotWind Offshore Wind Leasing Delivers Major Boost To Scotland’s Net Zero Aspirations, I summarised the latest round of Scotwind offshore wind leases.

  • Six new fixed foundation wind farms will give a capacity of 9.7 GW in 3042 km² or about 3.2 MW per km².
  • Ten new floating wind farms will give a capacity of 14.6 GW in 4193 km² or about 3.5 MW per km².

Note.

  1. Floating wind farms have a small advantage in terms of energy density over those with fixed foundations.
  2. Suppose these energy densities are achieved using 14 MW turbines.
  3. Engineers are talking of 20 MW turbines.
  4. Using large turbines could increase the energy density by 20/14 or 43 %

We could see in a few years with 20 MW turbines, fixed foundation turbines having an energy density of 4.6 MW per km², with floating turbines having 5 MW per km².

The Potential Of A Ten-Mile Square In The Seas Around Us

I will assume.

  • It is at least 100 km from land.
  • The water would be at least 100 metres deep.
  • There are no structures in the area.

And calculate.

  • The area will be a hundred square miles, which is smaller than the county of Rutland.
  • This will be 259 square kilometres.

If it were to be filled with floating wind turbines at a density of 5 MW per km², the capacity would be 1300 MW or 1.3 GW.

There must be hundreds of empty ten-mile squares in the seas around us.

Offshore Hydrogen Production And Storage

I believe in the near future, that a lot of offshore wind energy will be converted to hydrogen offshore.

  • Electrolysers could be combined with wind turbines.
  • Larger electrolysers could be combined with sub-stations collecting the electricity.
  • In Torvex Energy, I discuss a method to create hydrogen from seawater, without having to desalinate the water. Surely, this technology would be ideal for offshore electrolysis.

Hydrogen would be brought to shore using pipelines, some of which could be repurposed from existing gas pipelines, that are now redundant, as the gas-fields they served have no gas left.

I also suspect that hydrogen could be stored in a handy depleted gas field or perhaps some form of specialist storage infrastructure.

Combining Wind And Wave Power In A Single Device

Marine Power Systems are a Welsh company, that has developed a semi-submersible structure, that can support a large wind turbine and/or a wave-power generator.

This is the mission statement on their home page.

Marine Power Systems is revolutionising the way in which we harvest energy from the world’s oceans.

Our flexible technology is the only solution of its type that can be configured to harness wind and wave energy, either as a combined solution or on their own, in deep water. Built on common platform our devices deliver both cost efficiency and performance throughout the entire product lifecycle.

Our structurally efficient floating platform, PelaFlex, brings excellent stability and straightforward deployment and maintenance. The PelaGen wave energy converter represents market-leading technology and generates energy at an extremely competitive cost of energy.

Through optimised farm layout and the combination of wind and wave energy, project developers can best exploit the energy resource for any given area of seabed.

We are unlocking the power of oceans.

There is a link on the page to more pages, that explain the technology.

It looks to me, that it is well-designed technology, that has a high-chance of being successful.

It should also be noted that according to this news page on the Marine Power Systems web site, which is entitled MPS Lands £3.5M Of Funding From UK Government, the UK government feel the technology is worth backing.

I certainly believe that if Marine Power Systems are not successful, then someone else will build on their original work.

If wind and wave power can successfully be paired in a single float, then this must surely increase the energy production at each float/turbine in the floating wind farm.

Energy Storage In Wind Turbines

The output of wind farms can be very variable, as the wind huffs and puffs, but I believe we will see energy storage in wind turbines to moderate the electricity and deliver a steadier output.

Using lithium-ion or other batteries may be possible, but with floating offshore turbines, there might be scope to use the deep sea beneath the float and the turbine.

Hybrid Wind Farms

In the latest round of Scotwind offshore wind leases, one wind farm stands out as different. Magnora ASA’s ScotWind N3 Offshore Wind Farm is described as a floating offshore wind farm with a concrete floater.

I can see more wind farms built using this model, where there is another fixed or floating platform acts as control centre, sub-station, energy store or hydrogen electrolyser.

How Much Electricity Could Be Produced In UK And Irish Waters?

I will use the following assumptions.

  • Much of the new capacity will be floating wind turbines in deep water.
  • The floating wind turbines are at a density of around 5 MW per km²

This Google Map shows the British Isles.

I will look at various seas.

The Celtic Sea

The Celtic Sea is to the South-West of Wales and the South of Ireland.

In Blue Gem Wind, I posted this extract from the The Our Projects page of the Blue Gem Wind web site.

Floating wind is set to become a key technology in the fight against climate change with over 80% of the worlds wind resource in water deeper than 60 metres. Independent studies have suggested there could be as much as 50GW of electricity capacity available in the Celtic Sea waters of the UK and Ireland. This renewable energy resource could play a key role in the UK meeting the 2050 Net-Zero target required to mitigate climate change. Floating wind will provide new low carbon supply chain opportunities, support coastal communities and create long-term benefits for the region.

Consider.

  • The key figure would appear 50 GW of electricity capacity available in the Celtic Sea waters of the UK and Ireland.
  • Earlier I said that floating turbines can have a wind turbine density of 5 MW per km².
  • According to Wikipedia, the surface area of the Celtic Sea is 300,000 km².

To accommodate enough floating turbines to generate 50 GW would need 10000 km², which is a 100 km. square, or 3.33 % of the area of the Celtic Sea.

This wind generation capacity of 50 GW would appear to be feasible in the Celtic Sea and still leave plenty of space for the shipping.

The Irish Sea

According to Wikipedia, the surface area of the Irish Sea is 46,000 km².

Currently, there are ten wind farms in the Irish Sea.

  • Six are in English waters, three are in Welsh and one is in Irish.
  • None are more than sixteen kilometres from the coast.

The total power is 2.7 GW.

I feel that the maximum number of wind farms in the Irish Sea would not cover more than the 3.33 % proposed for the Celtic Sea.

3.33 % of the Irish Sea would be 1532 km², which could support 7.6 GW of wind-generated electricity.

I can’t leave the Irish Sea without talking about two wind farms Mona and Morgan, that are being developed by an enBW and BP joint venture, which I discussed in Mona, Morgan And Morven. This infographic from the joint venture describes Mona and Morgan.

That would appear to be a 3 GW development underway in the Irish Sea.

Off The Coast Of South-East England, East Anglia, Lincolnshire And Yorkshire

These wind farms are proposed in these areas.

Note.

All wind farms have comprehensive web sites or Wikipedia entries.

The total capacity of these wind farms is 22.5 GW

The North Sea

According to Wikipedia, the surface area of the North Sea is 570,000 km².

Would it is reasonable to assume, that perhaps a tenth of this area would be available for new wind farms in UK waters?

3.33 % of the available North Sea would be 1898 km², which could support 9.5 GW of wind-generated electricity.

On The East Coast Of Scotland

In Wind Farms On The East Coast Of Scotland, I summarised the wind farms off the East coast of Scotland, that are being built in a cluster in the First of Forth.

This map shows the proposed wind farms in this area.

There are five wind farms in the map.

  • The green area is the cable corridor for Seagreen 1a
  • Inch Cape is the odd-shaped wind farm to the North and West of the green area
  • Seagreen at the top of the map, to the North of Inch Cape.
  • Marr Bank with the pink NE-SW hatching
  • Berwick Bank with the green NW-SE hatching
  • Neart Na Gaoithe is edged in blue to the South of the green area.

Berwick Bank and Marr Bank are both owned by SSE and appear to have been combined.

The capacity of the wind farms can be summarised as follows.

  • Seagreen – 1075 MW
  • Neart Na Gaoithe – 450 MW
  • Inch Cape – 1000 MW
  • Berwick Bank and Marr Bank – 4100 MW

This gives a total of 6625 MW or just over 6.6 GW.

Around The North Of Scotland

This map shows the latest successful ScotWind leases.

Note.

  1. Several of these proposed wind farms have detailed web sites.

These seventeen leases total up to 24.3 GW.

An Interim Total

I believe these figures are realisable.

  • Celtic Sea – 50 GW
  • Irish Sea – 7.6 GW – 3 GW already underway
  • South East England, East Anglia, Lincolnshire And Yorkshire – 22.5 GW
  • North Sea – 9.5 GW
  • On The East Coast Of Scotland – 6.6 GW
  • Around The North Of Scotland – 24.3 GW

Note.

  1. I have tried to be as pessimistic as possible.
  2. Irish and North Sea estimates are based on Blue Gem Wind’s professional estimate for the Celtic Sea.
  3. I have used published figures where possible.

My estimates total up to 120.1 GW of extra wind-power capacity. As I write this, current UK electricity production is around 33 GW.

Vikings Will Invade

This Google Map shows the Faroe Islands, the North of Scotland, Norway and Denmark.

To get an idea of scale, the Shetland Isles are around 70 miles or 113 km. from North to South.

In Is This The World’s Most Ambitious Green Energy Solution?, I talked about Norwegian company; Aker Solutions’s plan for Northern Horizons.

  • It would be a 10 GW offshore floating wind farm 136 km to the North-East of the Shetlands.
  • This position would probably place it about halfway between the Faroes and the Norwegian coast.
  • The project is best described in this article on the Engineer, which is entitled Northern Horizons Plans Clean Energy Exports For Scotland.
  • In the article, there is a good graphic and a video.

This will be offshore engineering of the highest class, but then I first came across Norwegian offshore engineering like this in the 1970s, where nothing was too difficult for Norwegian engineers.

There are two major points to remember about the Norwegians.

  • They have the Sovereign Wealth Fund to pay for the massive investment in Northern Horizons.
  • They need to replace their oil and gas income, with a zero-carbon investment stream.

I feel that Northern Horizons will not be a one-off and the virgin sea in the map above will be liberally carpeted with more floating wind farms.

  • On Shetland, electricity can be fed into the UK grid.
  • On Norway, electricity can be fed into the Norwegian grid or stored in Norwegian pumped storage systems.
  • On Scotland, more pumped storage systems can be built to store energy.
  • Hydrogen can be piped to where it is needed to decarbonise heavy industry and transport.
  • Norwegian fjords, Shetland harbours, Scottish lochs and possibly Scapa Flow would be ideal places to assemble and service the giant floating turbines and build the other needed floating infrastructure.
  • I can also see Denmark getting in on the act, as they will probably want to decarbonise the Faroe Islands.

I estimate that between the Faroes, Scotland and Norway, there are 510,000 km² of virgin sea.

With a potential of 5 MW per km², that area has the potential to create an amazing amount of both electricity and hydrogen.

Exporting Power To Europe

There will need to be more interconnectors from the UK to Europe.

These are already working.

These are proposed.

There are also gas interconnectors, that could be converted to hydrogen.

This press release from National Grid, which is entitled Undersea Electricity Superhighways That Will Help Deliver Net Zero Move A Step Closer, has these bullet points.

  • Positive progress on plans for £3.4bn electricity super-highway projects – Scotland to England Green Links.
  • Ofgem opens consultation that recognises the “clear case” and “consumer benefit” of two subsea high voltage cables to transport clean between Scotland and England.
  • The cables form part of a planned 16 project £10 billion investment from National Grid to deliver on the government’s target of 40GW of offshore wind generation by 2030.

This paragraph expands on the work by National Grid to meet the third point.

These projects are part of National Grid’s work upgrading the electricity transmission system to deliver the UK government’s target of 40GW of offshore wind generation by 2030. In addition to the Eastern Links, it is developing 14 major projects across its network to facilitate the target representing a £10 billion investment. This includes two further Scotland to England high voltage links (also in partnership with the Scottish transmission network owners) and proposals in the Humber, Lincolnshire, East Midlands, North of England, Yorkshire, North Kent, as well as four in East Anglia (one of which is a proposed offshore link between Suffolk and Kent).

I think we can assume, that National Grid will do their part to allow the UK government’s target of 40GW of offshore wind generation by 2030 to be met.

Will The UK Have 40 GW Of Offshore Wind Generation By 2030?

In the Wikipedia entry for Windpower In The UK, this is the opening sentence.

The United Kingdom is one of the best locations for wind power in the world and is considered to be the best in Europe. By the beginning of March 2022, the UK had 11,091 wind turbines with a total installed capacity of over 24.6 gigawatts (GW): 14.1 GW of onshore capacity and 10.4 GW of offshore capacity.

It would appear an extra 30 GW of wind power is needed.

In An Interim Total earlier, I gave these figures.

  • Celtic Sea – 50 GW
  • Irish Sea – 7.6 GW – 3 GW already underway
  • South East England, East Anglia, Lincolnshire And Yorkshire – 22.5 GW
  • North Sea – 9.5 GW
  • On The East Coast Of Scotland – 6.6 GW
  • ScotWind – 24.3 GW

The wind farms in South East England, East Anglia, Lincolnshire And Yorkshire and ScotWind and Mona and Morgan are either being planned or under construction, and in many cases leases to construct wind farms are being paid.

I would feel, that at least 30 GW of these 56.4 GW of wind farms will be completed by 2030.

Conclusion

Boris’s vision of the UK becoming a Saudi Arabia of wind is no fantasy of a man with massive dreams.

Standard floating wind turbines, with the possibility of also harvesting wave power could be assembled in ports along the coasts, towed into position and then connected up.

Several GW of wind-power capacity could probably be added each year to what would become the largest zero-carbon power station in the world.

By harvesting the power of the winds and waves in the seas around the British Isles it is an engineering and mathematical possibility, that could have been developed by any of those great visionary Victorian engineers like Armstrong, Bazalgette, Brunel and Reynolds, if they had had access to our modern technology.

Up Yours! Putin!

 

 

 

April 19, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Future Offshore Wind Power Capacity In The UK

I am building this table, so that I can get a feel for the electricity needs of the UK.

According to Wikipedia, on February 2020, there were thirty six offshore wind farms consisting of 2180 turbines with a combined capacity of 8113 megawatts or 8.113 gigawatts.

Currently, these offshore wind farms are under construction, proposed or are in an exploratory phase.

  • Triton Knoll – 857 MW – 2021 – Under Construction
  • Hornsea Two – 1386 MW – 2022 – Under Construction
  • Moray East – 960 MW – 2022 – Under Construction
  • Neart Na Gaoithe – 450 MW – 2023 – Under Construction
  • Seagreen Phase 1 – 1075 MW – 2023 – Under Construction
  • Dogger Bank A – 1200 MW – 2023/24 – Proposed
  • Dogger Bank B – 1200 MW – 2024/25 – Proposed
  • Dogger Bank C – 1200 MW – 2024/25 – Proposed
  • Moray West – 1200 MW – 2024/25  – Exploratory
  • Hornsea Three – 2400 MW – 2025 – Proposed
  • East Anglia One North 800 MW – 2026 – Exploratory
  • East Anglia Two – 900 MW – 2026 – Exploratory
  • East Anglia Three – 1400 MW – 2026 – Exploratory
  • Sofia Offshore Wind Farm Phase 1 – 1400 MW – 2023/2026 – Under Construction
  • Hornsea Four – 1000 MW (?) – 2027 – Exploratory
  • Rampion Two Extension – 1200 MW – Exploratory
  • Norfolk Vanguard – 1800 MW – Exploratory
  • Norfolk Boreas – 1800 MW – Exploratory

Note.

  1. The date is the possible final commissioning date.
  2. I have no commissioning dates for the last three wind farms.
  3. Wikipedia says that the Hornsea Four capacity is unknown by Ørsted due to the ever increasing size of available wind turbines for the project.

I can total up these wind farms by commissioning date.

  • 2021 – 857 MW
  • 2022 – 2346 MW
  • 2023 – 1525 MW
  • 2024 – 1200 MW
  • 2025 – 6000 MW
  • 2026 – 4500 MW
  • Others – 5800 MW

I can draw these conclusions.

  • Total wind farm capacity commissioned each year is increasing.
  • It looks like there will be a capacity to install up to 5000 or 6000 MW every year from about 2025.
  • If we add my figures for 2021-2026 to the 8113 MW currently installed we get 24541 MW.
  • Adding in 6000 MW for each of the four years from 2027-2030 gives a total of 48541 MW or 48.5 GW.

As I write this on a Sunday afternoon, wind power (onshore and offshore) is supplying 13 GW or forty-four percent of our electricity needs.

I have further thoughts.

Parallels With North Sea Oil And Gas

I was very much involved in the development of North Sea oil and gas, as my software was used on a large number of the projects. I had many discussions with those managing these projects and what was crucial in shortening project times was the increasing availability of bigger rigs, platforms and equipment.

Big certainly was better.

I believe that as we get more experienced, we’ll see bigger and better equipment speeding the building of offshore wind farms.

Reuse of Redundant North Sea Oil And Gas Platforms

Don’t underestimate the ability of engineers to repurpose redundant oil and gas platforms for use with windfarms.

Electrolysers on the platforms can convert the electricity into hydrogen and use redundant gas pipes to bring it ashore.

Some processes like steelmaking could use a lot of hydrogen.

Platforms can be used as sub-stations to collect electricity from windfarms and distribute it to the various countries around the North Sea.

Hydrogen

Some processes like steelmaking could use a lot of hydrogen. And I don’t think steelmakers would be happy, if the supply was intermittent.

So why not produce it with giant electrolysers on redundant oil and gas platforms and store it in redundant gas fields under the sea?

A large store of hydrogen under the sea could have the following uses.

  • Steelmaking.
  • Feedstock for chemical manufacture.
  • Transport
  • Power generation in a gas-fired power station, that can run on hydrogen.

It would just need a large enough hydrogen store.

Energy Storage

This large amount of wind power will need a large amount of energy storage to cover for when the wind doesn’t blow.

Some of this storage may even be provided by using hydrogen, as I indicated previously.

But ideas for energy storage are coming thick and fast.

The North Sea Link To Norway

The North Sea Link is much more important than an interconnector between Blyth in Northumberland and Norway.

  • At the Norwegian end the link is connected to a vast pumped storage energy system in the mountains of Norway.
  • This pumped storage system is filled in two ways; Norwegian rain and snow and UK wind power through the interconnector.
  • In times of need, we can draw electricity through the interconnector from Norway.
  • It has a capacity of 1.4 GW.
  • It was delivered on time for a cost of around €2 billion.

It can almost be thought of as an international bank of electricity and is probably one of the most significant pieces of European infrastructure built in recent years.

There are also plans to build NorthConnect, that would connect Peterhead in Scotland to Norway.

Conclusion

It looks like we’ll be able to reap the wind. And possibly 50 GW of it!

 

January 2, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , | 2 Comments

UK National Grid In Talks To Build An Energy Island In The North Sea

The title of this post, is the same as that of this article on the New Scientist.

This is the first paragraph.

UK company National Grid has revealed it is in talks with two other parties about building an “energy island” in the North Sea that would use wind farms to supply clean electricity to millions of homes in north-west Europe.

These are my thoughts.

An Artificial Island on the Dogger Bank

The idea of the North Sea Wind Power Hub in the area of the Dogger Bank has been around for a few years and has a comprehensive Wikipedia entry.

Wikipedia says that it would be an artificial island on the Dutch section of the Dogger Bank and the surrounding sea could eventually host up to 110 GW of wind turbines.

North Sea Wind Power Hub Programme

The Dutch and the Danes seems to have moved on and there is now a web site for the North Sea Wind Power Hub Programme.

The home page is split into two, with the upper half entitled Beyond The Waves and saying.

The incredible story of how the Netherlands went beyond technical engineering as it had ever been seen before. Beyond water management. To secure the lives of millions of inhabitants.

I have met Dutch engineers, who designed and built the Delta Works after the North Sea Floods of 1953 and I have seen the works all over the country and it is an impressive legacy.

And the lower half of the home page is entitled North Sea Wind Power Hub and saying.

Today, climate policy is largely national, decoupled and incremental. We need a new approach to effectively realise the potential of the North Sea and reach the goals of the Paris Agreement. We take a different perspective: harnessing the power of the North Sea requires a transnational and cross-sector approach to take the step-change we need.

Behind each half are two videos, which explain the concept of the programme.

It is a strange web site in a way.

  • It is written totally in English with English not American spelling.
  • The project is backed by Energinet, Gasunie and TenneT, who are Danish and Dutch companies, that are responsible for gas and electricity distribution networks in Denmark, Ger,many and The Netherlands.
  • There are four sections to the web site; Netherlands, Germany, Denmark and North Sea.

It is almost as if the web site has been designed for a British company to join the party.

Hubs And Spokes In North Sea Wind Power Hub Programme

If you watch the videos on the site, they will explain their concept of hubs and spokes, where not one but several energy islands or hubs will be connected by spokes or electricity cables and/or hydrogen pipelines to each other and the shore.

Many electrical networks on land are designed in a similar way, including in the UK, where we have clusters of power stations connected by the electricity grid.

The Dogger Bank

The Dogger Bank is a large sandbank in a shallow area of the North Sea about 100 kilometres off the east coast of England.

Wikipedia says this about the geography of the Dogger Bank.

The bank extends over about 17,600 square kilometres (6,800 sq mi), and is about 260 by 100 kilometres (160 by 60 mi) in extent. The water depth ranges from 15 to 36 metres (50 to 120 ft), about 20 metres (65 ft) shallower than the surrounding sea.

As there are Gunfleet Sands Wind Farm and Scroby Sands Wind Farm and others, on sandbanks in the North Sea, it would appear that the engineering of building wind farms on sandbanks in the North Sea is well understood.

The Dogger Bank Wind Farm

We are already developing the four section Dogger Bank Wind Farm in our portion of the Dogger Bank and these could generate up to 4.8 GW by 2025.

The Dogger Bank Wind Farm has its own web site, which greets you with this statement.

Building the World’s Largest Offshore Wind Farm

At 4.8 GW, it will be 45 % larger than Hinckley Point C nuclear power station, which is only 3.3 GW. So it is not small.

The three wind farms; Dogger Bank A, B and C will occupy 1670 square kilometres and generate a total of 3.6 GW or 0.0021 GW per square kilometre.

If this density of wind turbines could be erected all over the Dogger Bank, we could be looking at nearly 40 GW of capacity in the middle of the North Sea.

Interconnectors Across The North Sea

This Google Map shows the onshore route of the cable from the Dogger Bank Wind Farm.

Note.

  1. Hull and the River Humber at the bottom of the map.
  2. The red arrow which marks Creyke Beck sub station, where the cable from the Dogger Bank Wind Farm connects to the UK electricity grid.
  3. At the top of the map on the coast is the village of Ulrome, where the cable comes ashore.

The sub station is also close to the Hull and Scarborough Line, so would be ideal to feed any electrification erected.

I would assume that cables from the Dogger Bank Wind Farm could also link the Wind Farm to the proposed Dutch/Danish North Sea Wind Power Hub.

Given that the cables between the wind farms and Creyke Beck could in future handle at least 4.8 GW and the cables from the North Sea Wind Power Hub to mainland Europe would probably be larger, it looks like there could be a very high capacity interconnector between Yorkshire and Denmark, Germany and The Netherlands.

It almost makes the recently-opened North Sea Link to Norway, which is rated at 1.4 GW seem a bit small.

The North Sea Link

The North Sea Link is a joint project between Statnett and National Grid, which cost €2 billion and appears to have been delivered as planned, when it started operating in October 2021.

So it would appear that National Grid have shown themselves capable of delivering their end of a complex interconnector project.

Project Orion And The Shetlands

In Do BP And The Germans Have A Cunning Plan For European Energy Domination?, I introduced Project Orion, which is an electrification and hydrogen hub and clean energy project in the Shetland Islands.

The project’s scope is described in this graphic.

Note that Project Orion now has its own web site.

  • Could the Shetlands become an onshore hub for the North Sea Power Hub Programme?
  • Could Icelink, which is an interconnector to Iceland be incorporated?

With all this renewable energy and hydrogen, I believe that the Shetlands could become one of the most prosperous areas in Europe.

Funding The Wind Farms And Other Infrastructure In The North Sea

In World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, I described how Aviva were funding the Hornsea wind farm.

I very much believe that City of London financial institutions will be able to finance a lot of the developments in the North Sea.

After all National Grid managed to find a billion euros in a sock drawer to fund their half of the North Sea Link.

Electrifying The North Sea: A Gamechanger For Wind Power Production?

The title of this section, is the same as that of this article on Engineering and Technology Magazine.

This article in the magazine of the IET is a serious read and puts forward some useful facts and interesting ideas.

  • The EU is targeting offshore wind at 60 GW by 2030 and 300 GW by 2050.
  • The UK is targeting offshore wind at 40 GW by 2030.
  • The article explains why HVDC electricity links should be used.
  • The major players in European offshore wind are the UK, Belgium, the Netherlands, Germany, and Denmark.
  • The foundations for a North Sea grid, which could also support the wider ambitions for a European super-grid, are already forming.
  • A North Sea grid needs co-operation between governments and technology vendors. as well as technological innovation.
  • National Grid are thinking hard about HVDC electrical networks.
  • By combining HVDC links it can be possible to save a lot of development capital.
  • The Danes are already building artificial islands eighty kilometres offshore.
  • Electrical sub-stations could be built on the sea-bed.

I can see that by 2050, the North Sea, South of a line between Hull and Esbjerg in Denmark will be full of wind turbines, which could generate around 300 GW.

Further Reading

There are various articles and web pages that cover the possibility of a grid in the North Sea.

I shall add to these as required.

Conclusion

I am coming to the conclusion that National Grid will be joining the North Sea Wind Power Hub Programme.

  • They certainly have the expertise and access to funding to build long cable links.
  • The Dogger Bank wind farm would even be one of the hubs in the planned hub and spoke network covering the North Sea.
  • Only a short connection would be needed to connect the Dogger Bank wind farm, to where the Dutch and Danes originally planned to build the first energy island.
  • There may be other possibilities for wind farm hubs in the UK section of the North Sea. Hornsea Wind Farm, which could be well upwards of 5 GW is surely a possibility.
  • Would it also give access to the massive amounts of energy storage in the Norwegian mountains, through the North Sea Link or Nord.Link between Norway and Germany.

Without doubt, I know as a Control Engineer, that the more hubs and spokes in a network, the more stable it will be.

So is National Grid’s main reason to join is to stabilise the UK electricity grid? And in turn, this will stabilise the Danish and Dutch grids.

 

October 9, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , | 5 Comments

UK To Norway Sub-Sea Green Power Cable Operational

The title of this post is the same as that of this article on the BBC.

This is the first two paragraphs.

The world’s longest under-sea electricity cable, transferring green power between Norway and the UK, has begun operation.

The 450-mile (725km) cable connects Blyth in Northumberland with the Norwegian village of Kvilldal.

The BBC article is based on this press release from National Grid.

The link has been called the North Sea Link (NSL).

These are some thoughts.

What Is The Capacity Of The North Sea Link?

The National Grid press release says this.

[The link] will start with a maximum capacity of 700 megawatts (MW) and gradually increase to the link’s full capacity of 1400MW over a three-month period.

It also says this.

Once at full capacity, NSL will provide enough clean electricity to power 1.4 million homes.

It is more or less equivalent to two or three gas-fired power stations.

What Is The Operating Philosophy Of The North Sea Link?

The National Grid press release says this.

The Norwegian power generation is sourced from hydropower plants connected to large reservoirs, which can respond faster to fluctuations in demand compared to other major generation technologies. However, as the water level in reservoirs is subject to weather conditions, production varies throughout seasons and years.

When wind generation is high and electricity demand low in Britain, NSL will enable renewable power to be exported from the UK, conserving water in Norway’s reservoirs. When demand is high in Britain and there is low wind generation, hydro power can be imported from Norway, helping to ensure secure, affordable and sustainable electricity supplies for UK consumers.

It almost seems to me, that the North Sea Link is part of a massive pumped-storage system, where we can bank some of our wind-generated electricity in Norway and draw it out when we need it.

I would suspect that the rate and direction of electricity transfer is driven by a very sophisticated algorithm, that uses detailed demand and weather forecasting.

As an example, if we are generating a lot of wind power at night, any excess that the Norwegians can accept will be used to fill their reservoirs.

The Blyth Connection

This page on the North Sea Link web site, describes the location of the UK end of the North Sea Link.

These three paragraphs describe the connection.

The convertor station will be located just off Brock Lane in East Sleekburn. The site forms part of the wider Blyth Estuary Renewable Energy Zone and falls within the Cambois Zone of Economic Opportunity.

The converter station will involve construction of a series of buildings within a securely fenced compound. The buildings will be constructed with a steel frame and clad with grey insulated metal panels. Some additional outdoor electrical equipment may also be required, but most of the equipment will be indoors.

Onshore underground cables will be required to connect the subsea cables to the converter station. Underground electricity cables will then connect the converter station to a new 400kV substation at Blyth (located next to the existing substation) which will be owned and operated by National Grid Electricity Transmission PLC.

This Google Map shows the area.

Note.

  1. The light grey buildings in the North-West corner of the map are labelled as the NSL Converter Station.
  2. Underground cables appear to have been dug between the converter station and the River Blyth.
  3. Is the long silver building to the West of the triangular jetty, the 400 KV substation, where connection is made to the grid?

The cables appear to enter the river from the Southern point of the triangular jetty. Is the next stop Norway?

Britishvolt And The North Sea Link

Britishvolt are are building a factory at Blyth and this Google Map shows are to the North and East of the NSL Converter Station.

Note the light-coloured buildings of the NSL Converter Station.

I suspect there’s plenty of space to put Britishvolt’s gigafactory between the converter station and the coast.

As the gigafactory will need a lot of electricity and preferably green, I would assume this location gives Britishvolt all they need.

Where Is Kvilldal?

This Google Map shows the area of Norway between Bergen and Oslo.

Note.

  1. Bergen is in the North-West corner of the map.
  2. Oslo is at the Eastern edge of the map about a third of the way down.
  3. Kvilldal is marked by the red arrow.

This second Google Map shows  the lake to the North of Kvilldal.

Note.

  1. Suldalsvatnet is the sixth deepest lake in Norway and has a volume of 4.49 cubic kilometres.
  2. Kvilldal is at the South of the map in the middle.

This third Google Map shows Kvilldal.

Note.

  1. Suldalsvatnet is the dark area across the top of the map.
  2. The Kvilldal hydro-electric power station on the shore of the lake.
  3. Kvilldal is to the South-West of the power station.

Kvilldal doesn’t seem to be the biggest and most populous of villages. But they shouldn’t have electricity supply problems.

Kvilldal Power Station And The North Sea Link

The Wikipedia entry for Kvilldal power station gives this information.

The Kvilldal Power Station is a located in the municipality of Suldal. The facility operates at an installed capacity of 1,240 megawatts (1,660,000 hp), making it the largest power station in Norway in terms of capacity. Statnett plans to upgrade the western grid from 300 kV to 420 kV at a cost of 8 billion kr, partly to accommodate the NSN Link cable] from Kvilldal to England.

This power station is almost large enough to power the North Sea Link on its own.

The Kvilldal power station is part of the Ulla-Førre complex of power stations and lakes, which include the artificial Lake Blåsjø.

Lake Blåsjø

Lake Blåsjø would appear to be a lake designed to be the upper reservoir for a pumped-storage scheme.

  • The lake can contain 3,105,000,000 cubic metres of water at its fullest.
  • The surface is between 930 and 1055 metres above sea level.
  • It has a shoreline of about 200 kilometres.

This Google Map shows the Lake.

Note the dam at the South end of the lake.

Using Omni’s Potential Energy Calculator, it appears that the lake can hold around 8 TWh of electricity.

A rough calculation indicates that this could supply the UK with 1400 MW for over eight months.

The Wikipedia entry for Saurdal power station gives this information.

The Saurdal Power Station is a hydroelectric and pumped-storage power station located in the municipality of Suldal. The facility operates at an installed capacity of 674 megawatts (904,000 hp) (in 2015). The average energy absorbed by pumps per year is 1,189 GWh (4,280 TJ) (in 2009 to 2012). The average annual production is 1,335 GWh (4,810 TJ) (up to 2012)

This Google Map shows the area between Kvilldal and Lake Blåsjø.

Note

  1. Kvilldal is in the North West of the map.
  2. Lake Blåsjø is in South East of the map.

This second Google Map shows the area to the South-East of Kvilldal.

Note.

  1. Kvilldal is in the North-West of the map.
  2. The Saurdal power station is tight in the South-East corner of the map.

This third Google Map shows a close-up of Saurdal power station.

Saurdal power station is no ordinary power station.

This page on the Statkraft web site, gives a brief description of the station.

The power plant was commissioned during 1985-1986 and uses water resources and the height of fall from Lake Blåsjø, Norway’s largest reservoir.

The power plant has four generating units, two of which can be reversed to pump water back up into the reservoir instead of producing electricity.

The reversible generating units can thus be used to store surplus energy in Lake Blåsjø.

Is Lake Blåsjø and all the power stations just a giant battery?

Economic Effect

The economic effect of the North Sea Link to both the UK and Norway is laid out in a section called Economic Effect in the Wikipedia entry for the North Sea Link.

Some points from the section.

  • According to analysis by the United Kingdom market regulator Ofgem, in the base case scenario the cable would contribute around £490 million to the welfare of the United Kingdom and around £330 million to the welfare of Norway.
  • This could reduce the average domestic consumer bill in the United Kingdom by around £2 per year.
  • A 2016 study expects the two cables to increase price in South Norway by 2 øre/kWh, less than other factors.

This Economic Effect section also talks of a similar cable between Norway and Germany called NorGer.

It should be noted, that whereas the UK has opportunities for wind farms in areas to the North, South, East and West of the islands, Germany doesn’t have the space in the South to build enough wind power for the area.

There is also talk elsewhere of an interconnector between Scotland and Norway called NorthConnect.

It certainly looks like Norway is positioning itself as Northern Europe’s battery, that will be charged from the country’s extensive hydropower and surplus wind energy from the UK and Germany.

Could The Engineering Be Repeated?

I mentioned NorthConnect earlier.

  • The cable will run between Peterhead in Scotland and Samnanger in Norway.
  • The HVDC cable will be approximately 665 km long.
  • The cable will be the same capacity as the North Sea Link at 1400 MW.
  • According to Wikipedia construction started in 2019.
  • The cable is planned to be operational in 2022.
  • The budget is €1.7 billion.

Note.

  1. Samnager is close to Bergen.
  2. NorthConnect is a Scandinavian company.
  3. The project is supported by the European Union, despite Scotland and Norway not being members.
  4. National Grid is not involved in the project, although, they will be providing the connection in Scotland.

The project appears to be paused at the moment, awaiting how North Sea Link and NordLink between Norway and Germany are received.

There is an English web site, where this is the mission statement on the home page.

NorthConnect will provide an electrical link between Scotland and Norway, allowing the two nations to exchange power and increase the use of renewable energy.

This sounds very much like North Sea Link 2.

And then there is Icelink.

  • This would be a 1000-1200 km link between Iceland and the UK.
  • It would have a capacity of 1200 MW.
  • National Grid are a shareholder in the venture.
  • It would be the longest interconnector in the world.

The project appears to have stalled.

Conclusion

I can see these three interconnectors coming together to help the UK’s electricity generation become carbon-free by 2035.

 

 

 

 

 

October 3, 2021 Posted by | Computing, Energy, Energy Storage | , , , , , , , , , | 14 Comments