The Anonymous Widower

Beeching Reversal – South Yorkshire Joint Railway

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

This railway seems to have been forgotten, as even Wikipedia only has a rather thin entry for the South Yorkshire Joint Railway.

The best description of the railway, that I’ve found is from this article in the Doncaster Free Press, which is entitled South Yorkshire Railway Line, Which Last Carried Passengers 100 Years Ago Could Be Reopened.

This is said.

The line remains intact, and recently maintained, runs from Worksop through to Doncaster, via North and South Anston, Laughton Common/Dinnington and Maltby.

I jave got my helicopter out and navigating with the help of Wikipedia, I have traced the route of the South Yorkshire Joint Railway (SYJR) between Worksop and Doncaster.

Shireoaks Station

This Google Map shows the Southern end of the SYJR on the Sheffield and Gainsborough Central Line between Shireoaks and Kiveton Park stations.

Note.

  1. Shireoaks station is in the East.
  2. Kiveton Park station is in the West.
  3. The SYJR starts at the triangular junction in the middle of the map.
  4. Lindrick Golf Club, where GB & NI, won the Ryder Cup in 1957 is shown by a green arrow to the North of Shireoaks station.
  5. The original passenger service on the SYJR, which closed in the 1920s, appears to have terminated at Shireoaks station.

The line immediately turns West and then appears to run between the villages of North and South Anston.

Anston Station

This Google Map shows the location of Anston station.

Note that the SYJR goes between the two villages and runs along the North side of the wood, that is to the North of Worksop Road.

Dinnington & Laughton Station

This Google Map shows the location of the former Dinnington & Laughton station.

Note that the SYJR goes to the west side of both villages, so it would have been quite a walk to the train.

Maltby Station

This Google Map shows the location of the former Maltby station.

Note.

  1. The SYJR goes around the South side of the village.
  2. The remains of the massive Maltby Main Colliery, which closed several years ago.

I wonder if they fill the shafts of old mines like this. if they don’t and just cap them, they could be used by Gravitricity to store energy. In Explaining Gravitricity, I do a rough calculation of the energy storage with a practical thousand tonne weight. Maltby Main’s two shafts were 984 and 991 metres deep. They would store 2.68 and 2.70 MWh respectively.

It should be noted that Gravitricity are serious about 5.000 tonnes weights.

Tickhill & Wadworth Station

This Google Map shows the location of the former Tickhill & Wadworth station.

Note.

  1. Tickhill is in the South and Wadworth is in the North.
  2. Both villages are to the West of the A1 (M)
  3. The SYJR runs in a North-Easterly direction between the villages.

The station appears to have been, where the minor road and the railway cross.

Doncaster iPort

The SYJR then passes through Doncaster iPort.

Note.

  1. The iPort seems to be doing a lot of work for Amazon.
  2. The motorway junction is Junction 3 on the M18.
  3. The SYJR runs North-South on the Western side of the centre block of warehouses.

This is Wikipedia’s introductory description of the iPort.

Doncaster iPort or Doncaster Inland Port is an intermodal rail terminal; a Strategic Rail Freight Interchange, under construction in Rossington, Doncaster at junction 3 of the M18 motorway in England. It is to be connected to the rail network via the line of the former South Yorkshire Joint Railway, and from an extension of the former Rossington Colliery branch from the East Coast Main Line.

The development includes a 171-hectare (420-acre) intermodal rail terminal to be built on green belt land, of which over 50 hectares (120 acres) was to be developed into warehousing, making it the largest rail terminal in Yorkshire; the development also included over 150 hectares (370 acres) of countryside, the majority of which was to remain in agricultural use, with other parts used for landscaping, and habitat creation as part of environment mitigation measures.

It ;looks like the SYJR will be integrated with the warehouses, so goods can be handled by rail.

Onward To Doncaster

After the iPort, the trains can take a variety of routes, some of which go through Doncaster station.

I have some thoughts on the South Yorkshire Joint Railway (SYJR).

Should The Line Be Electrified?

This is always a tricky one, but as there could be a string of freight trains running between Doncaster iPort and Felixstowe, something should be done to cut the carbon emissions and pollution of large diesel locomotives.

Obviously, one way to sort out Felixstowe’s problem, would be to fill in the gaps of East Anglian electrification and to electrify the Great Northern and Great Eastern Joint Line between Peterborough and Doncaster via Lincoln. But I suspect Lincolnshire might object to up to fifteen freight trains per hour rushing through. Even, if they were electric!

I am coming round to the believe that Steamology Motion may have a technology, that could haul a freight  train for a couple of hours.

These proposed locomotives, which are fuelled by hydrogen and oxygen, will have an electric transmission and could benefit from sections of electrification, which could power the locomotives directly.

So sections of electrification along the route, might enable the freight trains to go between Felixstowe and Doncaster iPort without using diesel.

It should be said, that Steamology Motion is the only technology, that I’ve seen, that has a chance of converting a 3-4 MW diesel locomotive to zero carbon emissions.

Many think it is so far-fetched, that they’ll never make it work!

Electrification of the line would also enable the service between Doncaster and Worksop to be run by Class 399 tram-trains, which are pencilled in to be used to the nearby Doncaster Sheffield Airport.

What Rolling Stock Should Be Used?

As I said in the previous section, I feel that Class 399 tram-trains would be ideal, if the line were to be electrified.

Also, if the line between Shireoaks and Kiveton Park stations were to be electrified to Sheffield, this would connect the South Yorkshire Joint Line to Sheffield’s Supertram network.

Surely, one compatible tram-train type across South Yorkshire, would speed up development of a quality public transport system.

A service could also be run using Vivarail’s Pop-up Metro concept, with fast charging at one or two, of any number of the stations.

Conclusion

This seems to be a worthwhile scheme, but I would like to see more thought on electrification of the important routes from Felixstowe and a unified and very extensive tram-train network around Sheffield.

 

July 5, 2020 Posted by | Energy Storage, Transport | , , , , , , , , , , , | 5 Comments

British Start-Up Attempts To Bring Steam Power Back To Shipping

The title of this post, is the same as that of this article on Splash 247.

These are the introductory p[aragraphs.

A British start-up called Steamology is trying to bring steam power back to shipping. However, the key difference for this 21st century invention is that instead of steam generated by burning coal, Steamology’s steam is generated by burning pure oxygen and hydrogen, split from water.

The company has just won UK government innovation funding of £400,000 ($496,000) to trial the technology initially for trains but with a longer term view of getting it onboard ships.

There’s also a good graphic, which explains how the technology works.

 

 

July 2, 2020 Posted by | Energy, Transport | , , | Leave a comment

Will Steam Solve The Zero Carbon Freight Locomotive Problem?

Steamology Motion has now been awarded two Department of Transport grants to develop modern steam power for UK railways.

February 2019 – W2W Zero Emissions Power System

In Grants To Support Low-Carbon Technology Demonstrators, I quoted an extract from this article on Railway Gazette to describe their W2W Zero Emissions Power System.

Steamology’s Water 2 Water concept will use compressed hydrogen and oxygen gas in a ‘compact energy-dense steam generator’ to produce high pressure superheated steam to drive a turbine, which will generate electricity to charge the batteries as a ‘range extender’ for a Vivarail Class 230 multiple-unit produced from former London Underground vehicles.

There is not much on the Internet about this project, but I did find this article on the Bournemouth Echo, which is entitled Team Behind Chalres Burnett Steam Car Is Working On Trains.

Note that the typo in the headline is not mine, but one of the worst, I’ve seen in a newspaper, since the heady days of the Liverpool Echo in the 1960s, which gave Fritz Spiegl a second career, with all its spelling mistakes.

In the article, Chief Engineer; Christopher Lack describes the steam power like this.

We take hydrogen and oxygen and we burn them inside the chamber which then creates steam and we use that steam to drive a turbine which then powers the generator.

That all sounds very feasible, despite being a bit like the power system of a Space Shuttle, which carried liquid hydrogen and oxygen in the external tank.

At take-off the Space Shuttle carried 629.3 tonnes of liquid oxygen and 106.3 tonnes of liquid hydrogen. Will hydrogen and oxygen always have a similar 5.92 ratio by weight in any combustion process?

June 2020 – Zero Emission Rail Freight Power

In First Of A Kind Funding Awarded For 25 Rail Innovation Projects, I described this project like this.

Hydrogen-based steam turbine system to provide zero emission power for existing freight locomotives.

This is surely a much bigger challenge, as a Class 66 Locomotive for example, has a power output of nearly 2,500 kW, which might need to be sustained for three or four hours. That could be ten MWh, which explains why battery freight locomotives haven’t been developed.

As hydrogen contains 147 MJ/Kg of energy, does that mean that about 250 Kg of hydrogen and an equivalent amount of oxygen would be needed to power the locomotive for four hours?

The amount of space required for the fuel doesn’t seem to be ridiculously large, so that shouldn’t be a problem.

One of the processes in the chemical industry, that I haven’t modelled is combustion. This is probably because, when I was building mathematical models in the chemical industry, it was for ICI Plastics Division and their processes were all about pressure and/or mixing large amounts of chemicals in huge reaction vessels.

But thinking about it, if you burn hydrogen and oxygen in a combustion chamber, you’ll generate a lot of heat, but not much superheated steam to drive a turbine.

So could Steamology Motion have combined the combustion chamber and the boiler in some way?

Suppose, hydrogen and oxygen are burned in a combustion chamber and controlled amounts of water are injected into the chamber.

  • Obviously, not enough to stop the combustion.
  • The water would vaporise and surely join the combustion products and come out as turbine-ready superheated steam.

I suspect some researcher somewhere has used this process to see if they can drive a steam turbine from hydrogen and oxygen.

Perhaps, they were experimenting with a hydrogen-based energy storage system.

  • An electrolyser powered by surplus renewable energy, would split water into hydrogen and oxygen, which would be stored under pressure.
  • To recover the energy, the hydrogen and oxygen would be burned together to create superheated steam to drive a turbine.

The process could work, with an efficient hydrogen and oxygen to superheated steam generator.

But would it be economic, when compared with a hydrogen fuel cell? Fuel cells don’t need to have an oxygen feed and just uses common-or-garden air!

On the other hand, as the US space program has shown, it might work with liquid hydrogen and oxygen, which would possibly need less storage space and could mean a longer range for the locomotive.

Conclusion

It is a very large engineering challenge for Steamology Motion to get their system to work.

But, I do believe, that it’s possible to make the idea work.

I also think that the Government wouldn’t have signed up for a second project, if the first project had been a complete failure.

But, if Steamology Motion can convert a Class 66 locomotive from a polluting, noisy, carbon-spewing dinosaur into an eco-friendly hydrogen-electric locomotive, they will have done the planet an enormous favour, as there are tens of thousands of diesel locomotives, that could be converted.

They will also make billions for themselves!

 

 

June 20, 2020 Posted by | Transport | , , | Leave a comment

First Of A Kind Funding Awarded For 25 Rail Innovation Projects

The title of this post, is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

The Department for Transport and Innovate UK have announced the 25 projects which are to share £9·4m of funding under the 2020 round of the First of a Kind rail industry innovation programme.

It appears to be a longer list, than I’ve seen previously awarded.

Project 1 Train Swap From Seatfrog Ops

Seatfrog is an app, that enables passengers to quickly and remotely update their seat reservation to a different service.

It already appears to be in use with Avanti West Coast, CrossCountry, GWR and LNER.

This application could have legs, as it looks a bit like eBay for First Class seats.

Project 2 Dynamic Capacity Management From Esoterix Systems Ltd

It is described as follows.

Ticketing that adjusts to travel patterns and rewards particular choices, using a monthly subscription that will help customers to save money on a large upfront fee.

Their web site doesn’t give much specific detail, as I write this.

Project 3 Next Generation Composite Poles For A 5G Enabled Railway From Hive Composites

It is descrtibed as follows.

Installation of lightweight composite poles along railways to improve wi-fi speed, consistency and connectivity.

Their web site doesn’t give more specific detail, as I write this.

Project 4 Illumin Heated Concrete Platform Coper Slabs From Sheffield Hallam University

It is described as follows.

Illuminated and heated low-energy concrete slabs for station platforms, which automatically switch on in freezing conditions to help prevent passengers from slipping on ice.

The Sheffield Hallam University doesn’t give more specific detail, as I write this.

Project 5 LAMINAR From iProov

It is described as follows.

iProov, WorldReach Software and Eurostar are to establish a walk-through ’facial biometric corridor’ at London St Pancras International to allow passengers to complete ticket checks and border exit processes without needing to come into contact with people or hardware.

There is more on the iProov web site.

I think, this could be the way to ensure safe train travel in these pandemic times.

It would certainly cut queues.

Project 6 Track-To-Train Communications To Transport for Wales From Ingram Networks

It is described as follows.

Lab-based study into cost-effective 10 Gbps+ trackside to train communications infrastructure, to be tested on an 8 km heritage railway in Leicestershire.

Their web site doesn’t give more specific detail, as I write this.

Project 7 Prototype Zero Emissions Trac Rail Transposer (TRT-e) From Unipart Rail

This is described as follows.

A zero-emissions machine which removes and replaces rails.

The Unipart Rail web site, doesn’t give more specific details as I write this

Will it be battery or hydrogen-powered?

Project 8 LoCe: Less Oil, Cleaner Exhaust From Porterbrook Leasing

This is described as follows.

£400 000 to support Porterbook, Eminox, Bosch Rexroth and DG8 in retrofitting a Bombardier Class 170 Turbostar DMUs leased to East Midlands Railway with with Eminox SCRT technology to evaluate whether this can reduce CO, particulate, hydrocarbon and NOx emissions to make mid-life diesel engines more environmentally sustainable.

There is more on Porterbrook’s web site.

Project 9 Zero Emission Rail Freight Power From Steamology Motion

This is described as follows.

Hydrogen-based steam turbine system to provide zero emission power for existing freight locomotives.

In Steam, But Not As You Know It…, I give more details of their technology.

Could Steamology Motion really be on the verge of reengining a Class 66 locomotive with a zero-carbon steam technology that uses hydrogen and oxygen as a fuel?

Project 10 Daybreak From Riding Sunbeams

This is described as follows.

A direct connection between renewable energy generation and overhead electrifcation systems.

There is more on this page on the Riding Sunbeams web site.

Project 11 Resi-Glaze From FAR-UK

This is described as follows.

Resilient glazing solution to ensure passenger safety on trains and a potential CO2 emissions saving.

I can’t find anything more about this.

Project 12 HydroFLEX Raft Production From BCRRE

This is described as follows.

£400 000 grant to support final production design and testing  by the University of Birmingham and Porterbrook of a hydrogen power pack intended to minimise the loss of passenger saloon space.

Just reading the extract, it seems that the University of Birmingham have found a solution to the big problem of hydrogen-powered trains in the UK; the small loading gauge.

Project 13 Low Environmental Impact Composite  Footbridge From Associated Utility Supplies

This is described as follows.

A footbridge made entirely from fibre reinforced polymer, which is designed to be significantly easier to install than an equivalent steel bridge to help reduce network disruption and local environmental damage.

Could their share of the £9.4 million, almost build the first footbridge?

Looking at the Associated Utility Supplies web site, amongst the wide range of equipment, that they source for various industries, where danger is ever present, there are no footbridges.

So did their expertise and that of some Network Rail engineers, all come together in a convivial meeting to produce an innovative design of footbridge?

Project 14 Integrated Optical Fibre Sensing (OptRail-PRO) From rcm2

This is described as follows.

Optic fibre sensors to monitor the condition of switches and crossings.

The rcm2 web site doesn’t give more specific details, as I write this.

Project 15 Train Axle Crack Monitoring From TAMON – Perpetuum

This is described as follows.

Using sensors and pattern-recognition technologies to identify cracks in axles, helping to reduce returns to depot.

Perpetuum seem a very capable company.

Project 16 High Speed Cryogenic Blasting For Rail Cleaning To Alleviate Low Adhesion From Sheffield University

This is described as follows.

High speed cryogenic cleaning system for tracks to prevent low adhesion and slow running of trains.

This article on the BBC, which is entitled Dry ice ‘could stop leaves on line rail delays’, explains the technology.

Dry Ice Blasting is also explained on this page on the IceTech Technologies web site.

As the dry ice is carbon dioxide, will the Green Movement object?

The Wikipedia entry for dry ice blasting says this about its environmental effects.

Dry ice blasting is an environmentally responsible cleaning method. Dry ice is made of reclaimed carbon dioxide that is produced from other industrial processes, and is an approved media by the EPA, FDA and USDA. It also reduces or eliminates employee exposure to the use of chemical cleaning agents.

Compared to other media blasting methods, dry ice blasting does not create secondary waste or chemical residues as dry ice sublimates, or converts back to a gaseous state, when it hits the surface that is being cleaned. Dry ice blasting does not require clean-up of a blasting medium. The waste products, which includes just the dislodged media, can be swept up, vacuumed or washed away depending on the containment.

It appears it could be one of those processes, that when it replaces a traditional method, has more benefits than disadvantages.

Project 17 InnoTamp From Fugro

This is described as follows.

Data gathering to ensure the maintenance of optimum rail alignment.

The project is described on this page of the  Fugro web site.

Prokject 18 Thermal Radiometry For The Remote Condition Monitoring Of Railway Vehicles From Rail Innovations

This is described as follows.

Using thermal radiometry camera technology to measure temperatures of mechanical systems on moving trains, sending automatic alarms in the event of over heating.

I can’t find any more information on this project.

Project 19 Minimising Disruption Of Overhead Line Renewals Via Novel Headspan Assemblies From Associated Utility Supplies

This is described as follows.

Span wire clamping system to enable rapid, low-cost overhead line equipment headspan renewals with minimum network disruption.

This is a second project from the same company.

Project 20 Trainserv Software User Trial And Preparation For Commercialisation From Cogitaire

This is described as follows.

Integrating multiple sources of real-time data for use by rail workers to help them improve services and respond to incidents.

Cogitare seem a very capable company.

Project 21 Cleartrak On-Train Testing From Garrandale

This is described as follows.

Innovative and efficient system for processing toilet waste, reducing cost and maintenance requirements.

Ptoject 22 IRIS: Information System For Railway Station Staff From Liverpool John Moores University

This is described as follows.

An information system for frontline station staff to enhance communication and enable them to help passengers in making travel decisions and planning more effectively.

Another project from a University.

Project 23 Railway Optical Detection & Obstructions – Tunnel & Station Monitoring From Vortex IoT

This is described as follows.

Sensors and data analysis tools to detect and identify intrusion and obstructions on the track, and send real-time situational alerts to the rail control centre to prompt further investigation. 

This page on the Vortex IoT web site shows some of the technology they will use.

Project 24 Improving Resilience Through A Surface Water Flooding Decision Support System from IBA Consulting

This is described as follows.

This project seeks to develop a first of a kind surface water flood forecasting and early warning system for Network Rail using technology and data to map the surface water flood likelihood in real time, ahead of the event and forecast rainfall intensity.

I can’t find the company or this project.

Project 25 Improved Railway Operations Through Train-Mounted Water Addition From CoCatalyst

This is described as follows.

Spraying a small amount of water from the train when slippery rails are detected to improve traction and braking, and prevent subsequent services from being affected.

There’s a detailed description on this page on the Water=Trak web site.

This looks to be a simple idea, that may be significant, to stop wheel slippage.

Conclusion

The ideas are more numerous than usual and they are a very wide-ranging bunch.

In Grants To Support Low-Carbon Technology Demonstrators, which were a similar group in 2019, that were also funded by Innovate UK, there were only five projects.

I also feel, some could have significant export opportunities.

 

 

June 18, 2020 Posted by | Transport | , , , , , | 11 Comments

Steam, But Not As You Know It…

The title of this post, is the same as that of a sub-section of this news article on the IMechE web site.

This is the introductory paragraph.

Burning vast amounts of coal, wood or oil, traditional steam locomotives are hardly environmentally friendly. Steamology Motion hopes to give steam a modern makeover with its W2W Zero Emissions Power System, a range extender for Vivarail Class 320 rolling stock.

This paragraph gives an outline of the technology.

Few details are available, but the project aims to boost air quality at stations and reduce noise and pollution. W2W stands for water-to-water, and the system has a compact energy dense steam generator at its heart. “Steam is generated using energy stored as compressed hydrogen and oxygen gas in tanks,” the project summary says. “High pressure, superheated steam is used to drive a turbine to do useful work by generating electricity.”

There is only a fine line between madness and genius.

 

June 17, 2020 Posted by | Transport | , , , , , | 5 Comments

More About Steamology Motion

In Grants To Support Low-Carbon Technology Demonstrators, I talked about a company called Steamology, who were given a grant by the Department for Transport to develop a method of converting hydrogen into energy.

The company is called Steamology Motion and in Issue 872 of Rail Magazine more details are given in an article, which is entitled DFT Hands Out £350,000 Each To Five Rail Green Schemes.

This is said in the article.

Steamology Motion, the final recipient, aims to create a new zero-emmissions power train for a Vivarail Class 230 train. The W2W system generates steam from compressed hydrogen and oxygen stored in tanks. The steam then drives a turbine to generate electricity.

The concept is aimed at being a ‘range extender’ able to charge onboard battery packs.

My mathematical modelling skills for this type of system have never been strong, but I’m sure that others will know how much hydrogen and oxygen are needed to charge a 200 kWh battery.

  • A quick search of the Internet reveals that small steam turbines could be available
  • I very much suspect, that as the system is a ‘range extender’, rather than a power unit to take the train hundreds of miles, that the physical size of the gas tanks will be smaller than those proposed by Alston for their hydrogen conversion of a Class 321 train.

I also don’t think that the DfT would have given £350,000 to the company, if the the physics and the mathematics weren’t credible.

Conclusion

If this technology is successful, I suspect it could have other applications.

February 11, 2019 Posted by | Transport | , , , , , , | Leave a comment

Grants To Support Low-Carbon Technology Demonstrators

The title of this post is the same as that of this article on Railway Gazette.

This is the two introductory paragraphs.

The Department for Transport has awarded grants of around £350 000 to each of five projects which aim to develop technology to reduce the rail network’s carbon footprint.

The projects were selected under the second round of the DfT’s First of a Kind competition, run by Innovate UK as part of the DfT’s wider Accelerating Innovation in Rail programme.

These are the winners.

Project 1 Riding Sunbeams

I wrote about this technology in Solar Power Could Make Up “Significant Share” Of Railway’s Energy Demand.

Project 2 Diesel Freight Carbon Reduction Technology

We all hate Class 66 locomotives, with their noise, vibration and pollution.

But an Essex company called Vortex Exhaust Technology has been awarded a grant to see if their free-flowing exhausts can tame, these most unfriendly of beasts.

They make this claim on their web site.

Vortex is the ONLY exhaust technology available that effectively eliminates back pressure, improving engine efficiency, boosting power and cutting emissions.

A Class 66 locomotive will be a tough challenge.

To see what the company can do for road vehicles, there is a case study at the bottom of this page.

But then they are Essex Boys! Performance is in the genes!

Project 3 CODD-P Hydraulic Pump

This is said in the Railway Gazette article.

Unipart Rail will undertake in-service testing of a commercial version of a digital displacement pump and electronic controller in place of a traditional hydraulic pump with swashplate design. This is expected to provide a significant reduction in fuel consumption.

It sounds like an idea from Artemis Intelligent Power in Edinburgh.

Project 4 Green Rail Exhaust After Treatment

This is said in the Railway Gazette article.

Leasing company Porterbrook will collaborate with Eminox to transfer an on-road exhaust after-treatment system widely fitted to heavy-duty vehicles to the railway environment, equipping a South Western Railway Class 158 DMU for in-service trials. This will enable the technical and commercial viability to be established, so it can be offered for widespread fitment.

There are currently 170 Class 158 trains and 30 of the closely-related Class 159 trains in service, so if this is successful, there won’t be a shortage of installations.

The picture shows one of East Midlands Trains, Class 158 trains.

 

It should also be said, that most Class 158 trains are in excellent condition, despite being nearly thirty years old.

Note that Porterbrook are involved. Train leasing companies seem to be getting increasingly involved with innovation.

Project 5 W2W Zero Emissions Power System

This is said in the Railway Gazette article.

Steamology’s Water 2 Water concept will use compressed hydrogen and oxygen gas in a ‘compact energy-dense steam generator’ to produce high pressure superheated steam to drive a turbine, which will generate electricity to charge the batteries as a ‘range extender’ for a Vivarail Class 230 multiple-unit produced from former London Underground vehicles.

It sounds to me, that the tabloids will say that this is the return of the steam train.

Conclusion

They are a broad spread of technology and I have this feeling, that the Department for Transport will get a sensible return for an outlay of around two million pounds.

But I suspect that the best and most profitable idea, will come, after a meeting between two or more of the award winners and their backers.

 

 

February 5, 2019 Posted by | Transport | , , , , , , , | 4 Comments