The Anonymous Widower

Through Settle And Carlisle Service Under Consideration

The title of this post, is the same as that of an article in the June 2021 Edition of Modern Railways.

This is the first paragraph.

Plans for a new Leeds to Glasgow through service via the Settle and Carlisle line are being developed, with CrossCountry and the Department for Transport starting to look at the possible scheme.

It sounds like a sensible idea to me.

The article also suggests the following.

  • CrossCountry is a possible operator.
  • CrossCountry are keen to improve services between Leeds and Glasgow
  • The trains could be InterCity 125s, freed up, by a the arrival of Class 221 trains from Avanti West Coast, when they receive their new Class 805 trains.
  • Maintenance of the trains wouldn’t be a problem, as this could be done at Neville Hill in Leeds or Craigentinny in Edinburgh.
  • Services could start in December 2023.

I have a few thoughts of my own!

The Route

The route between Leeds and Carlisle is obvious, but there are two routes between Carlisle and Glasgow.

Trains would probably choose a route and call at stations to maximise passenger numbers.

These stations are on the various routes.

  • Settle and Carlisle – Shipley, Bingley, Keighley, Skipton, Gargrave, Hellifield, Long Preston, Settle, Horton in Ribblesdale, Ribblehead, Dent, Garsdale, Kirkby Stephen, Appleby, Langwathby, Lazonby & Kirkoswald and Armathwaite
  • Glasgow South Western – Dunlop, Stewarton, Kilmaurs, Kilmarnock, Auchinleck, New Cumnock, Kirkconnel, Sanquhar, Dumfries, Annan and Gretna Green
  • West Coast Main – Motherwell, Carstairs and Lockerbie

There are certainly a lot of possibilities.

 Upgrading The InterCity 125 Trains

CrossCountry appear to have enough InterCity 125 trains to muster five in a two Class 43  locomotives and seven Mark 3 coach formation.

They may not be fully in-line with the latest regulations and there may be a need for a certain degree of refurbishment.

These pictures show some details of a refurbished Great Western Railway Castle, which has been fitted with sliding doors.

Will The InterCity 125 Trains Be Shortened?

Scotrail’s Inter7City trains and Great Western Railway’s Castle trains have all been shortened to four or five coaches.

This picture shows a pair of Castles.

Journey Times, Timetable And Frequency

The current journey time between Leeds and Glasgow Central stations via the East Coast Main Line is four hours and eight minutes with nine stops.

The Modern Railways article says this about the current service.

The new service would be targeted at business and leisure travellers, with through journey times competitive with road and faster than the current direct CrossCountry Leeds to Glasgow services via the East Coast main line.

I would expect that CrossCountry are looking for a time of around four hours including the turn round.

  • Stops could be removed to achieve the timing.
  • The trains could run at 125 mph on the West Coast Main Line.

This could enable a train to have the following diagram.

  • 0800 – Depart Leeds
  • 1200 – Depart Glasgow Central
  • 1600 – Depart Leeds
  • 2000 – Depart Glasgow Central
  • Before 2400 – Arrive Leeds

Note.

  1. A second train could start in Glasgow and perform the mirrored timetable.
  2. Timings would probably be ideal for train catering.
  3. Trains would leave both termini at 0800, 1200, 1600 and 2000.
  4. The timetable would need just two trains.

I also think, if a second pair of trains were to be worked into the timetable, there could be one train every two hours on the route, if the demand was there.

I certainly believe there could be a timetable, that would meet the objectives of attracting business and leisure passengers away from the roads.

Tourism And Leisure Potential

The Settle and Carlisle Line is known as one of the most scenic railway lines in England, if not the whole of the UK.

There are important tourist sites all along the route between Leeds and Glasgow

Many of the stations are used by walkers and others interested in country pursuits.

I believe that it is a route that needs a quality rail service.

Travel Between London and Towns Along The Settle And Carlisle Line

In Thoughts On Digital Signalling On The East Coast Main Line, I said this.

I think it is highly likely that in the future, there will be at least one train per hour (tph) between London Kings Cross and Leeds, that does the trip in two hours.

It may seem fast compared to today, but I do believe it is possible.

With a timely connection at Leeds station, will this encourage passengers to places along the Settle and Carlisle line to use the train?

What About the Carbon Emissions?

The one problem with using InterCity 125 trains on this route, is that they are diesel-powered, using a pair of Class 43 locomotives.

But then there are over a hundred of these diesel-electric locomotives in service, nearly all of which are now powered by modern MTU diesel engines, which were fitted in the first decade of this century.

Consider.

  • The locomotives and the coaches they haul have an iconic status.
  • Great Western Railway and Scotrail have recently developed shorter versions of the trains for important routes.
  • There are over a hundred of the locomotives in service.
  • Companies like ULEMCo are developing technology to create diesel-powered vehicles that can run on diesel or hydrogen.
  • There is plenty of space in the back of the locomotives for extra equipment.
  • MTU have a very large number of diesel engines in service. It must be in the company’s interest to find an easy way to cut carbon emissions.
  • I believe that the modern MTU diesel engines could run on biodiesel to reduce their carbon footprint.

And we shouldn’t forget JCB’s technology, which I wrote about in JCB Finds Cheap Way To Run Digger Using Hydrogen.

If they could develop a 2 MW hydrogen engine, it could be a shoe-in.

I believe that for these and other reasons, a solution will be found to reduce the carbon emissions of these locomotives to acceptable levels.

Conclusion

In this quick look, it appears to me that a Glasgow and Leeds service using InterCity 125 trains could be a very good idea.

May 21, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , | 2 Comments

High-Speed Low-Carbon Transport Between Great Britain And Ireland

Consider.

  • According to Statista, there were 13,160,000 passengers between the United Kingdom and the Irish Republic in 2019.
  • In 2019, Dublin Airport handled 32,907,673 passengers.
  • The six busiest routes from Dublin were Heathrow, Stansted, Amsterdam, Manchester, Birmingham and Stansted.
  • In 2018, Belfast International Airport handled 6,269,025 passengers.
  • The four busiest routes from Belfast International Airport were Stansted, Gatwick. Liverpool and Manchester, with the busiest route to Europe to Alicante.
  • In 2018, Belfast City Airport handled 2,445,529 passengers.
  • The four busiest routes from Belfast City Airport were Heathrow, Manchester, Birmingham and London City.

Note.

  1. The busiest routes at each airport are shown in descending order.
  2. There is a lot of air passengers between the two islands.
  3. Much of the traffic is geared towards London’s four main airports.
  4. Manchester and Liverpool get their fair share.

Decarbonisation of the air routes between the two islands will not be a trivial operation.

But technology is on the side of decarbonisation.

Class 805 Trains

Avanti West Coast have ordered thirteen bi-mode Class 805 trains, which will replace the diesel Class 221 trains currently working between London Euston and Holyhead.

  • They will run at 125 mph between Euston and Crewe using electric power.
  • If full in-cab digital signalling were to be installed on the electrified portion of the route, they may be able to run at 140 mph in places under the wires.
  • They will use diesel power on the North Wales Coast Line to reach Holyhead.
  • According to an article in Modern Railways, the Class 805 trains could be fitted with batteries.

I wouldn’t be surprised that when they are delivered, they are a version of the Hitachi’s Intercity Tri-Mode  Battery Train, the specification of which is shown in this Hitachi infographic.

Note.

  1. I suspect that the batteries will be used to handle regenerative braking on lines without electrification, which will save diesel fuel and carbon emissions.
  2. The trains accelerate faster, than those they replace.
  3. The claimed fuel and carbon saving is twenty percent.

It is intended that these trains will be introduced next year.

I believe that, these trains will speed up services between London Euston and Holyhead.

  • Currently, services take just over three-and-a-half hours.
  • There should be time savings on the electrification between London Euston and Crewe.
  • The operating speed on the North Wales Coast Line is 90 mph. This might be increased in sections.
  • Some extra electrification could be added, between say Crewe and Chester and possibly through Llandudno Junction.
  • I estimate that on the full journey, the trains could reduce emissions by up to sixty percent compared to the current diesel trains.

I think that a time of three hours could be achievable with the Class 805 trains.

New trains and a three hour journey time should attract more passengers to the route.

Holyhead

In Holyhead Hydrogen Hub Planned For Wales, I wrote about how the Port of Holyhead was becoming a hydrogen hub, in common with several other ports around the UK including Felixstowe, Harwich, Liverpool and Portsmouth.

Holyhead and the others could host zero-carbon hydrogen-powered ferries.

But this extract from the Wikipedia hints at work needed to be done to create a fast interchange  between trains and ferries.

There is access to the port via a building shared with Holyhead railway station, which is served by the North Wales Coast Line to Chester and London Euston. The walk between trains and ferry check in is less than two minutes, but longer from the remote platform 1, used by Avanti West Coast services.

This Google Map shows the Port of Holyhead.

I think there is a lot of potential to create an excellent interchange.

HSC Francisco

I am using the high-speed craft Francisco as an example of the way these ships are progressing.

  • Power comes from two gas-turbine engines, that run on liquified natural gas.
  • It can carry 1024 passengers and 150 cars.
  • It has a top speed of 58 knots or 67 mph. Not bad for a ship with a tonnage of over 7000.

This ship is in service between Buenos Aires and Montevideo.

Note.

  1. A craft like this could be designed to run on zero-carbon  liquid hydrogen or liquid ammonia.
  2. A high speed craft already runs between Dublin and Holyhead taking one hour and forty-nine minutes for the sixty-seven miles.

Other routes for a specially designed high speed craft might be.

  • Barrow and Belfast – 113 miles
  • Heysham and Belfast – 127 miles
  • Holyhead and Belfast – 103 miles
  • Liverpool and Belfast – 145 miles
  • Stranraer and Larne – 31 miles

Belfast looks a bit far from England, but Holyhead and Belfast could be a possibility.

London And Dublin Via Holyhead

I believe this route is definitely a possibility.

  • In a few years, with a few improvements on the route, I suspect that London Euston and Holyhead could be fairly close to three hours.
  • With faster bi-mode trains, Manchester Airport and Holyhead would be under three hours.
  • I would estimate, that a high speed craft built for the route could be under two hours between Holyhead and Dublin.

It certainly looks like London Euston and Dublin and Manchester Airport and Dublin would be under five hours.

In A Glimpse Of 2035, I imagined what it would be like to be on the first train between London and Dublin via the proposed fixed link between Scotland and Northern Ireland.

  • I felt that five-and-a-half hours was achievable for that journey.
  • The journey would have used High Speed Two to Wigan North Western.
  • I also stated that with improvements, London and Belfast could be three hours and Dublin would be an hour more.

So five hours between London Euston and Dublin using current technology without massive improvements and new lines could be small change well spent.

London And Belfast Via Holyhead

At 103 miles the ferry leg may be too long for even the fastest of the high speed craft, but if say the craft could do Holyhead and Belfast in two-and-a-half hours, it might just be a viable route.

  • It might also be possible to run the ferries to a harbour like Warrenpoint, which would be eighty-six miles.
  • An estimate based on the current high speed craft to Dublin, indicates a time of around two hours and twenty minutes.

It could be viable, if there was a fast connection between Warrenpoint and Belfast.

Conclusion

Once the new trains are running between London Euston and Holyhead, I would expect that an Irish entrepreneur will be looking to develop a fast train and ferry service between England and Wales, and the island of Ireland.

It could be sold, as the Greenest Way To Ireland.

Class 807 Trains

Avanti West Coast have ordered ten electric Class 807 trains, which will replace some of the diesel Class 221 trains.

  • They will run at 125 mph between Euston and Liverpool on the fully-electrified route.
  • If full in-cab digital signalling were to be installed on the route, they may be able to run at 140 mph in places.
  • These trains appear to be the first of the second generation of Hitachi trains and they seem to be built for speed and a sparking performance,
  • These trains will run at a frequency of two trains per hour (tph) between London and Liverpool Lime Street.
  • Alternate trains will stop at Liverpool South Parkway station.

In Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?, I came to the conclusion, that a two-hour journey time was possible, when the new Class 807 trains have entered service.

London And Belfast Via Liverpool And A Ferry

Consider.

  • An hour on the train to and from London will be saved compared to Holyhead.
  • The ferry terminal is in Birkenhead on the other side of the Mersey and change between Lime Street station and the ferry could take much longer than at Holyhead.
  • Birkenhead and Belfast is twice the distance of Holyhead and Dublin, so even a high speed craft would take three hours.

This Google Map shows the Ferry Terminal and the Birkenhead waterfront.

Note.

  1. The Ferry Terminal is indicated by the red arrow at the top of the map.
  2. There are rows of trucks waiting for the ferries.
  3. In the South East corner of the map, the terminal of the Mersey Ferry sticks out into the River
  4. Hamilton Square station is in-line with the Mersey Ferry at the bottom of the map and indicated with the usual red symbol.
  5. There is a courtesy bus from Hamilton Square station to the Ferry Terminal for Ireland.

There is a fourteen tph service between Hamilton Square and Liverpool Lime Street station.

This route may be possible, but the interchange could be slow and the ferry leg is challenging.

I don’t think the route would be viable unless a much faster ferry is developed. Does the military have some high speed craft under development?

Conclusion

London and Belfast via Liverpool and a ferry is probably a trip for enthusiasts or those needing to spend a day in Liverpool en route.

Other Ferry Routes

There are other ferry routes.

Heysham And Barrow-in-Furness

,These two ports might be possible, but neither has a good rail connection to London and the South of England.

They are both rail connected, but not to the standard of the connections at Holyhead and Liverpool.

Cairnryan

The Cairnryan route could probably be improved to be an excellent low-carbon route to Glasgow and Central Scotland.

Low-Carbon Flight Between The Islands Of Great Britain And Ireland

I think we’ll gradually see a progression to zero-carbon flight over the next few years.

Sustainable Aviation Fuel

Obviously zero-carbon would be better, but until zero-carbon aircraft are developed, there is always sustainable aviation fuel.

This can be produced from various carbon sources like biowaste or even household rubbish and disposable nappies.

British Airways are involved in a project called Altalto.

  • Altalto are building a plant at Immingham to turn household rubbish into sustainable aviation fuel.
  • This fuel can be used in jet airliners with very little modification of the aircraft.

I wrote about Altalto in Grant Shapps Announcement On Friday.

Smaller Low-Carbon Airliners

The first low- and zero-carbon airliners to be developed will be smaller with less range, than Boeing 737s and Airbus A 320s. These three are examples of three under development.

I feel that a nineteen seater aircraft with a range of 500 miles will be the first specially designed low- or zero-carbon airliner to be developed.

I believe these aircraft will offer advantages.

  • Some routes will only need refuelling at one end.
  • Lower noise and pollution.
  • Some will have the ability to work from short runways.
  • Some will be hybrid electric running on sustainable aviation fuel.

They may enable passenger services to some smaller airports.

Air Routes Between The Islands Of Great Britain And Ireland

These are distances from Belfast City Airport.

  • Aberdeen – 228 miles
  • Amsterdam – 557 miles
  • Birmingham – 226 miles
  • Blackpool – 128 miles
  • Cardiff – 246 miles
  • Edinburgh – 135 miles
  • Gatwick – 337 miles
  • Glasgow – 103 miles
  • Heathrow – 312 miles
  • Jersey – 406 miles
  • Kirkwall – 320 miles
  • Leeds – 177 miles
  • Liverpool – 151 miles
  • London City – 326 miles
  • Manchester – 170 miles
  • Newcastle – 168 miles
  • Southampton – 315 miles
  • Southend – 344 miles
  • Stansted – 292 miles
  • Sumburgh – 401 miles

Note.

  1. Some airports on this list do not currently have flights from Belfast City Airport.
  2. I have included Amsterdam for comparison.
  3. Distances to Belfast International Airport, which is a few miles to the West of Belfast City Airport are within a few miles of these distances.

It would appear that much of Great Britain is within 500 miles of Belfast City Airport.

These are distances from Dublin Airport.

  • Aberdeen – 305 miles
  • Amsterdam – 465 miles
  • Birmingham – 199 miles
  • Blackpool – 133 miles
  • Cardiff – 185 miles
  • Edinburgh – 208 miles
  • Gatwick – 300 miles
  • Heathrow – 278 miles
  • Jersey – 339 miles
  • Kirkwall – 402 miles
  • Leeds – 190 miles
  • Liverpool – 140 miles
  • London City – 296 miles
  • Manchester – 163 miles
  • Newcastle – 214 miles
  • Southampton – 268 miles
  • Southend – 319 miles
  • Stansted – 315 miles
  • Sumburgh – 483 miles

Note.

  1. Some airports on this list do not currently have flights from Dublin Airport.
  2. I have included Amsterdam for comparison.

It would appear that much of Great Britain is within 500 miles of Dublin Airport.

I will add a few long routes, that someone  might want to fly.

  • Cork and Aberdeen – 447 miles
  • Derry and Manston – 435 miles
  • Manston and Glasgow – 392 miles
  • Newquay and Aberdeen – 480 miles
  • Norwich and Stornaway – 486 miles.

I doubt there are many possible air services in the UK and Ireland that are longer than 500 miles.

I have a few general thoughts about low- and zero-carbon air services in and around the islands of Great Britain and Ireland.

  • The likely five hundred mile range of the first generation of low- and zero-carbon airliners fits the size of the these islands well.
  • These aircraft seem to have a cruising speed of between 200 and 250 mph, so flight times will not be unduly long.
  • Airports would need to have extra facilities to refuel or recharge these airliners.
  • Because of their size, there will need to be more flights on busy routes.
  • Routes which are less heavily used may well be developed, as low- or zero-carbon could be good for marketing the route.

I suspect they could be ideal for the development of new routes and even new eco-friendly airports.

Conclusion

I have come to the conclusion, that smaller low- or zero-carbon are a good fit for the islands of Great Britain and Ireland.

But then Flybe and Loganair have shown that you can make money flying smaller planes around these islands with the right planes, airports, strategy and management.

Hydrogen-Powered Planes From Airbus

Hydrogen-powered zero-carbon aircraft could be the future and Airbus have put down a marker as to the way they are thinking.

Airbus have proposed three different ZEROe designs, which are shown in this infographic.

The turboprop and the turbofan will be the type of designs, that could be used around Great Britain and Ireland.

The ZEROe Turboprop

This is Airbus’s summary of the design for the ZEROe Turboprop.

Two hybrid hydrogen turboprop engines, which drive the six bladed propellers, provide thrust. The liquid hydrogen storage and distribution system is located behind the rear pressure bulkhead.

This screen capture taken from the video, shows the plane.

It certainly is a layout that has been used successfully, by many conventionally-powered aircraft in the past. The De Havilland Canada Dash 8 and ATR 72 are still in production.

I don’t think the turboprop engines, that run on hydrogen will be a problem.

If you look at the Lockheed-Martin C 130J Super Hercules, you will see it is powered by four Rolls-Royce AE 2100D3 turboprop engines, that drive 6-bladed Dowty R391 composite constant-speed fully-feathering reversible-pitch propellers.

These Rolls-Royce engines are a development of an Allison design, but they also form the heart of Rolls-Royce’s 2.5 MW Generator, that I wrote about in Our Sustainability Journey. The generator was developed for use in Airbus’s electric flight research program.

I wouldn’t be surprised to find the following.

  • , The propulsion system for this aircraft is under test with hydrogen at Derby and Toulouse.
  • Dowty are testing propellers suitable for the aircraft.
  • Serious research is ongoing to store enough liquid hydrogen in a small tank that fits the design.

Why develop something new, when Rolls-Royce, Dowty and Lockheed have done all the basic design and testing?

This screen capture taken from the video, shows the front view of the plane.

From clues in the picture, I estimate that the fuselage diameter is around four metres. Which is not surprising, as the Airbus A320 has a height of 4.14 metres and a with of 3.95 metres. But it’s certainly larger than the fuselage of an ATR-72.

So is the ZEROe Turboprop based on a shortened Airbus A 320 fuselage?

  • The ATR 72 has a capacity of 70 passengers.
  • The ZEROe Turboprop has a capacity of less than a hundred passengers.
  • An Airbus A320 has six-abreast seating.
  • Could the ZEROe Turboprop have sixteen rows of seats, as there are sixteen windows in front of the wing?
  • With the seat pitch of an Airbus A 320, which is 81 centimetres, this means just under thirteen metres for the passengers.
  • There could be space for a sizeable hydrogen tank in the rear part of the fuselage.
  • The plane might even be able to use the latest A 320 cockpit.

It looks to me, that Airbus have designed a larger ATR 72 based on an A 320 fuselage.

I don’t feel there are any great technical challenges in building this aircraft.

  • The engines appear to be conventional and could even have been more-or-less fully developed.
  • The fuselage could be a development of an existing design.
  • The wings and tail-plane are not large and given the company’s experience with large composite structures, they shouldn’t be too challenging.
  • The hydrogen storage and distributing system will have to be designed, but as hydrogen is being used in increasing numbers of applications, I doubt the expertise will be difficult to find.
  • The avionics and other important systems could probably be borrowed from other Airbus products.

Given that the much larger and more complicated Airbus A380 was launched in 2000 and first flew in 2005, I think that a prototype of this aircraft could fly around the middle of this decade.

It may seem small at less than a hundred seats, but it does have a range of greater than a 1000 nautical miles or 1150 miles.

Consider.

  • It compares closely in passenger capacity, speed and range, with the De Havilland Canada Dash 8/400 and the ATR 72/600.
  • The ATR 72 is part-produced by Airbus.
  • The aircraft is forty percent slower than an Airbus A 320.
  • It looks like it could be designed to have a Short-Takeoff-And Landing (STOL) capability.

I can see the aircraft replacing Dash 8s, ATR 72s and similar aircraft all over the world. There are between 2000 and 3000 operational airliners in this segment.

The ZEROe Turbofan

This is Airbus’s summary of the design.

Two hybrid hydrogen turbofan engines provide thrust. The liquid hydrogen storage and distribution system is located behind the rear pressure bulkhead.

This screen capture taken from the video, shows the plane.

ZEROeTurbofan

This screen capture taken from the video, shows the front view of the plane.

The aircraft doesn’t look very different different to an Airbus A320 and appears to be fairly conventional. It does appear to have the characteristic tall winglets of the A 320 neo.

I don’t think the turbofan engines, that run on hydrogen will be a problem.

These could be standard turbofan engines modified to run on hydrogen, fuelled from a liquid hydrogen tank behind the rear pressure bulkhead of the fuselage.

If you want to learn more about gas turbine engines and hydrogen, read this article on the General Electric web site, which is entitled The Hydrogen Generation: These Gas Turbines Can Run On The Most Abundant Element In the Universe,

These are my thoughts of the marketing objectives of the ZEROe Turbofan.

  • The cruising speed and the number of passengers are surprisingly close, so has this aircraft been designed as an A 320 or Boeing 737 replacement?
  •  I suspect too, that it has been designed to be used at any airport, that could handle an Airbus A 320 or Boeing 737.
  • It would be able to fly point-to-point flights between most pairs of European or North American cities.

It would certainly fit the zero-carbon shorter range airliner market!

In fact it would more than fit the market, it would define it!

I very much believe that Airbus’s proposed zero-carbon hydrogen-powered designs and others like them will start to define aviation on routes of up to perhaps 3000 miles, from perhaps 2035.

  • The A 320 neo was launched in December 2010 and entered service in January 2016.  That was just five years and a month.
  • I suspect that a lot of components like the fuselage sections, cockpit, avionics, wings, landing gear, tailplane and cabin interior could be the same in a A 320 neo and a ZEROe Turbofan.
  • Flying surfaces and aerodynamics could be very similar in an A 320 neo and a ZEROe Turbofan
  • There could even be commonality between the ZEROe Turboprop and the ZEROe Turbofan, with respect to fuselage sections, cockpit, avionics and cabin interior.

There also must be the possibility, that if a ZEROe Turbofan is a hydrogen-powered A 320 neo, that this would enable the certification process to be simplified.

It might even be possible to remanufacture a A 320 neo into a ZEROe Turbofan. This would surely open up all sorts of marketing strategies.

My project management, flying and engineering knowledge says that if they launched the ZEROe Turbofan this year, it could be in service by the end of the decade on selected routes.

Conclusion

Both the ZEROe Turboprop and ZEROe Turbofan are genuine zero-carbon aircraft, which fit into two well-defined market segments.

I believe that these two aircraft and others like them from perhaps Boeing and Bombardier could be the future of aviation between say 500 and 3000 miles.

With the exception of the provision of hydrogen refuelling at airports, there will be no need for any airport infrastructure.

I also wouldn’t be surprised that the thinking Airbus appear to have applied to creating the ZEROe Turbofan from the successful A 320 neo, could be applied to perhaps create a hydrogen-powered A 350.

I feel that Airbus haven’t fulling disclosed their thinking.  But then no company would, when it reinvents itself.

T also think that short-haul air routes will increasing come under pressure.

The green lobby  would like airlines to decarbonise.

Governments will legislate that airlines must decarbonise.

The rail industry will increasingly look to attract customers away from the airlines, by providing more competitive times and emphasising their green credentials.

Aircraft manufacturers will come under pressure to deliver zero-carbon airliners as soon as they can.

I wouldn’t be surprised to see a prototype ZEROe Turbofan or Boeing’s equivalent fly as early as 2024.

Short Term Solutions

As I said earlier, one solution is to use existing aircraft with Sustainable Aviation Fuel.

But many believe this is greenwash and rather a cop out.

So we must do better!

I don’t believe that the smaller zero- and low-carbon aircraft with a range of up to 500 miles and a capacity of around 19 seats, will be able to handle all the passengers needing to fly between and around the islands of Great Britain and Ireland.

  • A Boeing 737 or Airbus A 320 has a capacity of around two hundred passengers, which would require ten times the number of flights, aircraft and pilots.
  • Airports would need expansion on the airside and the terminals to handle the extra planes.
  • Air Traffic Control would need to be expanded to handle the extra planes.

But the smaller planes would be ideal for the thinner secondary routes.

So I tend to think, that the greens will have to lump it, as Sustainable Aviation Fuel will increasingly be the only viable solution.

This will increase the need for Airbus or Boeing to develop a viable A 320 or 737-sized aircraft as soon as possible.

Air Bridges

I said earlier, that I believe using ferries between Ireland and Holyhead and new bi-mode Class 805 trains between London Euston and Holyhead could be a competitor to airlines.

  • The ferries would be high speed craft capable of Holyhead and Ireland in around 90-100 minutes.
  • The ferries would be zero-carbon.
  • The trains would have a sixty percent reduction in carbon emissions compared to current trains on the route.

If we can skim across the water in a zero-carbon high speed craft, are there any reasons we can’t cross the water in a low- or zero-carbon aircraft.

In the next few sub-sections, I’ll suggest a few air bridges.

Glasgow

Glasgow Airport could be an ideal airport for a  low or zero-carbon air bridge to Northern Ireland.

  • A rail link could eventually be built.
  • There is a reasonable amount of traffic.
  • The distance to Belfast City Airport is only 103 miles.

As the airport serves islands and other places that could be ideal low- and zero-carbon routes, I could see Glasgow becoming a hub for battery and hydrogen-powered aircraft.

Heathrow

Heathrow must prepare itself for an uncertain future.

It will be some years before a third runway is both needed and will have been constructed.

I believe the following will happen.

  • Smaller up to nineteen seat low- or zero-carbon airliners will be in service by 2025.
  • From around 2024, Heathrow will get requests to refuel or charge low- or zero-carbon airliners.
  • Low- or-zero- carbon A 320-size airliners will be in service by 2030.
  • Most ground equipment at Heathrow like tugs and fuel bowsers will be zero-carbon.

If I were Boris or Prime Minister, I would say that Heathrow could have its third runway with the following conditions.

  • All aircraft using the third runway must be zero-carbon
  • All air-side vehicles must be zero-carbon.
  • All vehicles bringing passengers on the last mile to the airport must be zero-carbon.
  • All aircraft using the airport that are not zero-carbon must use sustainable aviation fuel.

I suspect that the conditions would be met by a large margin.

When an airport knows it is effectively going to be closed, it will make sure it survives.

Liverpool

Liverpool Airport could be an ideal airport for a  low or zero-carbon air bridge to the island of Ireland.

  • There is a nearby Liverpool South Parkway station, with frequent services to both the local area and places further away.
  • An improved London train service starts in 2022 or 2023.
  • There would need to be a people mover between the station and the airport.
  • The airport can probably have piped hydrogen from across the Mersey.
  • There is already significant traffic to and from the island of Ireland.
  • Flight times Between Liverpool and Dublin and Belfast would be under an hour.

I also feel that Liverpool could develop lots of other low- and zero-carbon routes to perhaps Cardiff, Edinburgh, Glasgow, Norwich, Southampton and the Isle of Man.

I could even see Liverpool having a Turn-Up-And-Go shuttle service to Dublin and Belfast, with small zero-carbon planes running every fifteen minutes or so.

Manston

I wouldn’t rule out Manston as a low- and zero-carbon airport for flights to the Benelux countries and Northern France and parts of Germany.

These are a few distances from Manston Airport.

  • Amsterdam – 160 miles
  • Brussels – 134 miles
  • Cologne – 253 miles
  • Dusseldorf – 234 miles
  • Frankfurt – 328 miles
  • Geneva – 414 miles
  • Hamburg – 396 miles
  • Le Touquet – 59 miles
  • Lille – 49 miles
  • Luxembourg – 243 miles
  • Ostend – 66 miles
  • Strasbourg – 339 miles

Manston’s position on the tip of Kent gives it an advantage and I think low- and zero-carbon services could reach Cologne, Frankfurt, Geneva, Hamburg and Strasbourg.

The airport also has other advantages.

  • A big electrolyser to produce hydrogen is being built at Herne Bay.
  • The area is rich in wind and solar energy.
  • I suspect the airspace to the East of the airport isn’t very busy and short hops to the Continent could be easy to slot in.

There is a new station being built at Thanet Parkway, which is on the Ashford and Ramsgate Line, which has regular services to London, including some services on High Speed One.

This Google Map shows the location of the airport and the station.

Note.

  1. The runway of Manston Airport.
  2. The Ashford and Ramsgate Line running across the South-East corner of the map.
  3. The station could be built to the West of the village of Cliffsend, which is indicated by the red arrow.
  4. I’m sure, a people mover or a zero-carbon bus could be built to connect the station and the airport.

There would need to be improvements in the frequency of services to and from London, but I’m sure Manston Airport could become an ideal airport for low- and zero-carbon aircraft serving the near Continent.

Southampton

Southampton Airport could be the ideal design for an airport to serve an air bridge.

  • The Southampton Airport Parkway station is connected to the terminal.
  • The station has numerous rail services, including a fast service to and from London.
  • The airport is expanding and could make sure all works are compatible with a low- and zero-carbon future.

Southampton is not ideally placed for services to Ireland, but with low- and zero-carbon aircraft it could be ideal for running services to the Channel Islands and Western France.

Other Airports

I suspect other airports will go the low- and zero-carbon route.

Conclusion

I started this post, with the intention of writing about writing about low- and zero-carbon transport between the islands of Great Britain and Ireland.

But it has grown.

I have now come to the conclusion that there are several low- and zero-carbon routes that could be developed.

The most promising would appear to be.

  • London Euston and Belfast by new Class 805 train to Holyhead and then zero-carbon high speed ferry.
  • London Euston and Dublin by new Class 805 train to Holyhead and then zero-carbon high speed ferry.
  • Glasgow and Belfast by train to Cairnryan and then zero-carbon high speed ferry.
  • Point-to-point air routes using new small nineteen seat low- or zero-carbon airliners with a range of 500 miles.
  • London Euston and Belfast by new Class 807 train to Liverpool Airport and then smaller low- or zero-carbon airliner.
  • London Euston and Dublin by new Class 807 train to Liverpool Airport and then and then smaller low- or zero-carbon airliner.
  • Other air bridges will develop.

But I am fairly certain by the end of the decade, there will be A320-size airlines powered by hydrogen taking us to Ireland and Western Europe.

I believe that the survival and ultimate prospering of Airbus and Boeing depends on the development of a range of zero-carbon airliners.

For this reason alone, they will succeed.

April 22, 2021 Posted by | Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

France Passes A Law That Prohibits Domestic Flights, For Trips That Can Be Made By Train In Less Than Two And A Half Hours

The title of this post, is the same as that of this article on Asapland.

I actually wonder, if this is something that is almost a complete ban on domestic flights except to islands like Corsica, as with the growth of the TGV network there can’t be many pairs of places in France, where the train takes more than two and a half hours.

I need to go to Pau at some time in the near future.

Pau is actually four and a half hours from Paris. Would most people take the train?

Other distances for comparison include.

  • Biarritz – 4 hours 11 minutes
  • Bordeaux – 2 hours 11 minutes
  • Marseilles – 3 hours 2 minutes
  • Nice – 6 hours
  • Strasbourg – 2 hours

It just shows how big France is.

By comparison in the UK, you can get to the following places in two and a half hours from London.

  • Preston from Euston
  • Hull from Kings Cross
  • Leeds from Kings Cross
  • Northallerton from Kings Cross
  • Exeter St. Davids from Paddington
  • Port Talbot Parkway from Paddington

Other roughly two and a half hour journeys would include.

  • Edinburgh and York
  • Glasgow and Preston
  • Aberdeen and Edinburgh

I would think, that the French have got the limit in their law about right.

Should We Have A Similar Law In The UK?

I have once taken a flight on a scheduled airline in the UK, shorter than London and Edinburgh. That was between London and Newcastle in the 1970s in a Dan-Air Comet 4.

In the last fifty years, four flights to Edinburgh and one to Aberdeen and Belfast, are probably all the domestic flying I’ve done in the UK.

I suspect, it is unlikely, that I will be affected if a similar law to France, were to be enacted in the UK.

There is also an interesting development in the provision of long distance rail services in the UK.

  • East Coast Trains are bringing in a fast, no-frills, one price service on the London and Edinburgh route.
  • Other companies are looking to do the same from London to Blackpool, Cardiff and Stirling.

I feel, that we’ll see some interesting services introduced by rail and ferry companies to compete with airlines.

London Euston And Dublin By Low Carbon Boat Train

Currently, you can get to Dublin from London by train to Holyhead and then a ferry.

  • The non-stop train between London Euston and Holyhead takes just over three and a half hours.
  • Avanti West Coast will be replacing their trains with new faster Class 805 bi-mode trains, which in a few years could be capable of running at up to 140 mph between London Euston and Crewe.
  • Irish Ferries have a fast ferry that goes between Holyhead and Dublin in one hour and forty-nine minutes.

I can see a fast train and ferry service between London Euston and Dublin getting very close to five hours.

It could be quite likely that new technology, faster trains and targeted marketing will reduce the number of internal flights in the UK.

The same forces will probably do the same in several countries, including France.

So do we really need a law?

April 14, 2021 Posted by | Transport | , , , , , , , | 4 Comments

Hitachi Targets Next Year For Testing Of Tri-Mode IET

The title of this post, is the same as that of this article on Rail Magazine.

This is the first two paragraphs.

Testing of a five-car Hitachi Class 802/0 tri-mode unit will begin in 2022, and the train could be in traffic the following year.

It is expected that the train will save more than 20% of fuel on Great Western Railway’s London Paddington-Penzance route.

This is the Hitachi infographic, which gives the train’s specification.

I have a few thoughts and questions.

Will The Batteries Be Charged At Penzance?

Consider.

  • It is probably not a good test of customer reaction to the Intercity Tri-Mode Battery Train, if it doesn’t work on batteries in stations through Cornwall.
  • Every one of the eight stops in Cornwall will need an amount of battery power.
  • London trains seem to take at least half-an-hour to turn round at Penzance.
  • London trains seem to take around 7-13 minutes for the stop at Plymouth.

So I think, that batteries will probably need to be charged at Penzance and possibly Plymouth, to achieve the required battery running,

There is already sufficient time in the timetable.

A charging facility in Penzance station would be a good test of Hitachi’s method to charge the trains.

Will Hyperdrive Innovation’s Battery Pack Be A Simulated Diesel Engine?

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

So will Hyperdrive Innovation’s battery-packs have the same characteristics as the diesel engines that they replace?

  • Same instantaneous and continuous power output.
  • Both would fit the same mountings under the train.
  • Same control and electrical power connections.
  • Compatibility with the trains control computer.

I think they will as it will give several advantages.

  • The changeover between diesel engine and battery pack could be designed as a simple overnight operation.
  • Operators can mix-and-match the number of diesel engines and battery-packs to a given route.
  • As the lithium-ion cells making up the battery pack improve, battery capacity and performance can be increased.
  • If the computer, is well-programmed, it could reduce diesel usage and carbon-emissions.
  • Driver conversion from a standard train to one equipped with batteries, would surely be simplified.

As with the diesel engines, all battery packs could be substantially the same across all of Hitachi’s Class 80x trains.

How Many Trains Can Eventually Be Converted?

Great Western Railway have twenty-two Class 802/0 trains.

  • They are five-cars.
  • They have three diesel engines in cars 2, 3 and 4.
  • They have a capacity of 326 passengers.
  • They have an operating speed of 125 mph on electrification.
  • They will have an operating speed of 140 mph on electrification with in-cab ERTMS digital signalling.
  • They have an operating speed of 110 mph on diesel.
  • They can swap between electric and diesel mode at line speed.

Great Western Railway also have these trains that are similar.

  • 14 – nine-car Class 802/1 trains
  • 36 – five-car Class 800/0 trains
  • 21 – nine-car Class 800/3 trains

Note.

  1. The nine-car trains have five diesel engines in cars 2,3, 5, 7 and 8
  2. All diesel engines are similar, but those in Class 802 trains are more powerful, than those in Class 800 trains.

This is a total of 93 trains with 349 diesel engines.

In addition, there are these similar trains in service or on order with other operators.

Note.

  1. Class 801 trains have one diesel engine for emergency power.
  2. Class 803 trains have no diesel engines, but they do have a battery for emergency power.
  3. Class 805 trains have an unspecified number of diesel engines. I will assume three.
  4. Class 807 trains have no batteries or diesel engines.
  5. Class 810 trains have four diesel engines.

This is a total  of 150 trains with 395 diesel engines.

The Rail Magazine finishes with this paragraph.

Hitachi believes that projected improvements in battery technology, particularly in power output and charge, could enable diesel engines to be incrementally replaced on long-distance trains.

Could this mean that most diesel engines on these Hitachi trains are replaced by batteries?

Five-Car Class 800 And Class 802 Trains

These trains are mainly regularly used to serve destinations like Bedwyn, Cheltenham, Chester, Harrogate, Huddersfield, Hull, Lincoln, Oxford and Shrewsbury, which are perhaps up to fifty miles beyond the main line electrification.

  • They have three diesel engines, which are used when there is no electrification.
  • I can see many other destinations, being added to those reached by the Hitachi trains, that will need similar trains.

I suspect a lot of these destinations can be served by five-car Class 800 and Class 802 trains, where a number of the diesel engines are replaced by batteries.

Each operator would add a number of batteries suitable for their routes.

There are around 150 five-car bi-mode Hitachi trains in various fleets in the UK.

LNER’s Nine-Car Class 800 Trains

These are mainly used on routes between London and the North of Scotland.

In LNER Seeks 10 More Bi-Modes, I suggested that to run a zero-carbon service to Inverness and Aberdeen, LNER might acquire rakes of carriages hauled by zero-carbon hydrogen electric locomotives.

  • Hydrogen power would only be used North of the current electrification.
  • Scotland is looking to have plenty of hydrogen in a couple of years.
  • No electrification would be needed to be erected in the Highlands.
  • InterCity 225 trains have shown for forty years, that locomotive-hauled trains can handle Scottish services.
  • I also felt that the trains could be based on a classic-compatible design for High Speed Two.

This order could be ideal for Talgo to build in their new factory at Longannet in Fife.

LNER’s nine-car Class 800 trains could be converted to all-electric Class 801 trains and/or moved to another operator.

There is also the possibility to fit these trains with a number of battery packs to replace some of their five engines.

If the planned twenty percent fuel savings can be obtained, that would be a major improvement on these long routes.

LNER’s Class 801 Trains

These trains are are all-electric, but they do have a diesel engine for emergencies.

Will this be replaced by a battery pack to do the same job?

  • Battery packs are probably cheaper to service.
  • Battery packs don’t need diesel fuel.
  • Battery packs can handle regenerative braking and may save electricity.

The installation surely wouldn’t need too much test running, as a lot of testing will have been done in Class 800 and Class 802 trains.

East Coast Trains’ Class 803 Trains

These trains have a slightly different powertrain to the Class 801 trains. Wikipedia says this about the powertrain.

Unlike the Class 801, another non-bi-mode AT300 variant which despite being designed only for electrified routes carries a diesel engine per unit for emergency use, the new units will not be fitted with any, and so would not be able to propel themselves in the event of a power failure. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies would face a failure.

The trains are in the process of being built, so I suspect batteries can be easily fitted.

Could it be, that all five-car trains are identical body-shells, already wired to be able to fit any possible form of power? Hitachi have been talking about fitting batteries to their trains since at least April 2019, when I wrote, Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires.

  • I suspect that Hitachi will use a similar Hyperdrive Innovation design of battery in these trains, as they are proposing for the Intercity Tri-Mode Battery Train.
  • If all trains fitted with diesel engines, use similar MTU units, would it not be sensible to only use one design of battery pack?
  • I suspect, that as the battery on a Class 803 train, will be mainly for emergency use, I wouldn’t be surprised to see that these trains could be the first to run in the UK, with a battery.
  • The trains would also be simpler, as they are only battery-electric and not tri-mode. This would make the software easier to develop and test.

If all trains used the same battery pack design, then all features of the pack, would be available to all trains to which it was fitted.

Avanti West Coast’s Class 805 Trains

In Hitachi Trains For Avanti, which was based on an article with the same time in the January 2020 Edition of Modern Railways, I gave this quote from the magazine article.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

Note.

  1. Hitachi use diesel engines with different ratings in Class 800 and Class 802 trains, so can probably choose something suitable.
  2. The Class 805 trains are scheduled to be in service by 2022.
  3. As they are five-cars like some Class 800 and Class 802 trains will they have the same basic structure and a powertrain with three diesel engines in cars 2, 3 and 4?

I think shares a basic structure and powertrain will be very likely, as there isn’t enough time to develop a new train.

I can see that as Hitachi and Great Western Railway learn more about the performance of the battery-equipped Class 802 trains on the London and Penzance route, that batteries could be added to Avanti West Coast’s Class 805 trains. After all London Euston and North Wales and London Paddington and Cornwall are routes with similar characteristics.

  • Both routes have a high speed electrified section out of London.
  • They have a long section without electrification.
  • Operating speeds on diesel are both less than 100 mph, with sections where they could be as low as 75 mph.
  • The Cornish route has fifteen stops and the Welsh route has seven, so using batteries in stations will be a welcome innovation for passengers and those living near the railway.

As the order for the Avanti West Coast trains was placed, whilst Hitachi were probably designing their battery electric upgrade to the Class 800 and Class 802 trains, I can see batteries in the Class 805 trains becoming an early reality.

In Hitachi Trains For Avanti, I also said this.

Does the improvement in powertrain efficiency with smaller engines running the train at slower speeds help to explain this statement from the Modern Railways article?

Significant emissions reduction are promised from the elimination of diesel operation on electrified sections as currently seen with the Voyagers, with an expected reduction in CO2 emissions across the franchise of around two-thirds.

That is a large reduction, which is why I feel, that efficiency and batteries must play a part.

Note.

  1. The extract says that they are expected savings not an objective for some years in the future.
  2. I have not done any calculations on how it might be achieved, as I have no data on things like engine size and expected battery capacity.
  3. Hitachi are aiming for 20 % fuel and carbon savings on London Paddington and Cornwall services.
  4. Avanti West Coast will probably only be running Class 805 trains to Chester, Shrewsbury and North Wales.
  5. The maximum speed on any of the routes without electrification is only 90 mph. Will less powerful engines be used to cut carbon emissions?

As Chester is 21 miles, Gobowen is 46 miles, Shrewsbury is 29.6 miles and Wrexham General is 33 miles from electrification, could these trains have been designed with two diesel engines and a battery pack, so that they can reach their destinations using a lot less diesel.

I may be wrong, but it looks to me, that to achieve the expected reduction in CO2 emissions, the trains will need some radical improvements over those currently in service.

Avanti West Coast’s Class 807 Trains

In the January 2020 Edition of Modern Railways, is an article, which is entitled Hitachi Trains For Avanti.

This is said about the ten all-electric Class 807 trains for Birmingham, Blackpool and Liverpool services.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It may go against Hitachi’s original design philosophy, but not carrying excess weight around, must improve train performance, because of better acceleration.

I believe that these trains have been designed to be able to go between London Euston and Liverpool Lime Street stations in under two hours.

I show how in Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?

Consider.

  • Current London Euston and Liverpool Lime Street timings are two hours and thirteen or fourteen minutes.
  • I believe that the Class 807 trains could perhaps be five minutes under two hours, with a frequency of two trains per hour (tph)
  • I have calculated in the linked post, that only nine trains would be needed.
  • The service could have dedicated platforms at London Euston and Liverpool Lime Street.
  • For comparison, High Speed Two is promising one hour and thirty-four minutes.

This service would be a Marketing Manager’s dream.

I can certainly see why they won’t need any diesel engines or battery packs.

East Midland Railway’s Class 810 Trains

The Class 810 trains are described like this in their Wikipedia entry.

The Class 810 is an evolution of the Class 802s with a revised nose profile and facelifted end headlight clusters, giving the units a slightly different appearance. Additionally, there will be four diesel engines per five-carriage train (versus three on the 800s and 802s), and the carriages will be 2 metres (6.6 ft) shorter.

In addition, the following information has been published about the trains.

  • The trains are expected to be capable of 125 mph on diesel.
  • Is this speed, the reason for the fourth engine?
  • It is planned that the trains will enter service in 2023.

I also suspect, that like the Class 800, Class 802 and Class 805 trains, that diesel engines will be able to be replaced with battery packs.

Significant Dates And A Possible Updating Route For Hitachi Class 80x Trains

I can put together a timeline of when trains are operational.

  • 2021 – Class 803 trains enter service.
  • 2022 – Testing of prototype Intercity Tri-Mode Battery Train
  • 2022 – Class 805 trains enter service.
  • 2022 – Class 807 trains enter service.
  • 2023 – First production Intercity Tri-Mode Battery Train enters service.
  • 2023 – Class 810 trains enter service.

Note.

  1. It would appear to me, that Hitachi are just turning out trains in a well-ordered stream from Newton Aycliffe.
  2. As testing of the prototype Intercity Tri-Mode Battery Train proceeds, Hitachi and the operators will learn how, if batteries can replace some or even all of the diesel engines, the trains will have an improved performance.
  3. From about 2023, Hitachi will be able to design tri-mode trains to fit a customer’s requirements.
  4. Could the powertrain specification of the Class 810 trains change, in view of what is shown by the testing of the prototype Intercity Tri-Mode Battery Train?
  5. In parallel, Hyperdrive Innovation will be building the battery packs needed for the conversion.

Batteries could be fitted to the trains in three ways,

  • They could be incorporated into new trains on the production line.
  • Batteries could be fitted in the depots, during a major service.
  • Trains could be returned to Newton Aycliffe for battery fitment.

Over a period of years as many trains as needed could be fitted with batteries.

Conclusion

I believe there is a plan in there somewhere, which will convert many of Hitachi’s fleets of trains into tri-mode trains with increased performance, greater efficiency and less pollution and carbon emissions.

 

 

January 8, 2021 Posted by | Transport | , , , , , , , | 3 Comments

Possible Destinations For An Intercity Tri-Mode Battery Train

Currently, the following routes are run or are planned to be run by Hitachi’s Class 800, 802, 805 and 810 trains, where most of the route is electrified and sections do not have any electrification.

  • Avanti West Coast – Euston and Chester – 21 miles
  • Avanti West Coast – Euston and Shewsbury – 29.6 miles
  • Avanti West Coast – Euston and Wrexham General – 33 miles
  • Grand Central – Kings Cross and Sunderland – 47 miles
  • GWR – Paddington and Bedwyn – 13.3 miles
  • GWR – Paddington and Bristol Temple Meads- 24.5 miles
  • GWR – Paddington and Cheltenham – 43.3 miles
  • GWR – Paddington and Great Malvern – 76 miles
  • GWR – Paddington and Oxford – 10.4 miles
  • GWR – Paddington and Penzance – 252 miles
  • GWR – Paddington and Swansea – 45.7 miles
  • Hull Trains – Kings Cross and Hull – 36 miles
  • LNER – Kings Cross and Harrogate – 18.5 miles
  • LNER – Kings Cross and Huddersfield – 17 miles
  • LNER – Kings Cross and Hull – 36 miles
  • LNER – Kings Cross and Lincoln – 16.5 miles
  • LNER – Kings Cross and Middlesbrough – 21 miles
  • LNER – Kings Cross and Sunderland – 47 miles

Note.

  1. The distance is the length of line on the route without electrification.
  2. Five of these routes are under twenty miles
  3. Many of these routes have very few stops on the section without electrification.

I suspect that Avanti West Coast, Grand Central, GWR and LNER have plans for other destinations.

A Battery Electric Train With A Range of 56 Miles

Hitachi’s Regional Battery Train is deescribed in this infographic.

The battery range is given as 90 kilometres or 56 miles.

This battery range would mean that of the fifteen destinations I proposed, the following could could be achieved on a full battery.

  • Chester
  • Shewsbury
  • Wrexham General
  • Bedwyn
  • Bristol Temple Meads
  • Cheltenham
  • Oxford
  • Swansea
  • Hull
  • Harrogate
  • Huddersfield
  • Lincoln
  • Middlesbrough

Of these a return trip could probably be achieved without charging to Chester, Shrewsbury, Bedwyn, Bristol Temple Meads, Oxford, Harrogate, Huddersfield, Lincoln and Middlesbrough.

  • 86.7 % of destinations could be reached, if the train started with a full battery
  • 60 % of destinations could be reached on an out and back basis, without charging at the destination.

Only just over a quarter of the routes would need, the trains to be charged at the destination.

Conclusion

It looks to me, that Hitachi have done some analysis to determine the best battery size. But that is obviously to be expected.

 

 

 

December 30, 2020 Posted by | Transport | , , , , , , , , , | Leave a comment

High Speed Two And Scotland

In this post, I will only look at services and capacity.

I will leave the economics to others with the appropriate data.

Current Anglo-Scottish Services

Currently, these services run between England and Edinburgh Waverley and Glasgow Central stations.

  • 1 train per hour (tph) – Avanti West Coast – London Euston and Glasgow Central via Warrington Bank Quay, Wigan North Western, Preston, Lancaster, Carlisle.
  • 1 train per two hours (tp2h) – Avanti West Coast – London Euston and Glasgow Central via Milton Keynes Central, Coventry, Birmingham International, Birmingham New Street, Sandwell and Dudley, Wolverhampton, Crewe, Warrington Bank Quay, Wigan North Western, Preston, Lancaster, Carlisle.
  • 1 tp2h – CrossCountry – South-West England and Edinburgh Waverley via Bristol Temple Meads, Birmingham New Street, Derby, Chesterfield, Sheffield, Wakefield Westgate, Leeds, York and Newcastle.
  • 1 tp2h – CrossCountry – South-West England and Glasgow Central via Bristol Temple Meads, Birmingham New Street, Derby, Chesterfield, Sheffield, Wakefield Westgate, Leeds, York, Newcastle and Edinburgh Waverley.
  • 1 tph – LNER – London Kings Cross and Edinburgh Waverley via York, Darlington, Newcastle and Berwick-upon-Tweed
  • 1 tph – LNER – London Kings Cross and Edinburgh Waverley via Peterborough, Newark North Gate, Doncaster, York, Northallerton, Darlington, Durham and Newcastle
  • 1 tph – TransPennine Express – Liverpool Lime Street and Edinburgh Waverley via Newton-le-Willows, Manchester Victoria, Huddersfield, Leeds, York, Darlington, Durham, Newcastle and Morpeth
  • 1 tp2h – TransPennine Express – Manchester Airport and Edinburgh Waverley via Manchester Piccadilly, Manchester Oxford Road, Bolton, Preston, Lancaster and Carlisle.
  • 3 trains per day (tpd) – TransPennine Express – Liverpool Lime Street and Glasgow Central via St. Helen’s Central, Wigan North Western, Preston, Lancaster and Carlisle.
  • 1 tp2h – TransPennine Express – Manchester Airport and Glasgow Central via Manchester Piccadilly, Manchester Oxford Road, Bolton, Preston, Lancaster and Carlisle.

Note.

  1. I’ve not included service extensions to Aberdeen and Inverness.
  2. I’ve cut out a few smaller stations
  3. Some services call at both Edinburgh and Glasgow.
  4. Because of signalling and track improvements it is likely that London Kings Cross and Edinburgh timings will come down to four hours.

The services can be roughly summarised as follows.

  • Birmingham and Edinburgh – 0.5 tph
  • Birmingham and Glasgow – 1 tph
  • London and Edinburgh – 2 tph
  • London and Glasgow – 1.5 tph
  • Leeds and Edinburgh – 1.5 tph
  • Leeds and Glasgow – 0.5 tph
  • Liverpool and Edinburgh – 1 tph
  • Liverpool and Glasgow – 3 tpd
  • Manchester and Edinburgh – 1.5 tph
  • Manchester and Glasgow – 0.5 tph
  • Manchester Airport and Edinburgh – 0.5 tph
  • Manchester Airport and Glasgow – 0.5 tph

Note.

  1. I have ignored the five tpd London Kings Cross and Edinburgh service, that starts next year, which will be run by East Coast Trains.
  2. 0.5 tph is equivalent to one tp2h.

It looks a fairly well-balanced and comprehensive service.

High Speed Two Anglo-Scottish Services

According to a table in the June 2020 Edition of Modern Railways, these High Speed Two services will run between England and Edinburgh Waverley and Glasgow Central.

  • 1 tph – London Euston and Edinburgh Waverley via Old Oak Common, Preston, Carlisle and Edinburgh Haymarket
  • 1 tph – London Euston and Edinburgh Waverley via Old Oak Common, Birmingham Interchange, Preston, Carlisle and Edinburgh Haymarket
  • 1 tph – London Euston and Glasgow Central via Old Oak Common, Preston and Carlisle
  • 1 tph – London Euston and Glasgow Central via Old Oak Common, Birmingham Interchange, Preston and Carlisle
  • 1 tp2h – Birmingham Curzon Street and Edinburgh Waverley via Warrington Bank Quay, Wigan North Western, Preston, Lancaster, Oxenholme or Penrith, Carlisle and Edinburgh Haymarket.
  • 1 tp2h – Birmingham Curzon Street and Glasgow Central via Warrington Bank Quay, Wigan North Western, Preston, Lancaster, Oxenholme or Penrith, Carlisle, Lockerbie and Motherwell.

Note.

  1. All trains will be High Speed Two’s 200 metre long Classic-Compatible trains.
  2. The four one tph services will run as two pairs of trains and split and join at Carlisle.

The services can be roughly summarised as follows.

  • Birmingham and Edinburgh – 1.5 tph
  • Birmingham and Glasgow – 1.5 tph
  • London and Edinburgh – 2 tph
  • London and Glasgow – 2 tph

Note.

  1. Passengers between Liverpool or Manchester and Scotland will have to change at Preston.
  2. There is no connection between the Eastern Leg of High Speed Two and Edinburgh.
  3. London and Edinburgh Waverley will take three hours and forty minutes, which saves twenty minutes on the likely four hours on the East Coast Main Line.
  4. London and Glasgow Central will take three hours and forty minutes, which saves fifty minutes on the current time.

High Speed Two certainly provides good services between London, Birmingham and Scotland, but it leaves out travelling between the cities of the North and North of the Border.

High Speed Two Classic-Conventional Trains

In Thoughts On Class 807 Trains And High Speed Two’s Classic-Compatible Trains, I discussed a design of Classic-Compatible High Speed Two train based on the recently-ordered Class 807 trains for Avanti West Coast.

Except for the required speeds, the specifications of the  trains are similar and this was my conclusion.

I wouldn’t be surprised that Hitachi’s offering for more trains on the West Coast Main Line and the Classic-Compatible trains for High Speed Two are very similar to the Class 807 trains.

    • The Classic-Compatible trains for High Speed Two could be eight-car trains with twenty-five metre cars.
    • The replacements for the eleven-car Class 390 trains could be nine-car trains with twenty-six metre cars.

Both would be based on the Class 807 train.

A common design would surely ease operation of the combined West Coast Partnership.

TransPennine Express Between Liverpool Lime Street And Edinburgh

Will this TransPennine Express service still be the primary connection between the North of England and Edinburgh?

  • It has a frequency of one tph.
  • It takes about four hours and fifty minutes.
  • It connects Liverpool, Manchester, Huddersfield, Leeds, York, Darlington, Durham and Newcastle to the Scottish capital.
  • According to Real Time Trains, it runs as far as York on diesel and then using the electrification.

Current plans envisage Northern Powerhouse Rail will create an electrified route across the Pennines.

This report on the Transport for the North web site, is entitled At A Glance – Northern Powerhouse Rail.

It gives these times and frequencies for the various legs of the route.

  • Liverpool and Manchester via Manchester Airport – 26 minutes – 6 tph
  • Manchester and Leeds – 25 minutes – 6 tph
  • Leeds and Newcastle – 58 minutes – 4 tph
  • Newcastle and Edinburgh – 90 minutes

This totals to three hours and nineteen minutes.

Note.

  1. The Newcastle and Edinburgh time is that currently achievable today by Class 801 trains.
  2. Liverpool and Manchester city centres have a six tph high speed service via Manchester Airport.
  3. Manchester and Edinburgh will be under three hours.
  4. Leeds and Edinburgh will be under two-and-a-half hours.
  5. The Manchester and Manchester Airport leg could be shared with High Speed Two.

Most of this will be achievable with the current TransPennine Express Class 802 trains, which are capable of 140 mph.

In addition, I think that it is likely that the East Coast Main Line will be upgraded between York and Newcastle  for High Speed Two.

Liverpool Lime Street and Edinburgh will unlikely be to High Speed Two standards, but it could match the standards of the East Coast Main Line.

Improvements To The East Coast Main Line Between Newcastle and Edinburgh

Consider

  • There have been reports that the power supply on the route is not very robust and Class 800 and Class 802 trains have to use diesel power.
  • The route is fairly straight and could probably be partially-upgraded for 140 mph running with appropriate signalling.
  • The route carries about five tph in both directions. Modern digital signalling could probably double this frequency.
  • The Scottish Government has suggested adding new stations at East Linton and Reston.
  • Edinburgh and Newcastle are 124.5 miles apart and trains typically take ninety minutes.

In addition, High Speed Two might like to extend some or all of their three Newcastle services to Edinburgh.

  • 1 tph – Birmingham Curzon Street and Newcastle via East Midlands Hub, York, Darlington and Durham
  • 1 tph – London Euston and Newcastle via Old Oak Common and York
  • 1 tph – London Euston and Newcastle via Old Oak Common, York and Darlington.

High Speed Two will run between London Euston and Newcastle in two hours and seventeen minutes.

I think it could be possible, that an upgraded Newcastle and Edinburgh route could be covered in seventy minutes by either one of High Speed Two’s Classic Compatible trains or a Class 80x train.

This could mean these timings.

  • Under four hours for classic services between London Kings Cross and Edinburgh.
  • Around three hours for classic services between Liverpool and Edinburgh.
  • Under three-and-a-half hours for High Speed Two services between London Euston and Edinburgh.

This shows the importance of improving the East Coast Main Line to the North of Newcastle.

Improvements To The West Coast Main Line Between Carlisle and Glasgow/Edinburgh

If the frequency and speed of trains on the East Coast Main Line can be increased, what can be done on the West Coast Main Line?

Consider.

  • High Speed Two are showing Carlisle and Glasgow Central as a one hour and nineteen minute journey. Avanti West Coast do the journey in one hour and eleven minutes.
  • High Speed Two are showing Carlisle and Edinburgh as a one hour and eleven minute journey. Avanti West Coast do the journey in one hour and fifteen minutes.
  • Could the route be fully upgraded for 140 mph running with appropriate signalling?
  • In a typical hour, there are two Avanti West Coast trains and one TransPennine Express passing along all or part of the West Coast Main Line North of Carlisle.
  • The route carries a total of about four tph in both directions. Modern digital signalling could probably increase this frequency.
  • Hitachi and Avanti West Coast seem to be saying that their new Class 807 trains have similar performance to the Class 390 trains, but without using tilting technology.

There doesn’t appear to be the scope for such dramatic improvement in the West, as in the East, but I can still see a succession of 140 mph trains running between Carlisle and Glasgow or Edinburgh in no more than an hour and eleven minutes.

These passenger services could be running North of Carlisle, when High Speed Two is fully open.

  • 2 tph – High Speed Two – London Euston and Edinburgh – High Speed Two Classic-Compatible train
  • 2 tph – High Speed Two – London Euston and Glasgow Central – High Speed Two Classic-Compatible train
  • 0.5 tph – High Speed Two – Birmingham Curzon Street and Edinburgh – High Speed Two Classic-Compatible train
  • 0.5 tph – High Speed Two – Birmingham Curzon Street and Glasgow Central – High Speed Two Classic-Compatible train
  • 0.5 tph – TransPennine Express – Manchester Airport and Edinburgh – Class 397 train
  • 0.5 tph – TransPennine Express – Manchester Airport and Glasgow Central – Class 397 train
  • 3 tpd – TransPennine Express – Liverpool and Glasgow Central – Class 397 train

Note.

  1. I am assuming that Avanti West Coast’s services will be replaced by the High Speed Two services.
  2. As the TransPennine Express services share a path, it would appear that six tph will be running between Carlisle and Edinburgh or Glasgow.

There would appear to be space for more trains on the West Coast Main Line, to the North of Carlisle.

A Few Random Thoughts

These are a few random thoughts and ideas.

Avanti West Coast And High Speed Two Classic-Compatible Trains

Avanti West Coast will have these fleets of high-speed trains.

  • 11-car Class 390 electric trains, which are 265.3 metres long
  • 9-car Class 390 electric trains, which are 217.5 metres long.
  • 7-car Class 807 electric trains, which will be 182 metres long
  • 5-car Class 805 bi-mode trains, which will be 130 metres long
  • High Speed Two Classic-Compatible trains, which will be 200 metres long
  • Full-size High Speed Two trains, which will be 400 metres long.

It would appear that there could be some fleet simplification.

All Passenger Trains Between Newcastle Or Carlisle and Glasgow Central Or Edinburgh Should Be Capable Of Operating At 140 mph

Both the East and West Coast Main Lines between Carlisle and Newcastle in England and Edinburgh and Glasgow in Scotland are not far off being capable of running trains at 140 mph. Modern digital in-cab signalling and some track works will be needed.

Once 140 mph running is achieved, then all trains will need to be capable of making use of the speed, to maximise the capacity of the routes.

Freight Trains Between Newcastle Or Carlisle and Glasgow Central Or Edinburgh Should Be Capable Of Operating As Fast As Possible

Freight trains will need to be hauled by electric locomotives, at as high a speed as possible, to avoid slowing the express passenger trains.

More well-positioned freight loops may be needed.

Will TransPennine’s Manchester And Scotland Service Transfer To High Speed Two?

I think, that this is highly likely.

  • The service would be run by High Speed Two Classic-Compatible trains.
  • Depending on track layout, the Liverpool and Scotland service on the West Coast Main Line could be upgraded to the High Speed Two Classic-Compatible trains or discontinued.

This would mean, that  all passenger trains on the West Coast Main Line North of Lancaster would be High Speed Two Classic-Compatible trains.

  • 2 tph – High Speed Two – London Euston and Edinburgh – High Speed Two Classic-Compatible train
  • 2 tph – High Speed Two – London Euston and Glasgow Central – High Speed Two Classic-Compatible train
  • 0.5 tph – High Speed Two – Birmingham Curzon Street and Edinburgh – High Speed Two Classic-Compatible train
  • 0.5 tph – High Speed Two – Birmingham Curzon Street and Glasgow Central – High Speed Two Classic-Compatible train
  • 0.5 tph – High Speed Two – Manchester Airport and Edinburgh – High Speed Two Classic-Compatible train
  • 0.5 tph – High Speed Two – Manchester Airport and Glasgow Central – High Speed Two Classic-Compatible train
  • 3 tpd – High Speed Two – Liverpool and Glasgow Central – High Speed Two Classic-Compatible train

This must mean that if the operating speed on the West Coast Main Line were to be increased, all passenger services could take advantage, which would surely improve timings.

What About CrossCountry?

CrossCountry run a single hourly service between Plymouth and Edinburgh.

  • The route goes via Bristol Temple Meads, Birmingham New Street, Derby, Chesterfield, Sheffield, Wakefield Westgate, Leeds, York, Newcastle.
  • Some services are extended to Glasgow Central and Aberdeen.

Currently, this service is run by a diesel train, which surely will need to be replaced with a zero-carbon train.

Consider.

  • Scotland is keen to electrify or allow electric trains to run between Edinburgh and Aberdeen.
  • High Speed Two will provide an electrified route between Birmingham and York via East Midlands Hub for Derby, Chesterfield, Sheffield and Leeds.
  • The likes of Hitachi and Adrian Shooter of Vivarail are very bullish about battery electric trains.
  • Great Western Railway, Hitachi and Network Rail have probably hired Baldrick for a cunning plan to run battery electric trains between Bristol and Penzance.

Could it be possible for Hitachi or another manufacturer to design a High Speed Two Classic-Compatible train, with a battery capability?

A train with this specification, could be ideal for the Plymouth and Edinburgh service.

It might also be useful for these CrossCountry services.

  • Southampton and Newcastle
  • Bournemouth and Manchester Piccadilly
  • Exeter St. Davids/Bristol and Manchester Piccadilly
  • Cardiff Central and Nottingham
  • Birmingham and Nottingham
  • Birmingham and Stansted Airport

Note.

  1. All could run on High Speed Two fpr part of the route.
  2. Birmingham and Nottingham has already been proposed for running using High Speed Two Classic-Compatible train, by Midlands Engine Rail, as I wrote about in Classic-Compatible High Speed Two Trains At East Midlands Hub Station.
  3. I proposed a Birmingham and Cambridge service using High Speed Two Classic-Compatible trains in A Trip To Grantham Station – 4th November 2020.

High Speed Two could have a big positive effect on CrossCountry services.

Future Anglo-Scottish Services After High Speed Two Opens Fully

It is possible, that when High Speed Two fully opens, these services will run between England and Edinburgh Waverley and Glasgow Central stations.

  • 1 tp2h – CrossCountry – South-West England and Edinburgh Waverley via Bristol Temple Meads, Birmingham New Street, Derby, Chesterfield, Sheffield, Wakefield Westgate, Leeds, York and Newcastle.
  • 1 tp2h – CrossCountry – South-West England and Glasgow Central via Bristol Temple Meads, Birmingham New Street, Derby, Chesterfield, Sheffield, Wakefield Westgate, Leeds, York, Newcastle and Edinburgh Waverley.
  • 1 tph – LNER – London Kings Cross and Edinburgh Waverley via York, Darlington, Newcastle and Berwick-upon-Tweed
  • 1 tph – LNER – London Kings Cross and Edinburgh Waverley via Peterborough, Newark North Gate, Doncaster, York, Northallerton, Darlington, Durham and Newcastle
  • 1 tph – High Speed Two – London Euston and Edinburgh Waverley via Old Oak Common, Preston, Carlisle and Edinburgh Haymarket
  • 1 tph – High Speed Two – London Euston and Edinburgh Waverley via Old Oak Common, Birmingham Interchange, Preston, Carlisle and Edinburgh Haymarket
  • 1 tph – High Speed Two – London Euston and Glasgow Central via Old Oak Common, Preston and Carlisle
  • 1 tph – High Speed Two – London Euston and Glasgow Central via Old Oak Common, Birmingham Interchange, Preston and Carlisle
  • 1 tp2h – High Speed Two – Birmingham Curzon Street and Edinburgh Waverley via Warrington Bank Quay, Wigan North Western, Preston, Lancaster, Oxenholme or Penrith, Carlisle and Edinburgh Haymarket.
  • 1 tp2h – High Speed Two – Birmingham Curzon Street and Glasgow Central via Warrington Bank Quay, Wigan North Western, Preston, Lancaster, Oxenholme or Penrith, Carlisle, Lockerbie and Motherwell.
  • 1 tph – TransPennine Express – Liverpool Lime Street and Edinburgh Waverley via Newton-le-Willows, Manchester Victoria, Huddersfield, Leeds, York, Darlington, Durham, Newcastle and Morpeth
  • 1 tp2h – High Speed Two – Manchester Airport and Edinburgh Waverley via Manchester Piccadilly, Manchester Oxford Road, Bolton, Preston, Lancaster and Carlisle.
  • 3 trains per day (tpd) – High Speed Two – Liverpool Lime Street and Glasgow Central via St. Helen’s Central, Wigan North Western, Preston, Lancaster and Carlisle.
  • 1 tp2h – High Speed Two – Manchester Airport and Glasgow Central via Manchester Piccadilly, Manchester Oxford Road, Bolton, Preston, Lancaster and Carlisle.

Note.

  1. I have assumed that the Liverpool/Manchester services to Scotland via the West Coast Main Line have transferred to High Speed Two.
  2. All trains would be run by High Speed Two Classic-Compatible trains.

The services can be roughly summarised as follows.

  • Birmingham and Edinburgh – 1.5 tph (0.5 tph)
  • Birmingham and Glasgow – 1.5 tph (1 tph)
  • London and Edinburgh – 4 tph (2 tph)
  • London and Glasgow – 2 tph (1.5 tph)
  • Leeds and Edinburgh – 1.5 tph (1.5 tph)
  • Leeds and Glasgow – 0.5 tph (0.5 tph)
  • Liverpool and Edinburgh – 1 tph (1 tph)
  • Liverpool and Glasgow – 3 tpd (3 tpd)
  • Manchester and Edinburgh – 1.5 tph (1.5 tph)
  • Manchester and Glasgow – 0.5 tph (0.5 tph)
  • Manchester Airport and Edinburgh – 0.5 tph (0.5 tph)
  • Manchester Airport and Glasgow – 0.5 tph (0.5 tph)

Note.

  1. My estimates for the number of trains in the future, are probably best described as minimum figures.
  2. The figures in brackets are the current frequencies.
  3. Currently, there are eleven express trains between England and Scotland and after High Speed Two is fully open there could be at least fifteen express trains.

I have a few final thoughts.

Capacity Between England And Scotland

Capacity of the current and future Anglo-Scottish trains is as follows.

  • High Speed Two Classic-Compatible train – 500-600
  • Eleven-car Class 390 train – 589
  • Nine-car Class 800 train – 611

It appears that the all the longer trains have roughly the same capacity.

As there are now eleven Anglo-Scottish long trains and these will be increased to fifteen, that indicates an minimum 36 % increase in capacity.

 

Will High Speed Two And Northern Powerhouse Rail Share A Route Across The Pennines?

Northern Powerhouse Rail have talked about extending High Speed Two services from Manchester to Huddersfield, Leeds, Hull, York and Newcastle.

I wrote about this in Changes Signalled For HS2 Route In North.

I like this plan for the following reasons.

It gives more places like Huddersfield and Hull access to High Speed Two.

It increases frequencies across the North.

But most importantly, as infrastructure is shared, it saves a lot of money.

It also opens up possibilities for services.

  • The Liverpool and Edinburgh service could be run on the High Speed Two route across the Pennines and up the East Coast Main Line.
  • London and Manchester services could be extends to Leeds, York, Newcastle and Scotland.

If Northern Powerhouse Rail were to be cleared for High Speed Two’s Full-Size trains, it opens up the possibility of running them further North.

Conclusion

High Speed Two will increase Anglo-Scottish capacity by more than a third.

 

 

 

 

November 13, 2020 Posted by | Transport | , , , , , , , , , , , , , , | Leave a comment

GWR Buys Vehicles Outright In HST Fleet Expansion

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Despite concerns over future passenger numbers, the Department for Transport has given permission for Great Western Railway to procure three more shortened HST diesel trainsets, branded as the Castle Class by the franchisee.

These pictures show some of the Castle Class trains.

They must be profitable and/or popular with passengers.

If I have a problem with these trains, it is with the Class 43 diesel power cars.

  • Each train has two power cars.
  • It would appear that there are about 150 of the Class 43 power cars in regular service.
  • Each is powered by a modern MTU 16V4000 R41R diesel engine, that is rated at 1678 kW.
  • The engines are generally less than a dozen years old.
  • They will be emitting a lot of carbon dioxide.

As the trains are now only half as long as they used to be, I would suspect, that the engines won’t be working as hard, as they can.

Hopefully, this will mean less emissions.

The article says this about use of the fleet.

With its fleet now increasing to 14, GWR expects to use 12 each day on services across the west of England. Currently the fleet is deployed on the Cardiff – Bristol – Penzance corridor, but the company is still evaluating how the additional sets will be used.

It also says, that they are acquiring rolling stock from other sources. Some of which will be cannibalised for spares.

Are First Rail Holdings Cutting Carbon Emissions?

First Rail Holdings, who are GWR’s parent, have announced in recent months three innovative and lower-carbon fleets from Hitachi, for their subsidiary companies.

Hitachi have also announced a collaboration with Hyperdrive Innovation to provide battery packs to replace diesel engines, that could be used on Class 800 and Class 802 trains.

First Rail Holdings have these Class 800/802 fleets.

  • GWR – 36 x five-car Class 800 trains
  • GWR – 21 x nine-car Class 800 trains
  • GWR – 22 x five-car Class 802 trains
  • GWR – 14 x nine-car Class 802 trains
  • TransPennine Express – 19 x five-car Class 802 trains
  • Hull Trains – 5 x five-car Class 802 trains

Note.

  1. That is a total of 117 trains.
  2. As five-car trains have three diesel engines and nine-car trains have five diesel engines, that is a total of 357 engines.
  3. In Could Battery-Electric Hitachi Trains Work Hull Trains’s Services?, I showed that Hull Trains could run their services with a Fast Charging system in Hull station.
  4. In Could Battery-Electric Hitachi Trains Work TransPennine Express’s Services?, I concluded that Class 802 trains equipped with batteries could handle all their routes without diesel and some strategically-placed charging stations.

In the Wikipedia entry for the Class 800 train, there is a section called Powertrain, where this is said.

According to Modern Railways magazine, the limited space available for the GUs has made them prone to overheating. It claims that, on one day in summer 2018, “half the diagrammed units were out of action as engines shut down through overheating.

So would replacing some diesel engines with battery packs, also reduce this problem, in addition to cutting carbon emissions?

It does appear to me, that First Rail Holdings could be cutting carbon emissions in their large fleet of Hitachi Class 800 and Class 802 trains.

The Class 43 power cars could become a marketing nightmare for the company?

Could Class 43 Power Cars Be Decarbonised?

Consider.

  • Class 43 power cars are forty-five years old.
  • They have been rebuilt with new MTU engines in the last dozen years or so.
  • I suspect MTU and GWR know everything there is to know about the traction system of a Class 43 power car.
  • There is bags of space in the rear section of the power car.
  • MTU are part of Rolls-Royce, who because of the downturn in aviation aren’t performing very well!

But perhaps more importantly, the power cars are iconic, so anybody, who decarbonises these fabulous beasts, gets the right sort of high-class publicity.

I would also feel, if you could decarbonise these power cars, the hundreds of diesel locomotives around the world powered by similar diesel engines could be a useful market.

What methods could be used?

Biodiesel

Running the trains on biodiesel would be a simple solution.

  • It could be used short-term or long-term.
  • MTU has probably run the engines on biodiesel to see how they perform.
  • Biodiesel could also be used in GWR’s smaller diesel multiple units, like Class 150, 158, 165 and 166 trains.

Some environmentalists think biodiesel is cheating as it isn’t zero-carbon.

But it’s my view, that for a lot of applications it is a good interim solution, especially, as companies like Altalto, will be making biodiesel and aviation biofuel from household and industrial waste, which would otherwise be incinerated or go to landfill.

The Addition Of Batteries

This page on the Hitachi Rail Ltd web site shows this image of the V-Train 2.

This is the introduction to the research program, which was based on a High Speed Train, fotmed of two Class 43 power cars and four Mark 3 carriages.

The V-Train 2 was a demonstration train designed in order to demonstrate our skills and expertise while bidding for the Intercity Express Programme project.

The page  is claiming, that a 20 % fuel saving could be possible.

This paragraph talks about performance.

The V-Train 2 looked to power the train away from the platform using batteries – which would in turn be topped up by regenerative braking when a train slowed down to stop at a station. Acceleration would be quicker and diesel saved for the cruising part of the journey.

A similar arrangement to that Hitachi produced in 2005 could be ideal.

  • Technology has moved on significantly in the intervening years.
  • The performance would be adequate for a train that just trundles around the West Country at 90 mph.
  • The space in the rear of the power car could hold a lot of batteries.
  • The power car would be quiet and emission-free in stations.
  • There would be nothing to stop the diesel engine running on biodiesel.

This might be the sort of project, that Hitachi’s partner in the Regional Battery Train; Hyperdrive Innovation. would probably be capable of undertaking.

MTU Hybrid PowerPack

I wouldn’t be surprised to find, that MTU have a drop-in solution for the current 6V4000 R41R diesel engine, that includes a significant amount of batteries.

This must be a serious possibility.

Rolls-Royce’s 2.5 MW Generator

In Our Sustainability Journey, I talk about rail applications of Rolls-Royce’s 2.5 MW generator, that has been developed to provide power for electric flight.

In the post, I discuss fitting the generator into a Class 43 power car and running it on aviation biofuel.

I conclude the section with this.

It should also be noted, that more-efficient and less-polluting MTU engines were fitted in Class 43s from 2005, so as MTU is now part of Rolls-Royce, I suspect that Rolls-Royce have access to all the drawings and engineers notes, if not the engineers themselves

But it would be more about publicity for future sales around the world, with headlines like.

Iconic UK Diesel Passenger Trains To Receive Green Roll-Royce Jet Power!

COVID-19 has given Rolls-Royce’s aviation business a real hammering, so perhaps they can open up a new revenue stream by replacing the engines of diesel locomotives,

I find this an intriguing possibility. Especially, if it were to be fitted with a battery pack.

Answering My Original Question

In answering my original question, I feel that there could be several ways to reduce the carbon footprint of a Class 43 power car.

It should also be noted that other operators are users of Class 43 power cars.

  • ScotRail – 56
  • CrossCountry – 12
  • East Midlands Railway – 39
  • Network Rail – 3

Note.

  1. ScotRail’s use of the power cars, is very similar to that of GWR.
  2. CrossCountry’s routes would need a lot of reorganisation to be run by say Hitachi’s Regional Battery Train.
  3. East Midlands Railway are replacing their Inter-City 125s with new Class 810 trains.

The picture shows the power car of Network Rail’s New Measurement Train.

These may well be the most difficult to decarbonise, as I suspect they need to run at 125 mph on some routes, which do not have electrification and there are no 125 mph self-powered locomotives. After the Stonehaven crash, there may be more tests to do and a second train may be needed by Network Rail.

Why Are GWR Increasing Their Castle Class Fleet?

These are possible reasons.

GWR Want To Increase Services

This is the obvious explanation, as more services will need more trains.

GWR Want To Update The Fleet

There may be something that they need to do to all the fleet, so having a few extra trains would enable them to update the trains without cutting services.

GWR Want To Partially Or Fully Decarbonise The Power Cars

As with updating the fleet,  extra power cars would help, as they could be modified first and then given a thorough testing before entering passenger service.

GWR Have Been Made An Offer They Can’t Refuse

Suppose Rolls-Royce, MTU or another locomotive power plant manufacturer has a novel idea, they want to test.

Over the years, train operating companies have often tested modified trains and locomotives for manufacturers.

So has a manufacturer, asked GWR to test something in main line service?

Are Other Train Operators Thinking Of Using Introducing More Short-Formed InterCity 125 Trains?

This question has to be asked, as I feel there could be routes, that would be suitable for a net-zero carbon version of a train, like a GWR Castle or a ScotRail Inter7City.

Northern Trains

Northern Trains is now run by the Department for Transport and has surely the most suitable route in the UK for a shorted-formed InterCity 125 train – Leeds and Carlisle via the Settle and Carlisle Line.

Northern Trains may have other routes.

Transport for Wales Rail Services

Transport for Wales Rail Services already run services between Cardiff Central and Holyhead using diesel locomotive hauled services and long distance services between South Wales and Manchester using diesel multiple units.

Would an iconic lower-carbon train be a better way of providing some services and attract more visitors to the Principality?

Conclusion

GWR must have a plan, but there are few clues to what it is.

The fact that the trains have been purchased rather than leased could be significant and suggests to me that because there is no leasing company involved to consult, GWR are going to do major experimental modifications to the trains.

They may be being paid, by someone like an established or new locomotive engine manufacturer.

It could also be part of a large government innovation and decarbonisation project.

My hunch says that as First Rail Holdings appear to be going for a lower-carbon fleet, that it is about decarbonising the Class 43 power cars.

The plan would be something like this.

  • Update the three new trains to the new specification.
  • Give them a good testing, before certifying them for service.
  • Check them out in passenger service.
  • Update all the trains.

The three extra trains would give flexibility and mean that there would always be enough trains for a full service.

Which Methods Could Be Used To Reduce The Carbon Footprint Of The Class 43 Power Cars?

These must be the front runners.

  • A Hitachi/Hyperdrive Innovation specialist battery pack.
  • An MTU Hybrid PowerPack.
  • A Rolls-Royce MTU solution based on the Rolls-Royce 2.5 MW generator with batteries.

All would appear to be viable solutions.

 

 

 

 

September 10, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , | 1 Comment

Birmingham-Black Country-Shrewsbury

On the Midlands Connect web site, they have a page, which is entitled Birmingham-Black Country-Shrewsbury.

This is the introductory paragraph.

We’re examining the case to increase services from three to four per hour, made possible by capacity released post-HS2.

They then give the outline of their plans, which can be summed up as follows.

  • Services on the corridor are slow and unreliable.
  • Network Rail say the service is in danger of acute overcrowding.
  • Services will be increased from three trains per hour (tph) to four.
  • A direct hourly service from Shrewsbury, Wellington and Telford to London will be introduced.
  • Services to Birmingham International will be doubled.
  • The economic case will be examined for speeding up services between Shrewsbury and Birmingham from 56 to 45 minutes, via track upgrades and possible electrification.

It seems a safe, and not overly ambitious plan.

These are my thoughts.

Shrewsbury’s Unique Position

These are distances and times from important stations.

  • Birmingham International – 51 miles and 83 minutes
  • Birmingham New Street – 42.5 miles and 71 minutes
  • Chester – 42.5 miles and 53 minutes
  • Crewe – 33 miles and 53 minutes
  • Hereford – 51 miles and 59 minutes
  • Telford – 14 miles and 21 minutes
  • Wellington – 10 miles and 13 minutes
  • Welshpool – 20 miles and 25 minutes
  • Wolverhampton – 30 miles and 50 minutes

In Sparking A Revolution, I quoted this Hitachi-specification for a battery-electric train.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

I can’t see any problem, for a train with this specification being able to reach Shrewsbury from Birmingham International, Birmingham New Street and Crewe on battery power.

In Hitachi Trains For Avanti, I quote an article with the same title in the January 2020 Edition of Modern Railways as saying this.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

I wouldn’t be surprised to see Shrewsbury served from Birmingham and Crewe by fast electric trains, that used battery power. Avanti West Coast certainly seem to have that thought in mind.

Zero Carbon Trains Between Shrewsbury And Wales

It will be a formidable challenge to run battery trains from Shrewsbury to the Welsh destinations.

  • Aberystwyth – 81.5 miles
  • Cardiff – 107 miles
  • Carmarthen – 185 miles
  • Holyhead – 133 miles
  • Milford Haven – 225 miles
  • Swansea – 121.5 miles

Note.

  1. These are challenging distances for battery-electric trains.
  2. South Wales destinations served via Newport and Cardiff could use the electrification on the South Wales Main Line.
  3. Many of these services start from East of Shrewsbury and can use the electrified lines that connects to Birmingham New Street and Manchester Piccadilly.

Unless someone like Riding Sunbeams, makes a breakthrough, I can’t see battery-electric trains running to Welsh destinations from Shrewsbury.

Transport for Wales New Trains

Transport for Wales have ordered seventy-seven new Class 197 trains, and these diesel trains will be used for services through Shrewsbury, mainly on services to Birmingham New Street and Birmingham International stations.

  • If these trains are similar to Northern’s Class 195 trains, they will be diesel multiple units with a noisy mechanical transmission.
  • I was surprised in these days of global warming that Transport for Wales didn’t buy something more eco-friendly, as they have for South Wales and the services around Chester.
  • The transmission of the Class 197 trains has not been disclosed.

Perhaps, CAF are going to do something innovative.

  • The CAF Civity is a modular train, with either electric or diesel power options.
  • The diesel-powered options use MTU engines.
  • A logical development would be to use an MTU Hybrid PowerPack to reduce diesel consumption and emissions.
  • This PowerPack would also reduce noise, as it has an electric transmission.
  • I wonder, if CAF can raid their parts bin and fit a pantograph, so where 25 KVAC overhead electrification is available, it can be used.
  • If CAF can convert a bog standard diesel multiple unit into a hybrid diesel-electric-battery multiple unit, by performing a heart transplant, it is a neat way of keeping new diesel Civities running until a later date.
  • Remember that Northern and West Modlands Trains have another seventy-four similar new diesel Civities in operation or on order. With trains having a forty year life, they don’t fit with an early phasing out of diesel.

I have no idea, what is actually happening, but my engineer’s nose tells me to expect a surprise from CAF.

Increasing Birmingham And Shrewsbury Services From Three Trains Per Hour To Four

Four trains per hour or one train every fifteen minutes seems to be a preferred frequency on several UK suburban lines.

These services seem to provide four tph or better on most, if not all of their routes.

  • Birmingham Cross-City Line
  • London Overground
  • Merseyrail
  • Tyne and Wear Metro

Four tph seems to be a very handy Turn-Up-And-Go frequency that encourages people to use rail services.

So I am not surprised to see Midlands Connect wanting four tph between Birmingham and Shrewsbury.

Currently, the following services seem to operate between Shrewsbury and Birmingham.

  • Avanti West Coast – 2 trains per day (tpd) – Shrewsbury and London Euston via Birmingham New Street and Birmingham International.
  • Trains for Wales – 1 train per two hours (tp2h) – Holyhead and Birmingham International via Birmingham New Street.
  • Trains for Wales 1 tph – Aberystwyth/Pwllheli and Birmingham International via Birmingham New Street
  • West Midlands Trains – 2 tph – Shrewsbury and Birmingham New Street – One semi-fast and one stopper.

Note.

  1. All services call at Wolverhampton, Telford and Wellington.
  2. Shrewsbury and Birmingham New Street is a 3.5 tph service.
  3. Shrewsbury and Birmingham International is a 1.5 tph service.

It relies heavily on services from Trains for Wales, who probably don’t put Shrewsbury and Birmingham services at the top of their priorities.

I remember, when local services in the North-East of London were run by Greater Anglia from Norwich. Moving some services to Transport for London, brought about a large improvement

Quite frankly, the current service is best described as pathetic.

Should Trains for Wales Services Terminate As Shrewsbury?

I suspect some local politicians in Shrewsbury and Birmingham, think it would be best to adopt this sort of strategy.

  • All Welsh services terminate at Shrewsbury.
  • Birmingham and Shrewsbury mandate West Midlands Trains and Avanti West Coast to provide a frequent service between Shrewsbury and Birmingham.

It might be the way to go, but many travellers from the Marches, would probably want direct connections to Birmingham, Birmingham Airport and in the future High Speed Two.

Introducing A Direct Hourly Service From Shrewsbury, Wellington And Telford To London

On the face of it, it looks like a much needed service to and from Shrewsbury.

  • It will be hourly.
  • Initially it will use Class 221 diesel multiple units, but these will be replaced with bi-mode Class 805 trains.
  • The current infrequent service calls at Watford Junction, Rugby, Coventry, Birmingham International, Birmingham New Street, Sandwell and Dudley, Wolverhampton, Telford Central and Wellington.
  • There are also six other stations between Shrewsbury and Wolverhampton, which might like an improved service.
  • The service will be run by Avanti West Coast.

There might also be the possibility of using battery power between Wolverhampton and Shrewsbury, which is only thirty miles each way.

But there are other collateral benefits.

  • The service increases the frequency between Shrewsbury and Birmingham New Street stations by one tph to 4.5 tph
  • The service increases the frequency between Shrewsbury and Birmingham International by one tph to 2.5 tph.
  • The service increases the frequency between Wolverhampton and London Euston by one tph.
  • The service increases the frequency between Sandwell and Dudley and London Euston by one tph
  • The service increases the frequency between Birmingham New Street and London Euston by one tph.
  • The service increases the frequency between Birmingham International and London Euston by one tph.
  • The new service will provide an hourly quality connection to High Speed Two at Birmingham International for stations between Shrewsbury and Coventry.
  • It appears that the Class 390 trains to Birmingham New Street and being replaced by new Class 807 trains, so Birmingham will have three out of four tph, run by new trains.
  • The new Shrewsbury service , has a similar calling pattern to that of the current Scottish service through Birmingham. Will it replace that service, when High Speed Two opens?

Note.

  1. Midlands Connect’s objective of four tph between Shrewsbury and Birmingham has been met.
  2. Several stations get a better direct service to London.
  3. Connectivity to High Speed Two is improved.
  4. Birmingham New Street and London is now a Turn-Up-And-Go frequency of four tph.
  5. The Class 805 train will also mean that Avanti West Coast could be zero-carbon in Birmingham. Especially, if it used battery power between Wolverhampton and Shrewsbury stations.

The hourly direct service between Shrewsbury and London will make a lot of difference to train services between Shrewsbury and Birmingham.

Avanti’s London Euston and Birmingham New Street Service

Consider.

  • There are two tph that terminate in Birmingham New Street station, that take 88-89 minutes, from London Euston
  • There is one tph that goes through Birmingham New Street station to Edinburgh, Glasgow, Preston, or Shrewsbury, that takes 82-84 minutes, from London Euston.
  • Currently, the two terminating trains are Class 390 trains, whereas the through train can be a Class 221 train as well.
  • Through trains are allowed  5-10 minutes to pass through Birmingham New Street.
  • Trains that terminate at Birmingham New Street station are allowed 20-30 minutes to arrive and leave.
  • Avanti West Coast have said, that they will be running Class 807 trains between London and Birmingham New Street.

It doesn’t seem to be the best use of scarce platform resources in a busy station to park a train there for half-an-hour.

In Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?, I came to the conclusion that the Class 807 trains have been designed as simple, fast, lightweight all-electric trains with no heavy batteries, diesel engines on tilt mechanism.

  • I think they’ll be able to shave a few minutes on the timings between London Euston and Birmingham New Street station.
  • I would suspect that they will match the 82-84 minutes of the through trains
  • The ultimate would be if they could do a round trip between London Euston and Birmingham New Street in three hours.
  • Two tph run by what would effectively be a London-Birmingham shuttle would need just six trains.

It might mean new methods of manning the trains, to reduce turnround times.

Doubling Of Services Between Shrewsbury And Birmingham International

The hourly direct London and Shrewsbury Avanti West Coast service will raise the current 1.5 tph service between Shrewsbury and Birmingham International to 2.5 tph, so will be a good start.

  • Perhaps Trains for Wales could find the missing 0.5 tph.
  • West Midlands Trains might be able to squeeze in another train.

But I suspect that the crowded line between Birmingham New Street and Birmingham International is the problem.

Shrewsbury And Birmingham In Forty-Five Minutes

This is the last objective and saving eleven minutes on this route would suggest that the best way would surely be to fully electrify the route.

  • Between Wolverhampton and Birmingham International stations is fully electrified.
  • Electric trains have faster acceleration and deceleration, so would probably achieve the required savings if they stopped more than five times.
  • From my virtual helicopter it doesn’t appear to be the most challenging of routes to electrify.
  • Only about thirty miles of double track would need to be electrified between Wolverhampton and Shrewsbury stations.
  • Both Trains for Wales and West Midlands Trains would have to obtain new electric trains.
  • Avanti West Coast have already got bi-mode Class 805 trains, that could use the electrification.

But will Trains for Wales go along with Midlands Connect, when they tell them to get electric or bi-mode trains to work between Shrewsbury and Birmingham International stations?

It is because of dilemmas like this, that I feel that electric trains using battery or hydrogen power, when away from electrification can be a very good alternative.

  • There is no major disruption raising bridges for the electrification.
  • Stations don’t need to be closed for electrification.
  • The trains have all the comfort and performance of electric trains.
  • Costs and timescales can be reduced.
  • When running on battery or hydrogen power, these trains are very quiet, as there is no pantograph noise.

To run battery-electric trains between Shrewsbury and Wolverhampton, the only infrastructure needed would be a method of charging the train at Shrewsbury station.

This Google Map shows the Southern end of Shrewsbury station.

Note.

  1. The platforms are built over the River Severn.
  2. The five-car Class 221 train in Virgin livery sitting in Platform 5.
  3. When this train leaves it will turn left or to the East for Wolverhampton and Birmingham.
  4. Trains can turn right for Wales.

It is a very unusual station layout.

  • Platform 5 is one of a pair of bay platforms; 5 & 6, that can access either Wales or Birmingham.
  • Outside of the bay platforms are a pair of through platforms; 4 & 7, that can also access Wales or Birmingham, but they can also access Chester by going through the station.
  • The 115 metre long Class 221 train fits easily in the bay platform 5.
  • The 130 metre long Class 805 train would probably need to use Platform 4 or 7.

But with well-planned electrification, it would be ideal for charging electric trains as they pass through or turned back!

Once the train reaches Wolverhampton, it will connect to electrification again.

Shrewsbury And High Speed Two

Currently, Shrewsbury has three connections to stations, where it would be convenient to take a High Speed Two train.

  • Birmingham International, which is 51 miles and 83 minutes away. Plus a ride on a people mover for High Speed Two.
  • Birmingham New Street, which is 42.5 miles and 71 minutes away. Plus a walk to Birmingham Curzon Street for High Speed Two.
  • Crewe, which is 33 miles and 55 minutes away.

Passengers will make their own choice.

Could Shrewsbury Have A Classic-Compatible High Speed Two Service To Manchester Piccadilly?

London To Shrewsbury, Now And Post-High Speed Two

Travel On Monday

If I want to go to Shrewsbury next Monday, one fast journey is taking the 09:10 from Euston and changing at Crewe, which gives a journey time of two hours and thirty-two minutes.

I can also get a train with a change at Birmingham International that takes seven minutes longer.

Travel On High Speed Two

After High Speed Two opens to Birmingham Curzon Street and Interchange in Phase 1 what sort of times to Shrewsbury can be expected?

I estimate the following.

  • Travelling via Birmingham Curzon Street could produce a time of around one hour and fifty minutes, if you’re lucky with the trains.
  • Travelling via Crewe could produce a time of one hour and thirty minutes, if you’re lucky with the trains.
  • Travelling via Interchange could produce a time of around one hour and fifty-five minutes. or forty-four minutes faster.

If I was going to Shrewsbury after High Speed Two has opened, I would probably change at Birmingham Curzon Street, if the walk to New Street station was still within my capabilities, as there will be a Turn-Up-And-Go frequency of four tph between Birmingham New Street and Shrewsbury stations.

Looking at the Midlands Connect objectives, these help with linking Shrewsbury with London.

  • Increasing services between Birmingham and Shrewsbury to four tph, as it’s Turn-Up-And-Go!
  • The direct hourly service to London from Shrewsbury, Wellington and Telford might be the quickest way to London by changing at Birmingham New Street/Curzon Street or Interchange.
  • Doubling the service between Shrewsbury and Birmingham International, may be a good move, as Interchange, which will be connected to Birmingham International by a high capacity people mover, will have five tph between London Euston and Old Oak Common stations.
  • Saving eleven minutes between Shrewsbury and Birmingham will certainly help.

Travelling between London and Telford, Wellington and Shrewsbury will be much improved.

 

June 27, 2020 Posted by | Transport | , , , , , , , , , , , , , , | 6 Comments