The Anonymous Widower

New Proton Ceramic Reactor Stack For Highly Efficient Hydrogen Production And Carbon Capture In A Single Step

The title of this post, is the same as that of this article on Green Car Congress.

This is the opening paragraph.

A team of researchers from CoorsTek Membrane Sciences and SINTEF in Norway, and Universitat Politècnica de València in Spain, has demonstrated a 36-cell well-balanced proton ceramic reactor stack enabled by a new interconnect that achieves complete conversion of methane with more than 99% recovery to pressurized hydrogen, leaving a concentrated stream of carbon dioxide. The team has also demonstrated that the process can be scaled up for commercial application.

A paper has been published in the journal; Science.

I find this concept interesting for a number of reasons.

  • I’ve believed for some time, that applications, that need a good supply of pure carbon dioxide will be developed. One obvious use is feeding it to plants in large greenhouses, so we can have our CO2 and eat it!
  • 99 % is a very high efficiency.
  • Ammonia, natural gas or biogas can be used as a feedstock.

Coors were an Artemis user for project management and I had an enjoyable few days Golden, Colorado and at the Coors brewery, sometime in the 1980s.

  • It was then that I first heard of CoorsTek, who used to make ceramics for the US defence industry.
  • In those days, the beer was made to German brewing rules and was unpasteurised.
  • The beer had to be delivered to customers within a certain time, so long distance deliveries used trains.
  • Coors Brewing Company has since merged with Molson, but CoorsTek appears to be still owned by the Coors family.
  • I had taken a few small bottles of Adnams Broadside with me and one of their managers analysed one before drinking the rest of the bottle. He informed me that it was a felony to be in possession of such a strong beer in Colorado.

Coors were and probably still are in some ways not your average brewing company.

Coors News Item On Proton Ceramic Membranes For Hydrogen Production

This page on the CoorsTek web site, which is entitled Proton Ceramic Membranes For Hydrogen Production Published In ‘Science’, gives more details.

Conclusion

This technology could be massive.

July 31, 2022 Posted by | Computing, Food, Hydrogen | , , , , , , , , , , | Leave a comment

SSE Thermal And Equinor To Acquire Triton Power In Acceleration Of Low-Carbon Ambitions

The title of this post, is the same as that as this press release from SSE.

These are the first three paragraphs.

SSE Thermal and Equinor have entered into an agreement to acquire Triton Power Holdings Ltd from Energy Capital Partners for a total consideration of £341m shared equally between the partners.

The transaction represents another step forward for the two companies’ existing collaboration, supporting the long-term decarbonisation of the UK’s power system whilst contributing to security of supply and grid stability through flexible power generation in the shorter term.

Triton Power operates Saltend Power Station which is 1.2GW CCGT (Combined Cycle Gas Turbine) and CHP (Combined Heat & Power) power station located on the north of the Humber Estuary in East Yorkshire.

This deal is more complicated than it looks and these are my thoughts.

What About The Triton Power Workers?

The press release says this.

The 82 existing employees will continue to be employed by Triton Power. In line with just transition principles, the joint venture is committed to transitioning the assets for the net zero world through responsible ownership and operation, and in consultation with the local workforce and representatives.

It does sound that they are following the right principles.

Saltend Power Station

Saltend power station is no tired ancient asset and is described like this in Wikipedia.

The station is run on gas using single shaft 3 × Mitsubishi 701F gas Turbines machines with Alstom 400 MWe generators. The station has a total output of 1,200 MW; of that 100 MW is allocated to supply BP Chemicals. Each gas turbine has a Babcock Borsig Power (BBP) heat recovery steam generator, which all lead to one steam turbine per unit (single shaft machine means Gas turbine and Steam Turbine are on the same shaft). The waste product of electricity generation is steam at the rate of about 120 tonnes/h which is sold to BP Chemicals to use in their process. This makes Salt End one of the most efficient[clarification needed] power stations in the UK. The plant is scheduled to use hydrogen from steam reformed natural gas for 30% of its power.

Note.

  1. It was commissioned in 2000.
  2. It appears there are seven CCGT power stations in England that are larger than Saltend.
  3. The power station seems to have had at least four owners.

The press release says this about SSE and Equinor’s plans for Saltend power station.

The transaction underscores SSE Thermal and Equinor’s shared ambition to decarbonise the Humber, which is the UK’s most carbon-intensive industrial region, as well as the UK more widely. Initial steps to decarbonise Saltend Power Station are already underway, targeting partial abatement by 2027 through blending up to 30% of low-carbon hydrogen. In addition, carbon capture provides an additional valuable option for the site. SSE Thermal and Equinor will continue to work towards 100% abatement.

Note.

  1. It appears that initially, Saltend power station will move to running on a mixture of 30 % hydrogen and 70 % natural gas.
  2. Carbon capture will also be applied.
  3. It looks like that in the future all carbon-dioxide emitted by the power station will be captured and either stored or used.

The press release says this about the source of the hydrogen.

Saltend Power Station is a potential primary offtaker to Equinor’s H2H Saltend hydrogen production project. H2H Saltend is expected to kick-start the wider decarbonisation of the Humber region as part of the East Coast Cluster, one of the UK’s first carbon capture, usage and storage clusters.

H2H Saltend is described in this page on the Equinor web site, which has a title of The First Step To A Zero Carbon Humber, where this is said.

This project represents a bold but practical first step towards delivering the world’s first net zero industrial cluster by 2040. This unparalleled project can play a leading role in the UK’s journey to net zero by 2050, renew the UK’s largest industrial cluster, and unlock technology that will put the UK at the forefront of a global hydrogen economy.

There is also a video.

SSE Thermal And Equinor Low-Carbon Thermal Partnership

This is a section in the press release, where after giving their policy about the workers, it says this about the acquisition of Triton Power.

This acquisition strengthens SSE Thermal and Equinor’s portfolio of joint projects, which bring together expertise in power, natural gas, hydrogen and carbon capture and storage. This portfolio includes three development projects within the Humber region:

  • Keadby 3 Carbon Capture Power Station, which could be the UK’s first flexible power station equipped with carbon capture.
  • Keadby Hydrogen Power Station, which could be one of the world’s first 100% hydrogen-fuelled power stations.
  • Aldbrough Hydrogen Storage, located in East Yorkshire, which could be one of the world’s largest hydrogen storage facilities.

The two companies are also developing Peterhead Carbon Capture Power Station, situated on the Aberdeenshire coast in Scotland and there are further opportunities for hydrogen blending across SSE’s generation portfolio, including at Keadby 2.

Note.

  1. There is no mention of the three Dogger Bank Wind Farms, each of which will be 1200 MW, that are owned by SSE Renewables and Equinor.
  2. I wrote about Aldbrough Gas Storage in The Massive Hydrogen Project, That Appears To Be Under The Radar.
  3. According to this press release from Equinor, which is entitled SSE Thermal And Equinor Join Forces On Plans For First-Of-A-Kind Hydrogen And Carbon Capture Projects In The Humber, Keadby Hydrogen power station will have a capacity of 1800 MW.

The Complete System

The system has the following power sources.

  • Dogger Bank A – 1200 MW – Expected commissioning in 2023/24
  • Dogger Bank B – 1200 MW – Expected commissioning in 2024/25
  • Dogger Bank C – 1200 MW – Expected commissioning in 2024/25
  • Keadby power station – 735 MW
  • Keadby 2 power station – 893 MW – Could be Part-Hydrogen
  • Keadby 3 power station – 910 MW – Carbon Capture
  • Keadby Hydrogen power station – 1800 MW – Hydrogen
  • Saltend power station – 1200 MW – Part-Hydrogen

That totals up to 9138 MW.

Fuel will come from three sources.

  • The God of the winds.
  • Natural gas
  • Hydrogen

Hydrogen will be sourced from.

  • Blue hydrogen from H2H Saltend
  • Green Hydrogen could come from electrolysers driven by wind power.

Hydrogen would be stored in Aldbrough Gas Storage.

I am by training a Control Engineer and controlling these power sources is either a wonderful dream or your most entwined and complicated nightmare.

Conclusion

I suspect on an average day, this cluster of power stations and sources could reliably supply as much zero-carbon power as two large nuclear stations.

 

June 30, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , | 1 Comment

The Massive Hydrogen Project, That Appears To Be Under The Radar

This page on the SSE Thermal web site, is entitled Aldbrough Gas Storage.

This is the introductory paragraph.

The Aldbrough Gas Storage facility, in East Yorkshire, officially opened in June 2011. The last of the nine caverns entered commercial operation in November 2012.

This page on Hydrocarbons Technology is entitled Aldbrough Underground Gas Storage Facility, Yorkshire.

It gives these details of how Aldbrough Gas Storage was constructed.

The facility was originally planned to be developed by British Gas and Intergen in 1997. British Gas planned to develop Aldbrough North as a gas storage facility while Intergen planned to develop Aldbrough South.

SSE and Statoil became owners of the two projects in 2002 and 2003. The two companies combined the projects in late 2003. Site work commenced in March 2004 and leaching of the first cavern started in March 2005.

The storage caverns were created by using directional drilling. From a central area of the site, boreholes were drilled down to the salt strata located 2km underground.

After completion of drilling, leaching was carried out by pumping seawater into the boreholes to dissolve salt and create a cavern. Natural gas was then pumped into the caverns and stored under high pressure.

Six of the nine caverns are already storing gas. As of February 2012, dewatering and preparation of the remaining three caverns is complete. Testing has been completed at two of these caverns.

The facility is operated remotely from SSE’s Hornsea storage facility. It includes an above ground gas processing plant equipped with three 20MW compressors. The gas caverns of the facility are connected to the UK’s gas transmission network through an 8km pipeline.

Note.

  1. The caverns are created in a bed of salt about two kilometres down.
  2. It consists of nine caverns with the capacity to store around 370 million cubic metres (mcm) of gas.
  3. Salt caverns are very strong and dry, and are ideal for storing natural gas. The technique is discussed in this section in Wikipedia.

As I worked for ICI at Runcorn in the late 1960s, I’m very familiar with the technique, as the company extracted large amounts of salt from the massive reserves below the Cheshire countryside.

This Google Map shows the location of the Aldbrough Gas Storage to the North-East of Hull.

Note.

  1. The red-arrow marks the site of the Aldbrough Gas Storage.
  2. It is marked on the map as SSE Hornsea Ltd.
  3. Hull is in the South-West corner of the map.

This Google Map shows the site in more detail.

It appears to be a compact site.

Atwick Gas Storage

This page on the SSE Thermal web site, is entitled Atwick Gas Storage.

This is said on the web site.

Our Atwick Gas Storage facility is located near Hornsea on the East Yorkshire coast.

It consists of nine caverns with the capacity to store around 325 million cubic metres (mcm) of gas.

The facility first entered commercial operation in 1979. It was purchased by SSE in September 2002.

This Google Map shows the location of the Atwick Gas Storage to the North-East of Beverley.

Note.

  1. The red-arrow marks the site of the Atwick Gas Storage.
  2. It is marked on the map as SSE Atwick.
  3. Beverley is in the South-West corner of the map.

This Google Map shows the site in more detail.

As with the slightly larger Aldbrough Gas Storage site, it appears to be compact.

Conversion To Hydrogen Storage

It appears that SSE and Equinor have big plans for the Aldbrough Gas Storage facility.

This page on the SSE Thermal web site is entitled Plans For World-Leading Hydrogen Storage Facility At Aldbrough.

These paragraphs introduce the plans.

SSE Thermal and Equinor are developing plans for one of the world’s largest hydrogen storage facilities at their existing Aldbrough site on the East Yorkshire coast. The facility could be storing low-carbon hydrogen as early as 2028.

The existing Aldbrough Gas Storage facility, which was commissioned in 2011, is co-owned by SSE Thermal and Equinor, and consists of nine underground salt caverns, each roughly the size of St. Paul’s Cathedral. Upgrading the site to store hydrogen would involve converting the existing caverns or creating new purpose-built caverns to store the low-carbon fuel.

With an initial expected capacity of at least 320GWh, Aldbrough Hydrogen Storage would be significantly larger than any hydrogen storage facility in operation in the world today. The Aldbrough site is ideally located to store the low-carbon hydrogen set to be produced and used in the Humber region.

Hydrogen storage will be vital in creating a large-scale hydrogen economy in the UK and balancing the overall energy system by providing back up where large proportions of energy are produced from renewable power. As increasing amounts of hydrogen are produced both from offshore wind power, known as ‘green hydrogen’, and from natural gas with carbon capture and storage, known as ‘blue hydrogen’, facilities such as Aldbrough will provide storage for low-carbon energy.

I have a few thoughts.

Will Both Aldbrough and Atwick Gas Storage Facilities Be Used?

As the page only talks of nine caverns and both Aldbrough and Atwick facilities each have nine caverns, I suspect that at least initially only Aldbrough will be used.

But in the future, demand for the facility could mean all caverns were used and new ones might even be created.

Where Will The Hydrogen Come From?

These paragraphs from the SSE Thermal web page give an outline.

Equinor has announced its intention to develop 1.8GW of ‘blue hydrogen’ production in the region starting with its 0.6GW H2H Saltend project which will supply low-carbon hydrogen to local industry and power from the mid-2020s. This will be followed by a 1.2GW production facility to supply the Keadby Hydrogen Power Station, proposed by SSE Thermal and Equinor as the world’s first 100% hydrogen-fired power station, before the end of the decade.

SSE Thermal and Equinor’s partnership in the Humber marks the UK’s first end-to-end hydrogen proposal, connecting production, storage and demand projects in the region. While the Aldbrough facility would initially store the hydrogen produced for the Keadby Hydrogen Power Station, the benefit of this large-scale hydrogen storage extends well beyond power generation. The facility would enable growing hydrogen ambitions across the region, unlocking the potential for green hydrogen, and supplying an expanding offtaker market including heat, industry and transport from the late 2020s onwards.

Aldbrough Hydrogen Storage, and the partners’ other hydrogen projects in the region, are in the development stage and final investment decisions will depend on the progress of the necessary business models and associated infrastructure.

The Aldbrough Hydrogen Storage project is the latest being developed in a long-standing partnership between SSE Thermal and Equinor in the UK, which includes the joint venture to build the Dogger Bank Offshore Wind Farm, the largest offshore wind farm in the world.

It does seem to be, a bit of an inefficient route to create blue hydrogen, which will require carbon dioxide to be captured and stored or used.

Various scenarios suggest themselves.

  • The East Riding of Yorkshire and Lincolnshire are agricultural counties, so could some carbon dioxide be going to help greenhouse plants and crops, grow big and strong.
  • Carbon dioxide is used as a major ingredient of meat substitutes like Quorn.
  • Companies like Mineral Carbonation International are using carbon dioxide to make building products like blocks and plasterboard.

I do suspect that there are teams of scientists in the civilised world researching wacky ideas for the use of carbon dioxide.

Where Does The Dogger Bank Wind Farm Fit?

The Dogger Bank wind farm will be the largest offshore wind farm in the world.

  • It will consist of at least three phases; A, B and C, each of which will be 1.2 GW.
  • Phase A and B will have a cable to Creyke Beck substation in Yorkshire.
  • Phase C will have a cable to Teesside.

Creyke Beck is almost within walking distance of SSE Hornsea.

Could a large electrolyser be placed in the area, to store wind-power from Dogger Bank A/B as hydrogen in the Hydrogen Storage Facility At Aldbrough?

Conclusion

SSE  and Equinor may have a very cunning plan and we will know more in the next few years.

 

 

May 22, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , | 1 Comment

Affordable Blue Hydrogen Production

The title of this post, is the same as that of this page on the Shell Catalysts & Technologies web site.

This is said at the top of the page.

Natural gas producers are at a crossroads. They face a shifting regulatory landscape emphasising emissions reduction and an economic environment where cash preservation is critical. Shell Catalysts & Technologies offers resource holders a phased approach to diversifying their portfolios towards clean hydrogen fuels by leveraging proven and affordable capture technologies and catalysts.

My knowledge of advanced chemical catalysts is small, but I did work in the early 1970s on a project with one of ICI’s experts in the field and he told me some basics and how he believed that in the future some new catalysts would revolutionise chemical process engineering.

Wikipedia’s definition of catalysis, or the action of catalysts is as follows.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst.

When I heard that Velocys were going to develop a catalyst-based system to turn household waste into sustainable aviation fuel, I did make a small investment in the company, as I thought the project could have legs.

Shell’s process takes natural gas and converts one molecule of methane (CH4) into two molecules of hydrogen (H2) and one of carbon dioxide (CO2) using one molecule of oxygen (O2) from the air.

In the Shell Blue Hydrogen Process, does a clever catalyst extract the carbon atom from the methane and combine it with two oxygen atoms to create a molecule of carbon dioxide? If it does, then this would leave the four atoms of hydrogen to form two molecules of H2 and the catalyst to go and repeat its magic on another methane molecule.

The video on the Shell site claims to do the conversion 10-25 % cheaper than current carbon intensive methods like steam reforming.

For every two molecules of hydrogen produced, both the Shell Blue Hydrogen Process and steam reforming will produce one molecule of carbon dioxide.

If you look at steam reforming it is an endothermic process, which means heat has to be added. The classic endothermic process is dissolving ice cubes in a glass of water.

Shell don’t say, but does their process need less energy to be added, because their clever catalyst does a lot of the work?

I wouldn’t be surprised if the reaction takes place in a liquid, with hydrogen and carbon dioxide bubbling out.

  • The two gases would be separated by using their different physical properties.
  • Carbon dioxide is heavier for a start.

Whatever Shell have done, it is probably pretty impressive and has probably taken many years to develop.

If as I suspect, it produces pure carbon dioxide, that would be an added bonus, as some uses of carbon dioxide wouldn’t want impurities.

Uses of pure carbon dioxide include.

  • Feeding it to soft fruits, flowers, salad vegetables and tomatoes growing in large greenhouses.
  • Dry ice.
  • Mineral Carbonation International can use carbon dioxide to make building products like blocks or plasterboard.
  • It can be added to concrete.

The more of the carbon dioxide that can be used rather than stored the better.

May 18, 2022 Posted by | Energy, Hydrogen | , , , , , , , , | Leave a comment

Shell To Develop Blue Hydrogen Plant

The title of this post, is the same as that of this article in The Times.

The article is based on this press release from Shell, which is entitled Shell And Uniper To Work Together On Blue Hydrogen Production Facility In The UK.

These are the three bullet points of the press release.

  • Shell and Uniper sign co-operation agreement to progress plans for low-carbon hydrogen production at Uniper’s Killingholme site in North Lincolnshire
  • Hydrogen produced could be used to decarbonise heavy industry, transport, heating and power across Humber and beyond.
  • Project recently passed eligibility phase for UK Government’s Phase-2 carbon capture, usage and storage Cluster Sequencing Process.

Note.

  1. The Killingholme site is currently occupied by the 900 MW gas-fired Killingholme power station.
  2. Heavy industry on Humberside includes chemicals and oil refineries and the Scunthorpe steelworks.

This Google Map shows the location of Killingholme power station.

Note.

  1. Killingholme power station is marked by the red arrow.
  2. The river is the Humber.
  3. The Port of Immingham is on the power station side of the river.
  4. Cleethorpes Beach is marked by the green dot in the bottom-right hand corner.
  5. Grimsby is to the North of Cleethorpes.
  6. Between Grimsby and Killingworth power station is a mass of chemical works.

This second Google Map shows the area to the South-East of the power station.

Note.

  1. Killingholme power station is marked by the red arrow.
  2. The Hornsea 02 substation to the North of the power station.
  3. The large Uniper site to the South of the power station.
  4. The large number of tanks inland from the port and the chemical works.

I have some thoughts.

A Full Description Of The Project

This paragraph from the press release described the project.

Uniper has signed an agreement with Shell to progress plans to produce blue hydrogen at Uniper’s Killingholme power station site in the East of England. The hydrogen produced could be used to decarbonise industry, transport and power throughout the Humber region.

The Humber Hub Blue project includes plans for a blue hydrogen production facility with a capacity of up to 720 megawatts, using gas reformation technology with carbon capture and storage (CCS).
The captured carbon would be fed through the proposed Zero Carbon Humber onshore pipeline, part of the East Coast Cluster, recently selected as one of two CCS clusters to receive initial government support under the government’s cluster sequencing process.

I suspect that a lot of the plant from the existing Killingholme power station will be repurposed.

This is the specification of the power station.

The Uniper (Formerly E.ON UK) plant consists of two 450 MW Siemens V94.2 gas turbine modules each connected to a heat recovery steam generator using only a single steam turbine in a 2 into 1 configuration. Gas is supplied from a 26-mile pipeline from Theddlethorpe.

When it was built by Powergen (now called Uniper) and opened in April 1993 it was only the second gas-fired power station built in the UK. It was taken out of service in 2002 due to the lower price of electricity and was then restored to full service in August 2005, with one of the 450 MW units returning to service in April 2005.

It was announced that the power station will be closed in 2015.

Will The Project Use The Shell Blue Hydrogen Process?

Will the plant use the Shell Blue Hydrogen Process, that I described in Shell Process To Make Blue Hydrogen Production Affordable?

It appears the Shell Blue Hydrogen Process offers advantages.

  1. Shell are claiming, that with carbon dioxide costing $25-35/tonne, that their process is more economic than grey or green hydrogen.
  2. Steam reforming also needs steam, but this new process actually generates steam as a by-product, which further improves the economics, as integrated chemical plants use a lot of steam. Killingholme’s neighbours would probably welcome the steam.
  3. Shell are reporting capturing 99% of the carbon.
  4. It looks like savings of between 10 and 25 % are possible.

 

The most-fervent greens, may claim blue hydrogen is totally wrong.

But if it is more affordable than both grey and green hydrogen and all but one percent of the carbon dioxide is captured, I believe that this should be an option, that is fully investigated.

This appears to be a victory for top-class chemical engineering.

Northern Endurance Partnership

The Northern Endurance Partnership is described on this page of the Equinor web site, where this is said.

BP, Eni, Equinor, National Grid, Shell and Total today confirmed they have formed a new partnership, the Northern Endurance Partnership (NEP), to develop offshore carbon dioxide (CO2) transport and storage infrastructure in the UK North Sea, with bp as operator.

This infrastructure will serve the proposed Net Zero Teesside (NZT) and Zero Carbon Humber (ZCH) projects that aim to establish decarbonised industrial clusters in Teesside and Humberside.

There is also a map.

Note.

  1. One facility would appear to serve the Tees and the Humber.

It looks like the depleted gas fields could hold a lot of carbon dioxide.

Carbon Capture

Some points from the Equinor press release about carbon capture.

  • Blue hydrogen production at Killingholme could see the capture of around 1.6 million metric tonnes (Mt) of carbon a year through CCS.
  • The UK Government has set a target to capture 10 Mt of carbon a year by 2030.
  • NEP has submitted a bid for funding through Phase 2 of the UK Government’s Industrial Decarbonisation Challenge, aiming to accelerate the development of an offshore pipeline network to transport captured CO2 emissions from both NZT and ZCH to offshore geological storage beneath the UK North Sea.

These projects could could decarbonise a lot of businesses  on Teesside and the Humber.

Carbon Capture And Use

The Equinor press release says this about carbon capture and use.

The Northern Endurance Partnership will channel the extensive experience of its members to develop and deliver the offshore transport and storage infrastructure we need to unlock the enormous benefits of deploying CCUS across the Humber and Teesside. We’re delighted to start working together with five really world class energy companies to deliver a solution that will play a critical role in decarbonising the UK’s largest industrial heartland and protecting tens of thousands of jobs in the process.”

Uses include.

  • Feeding to salad vegetables, tomatoes, soft fruit and flowers in giant greenhouses.
  • Creating sustainable aviation fuel.
  • Creating building products like blocks and plaster board.
  • Making better concrete.

This is a list that will grow.

Making Hydrogen With An Electrolyser

The Shell press release says this.

Uniper continues to develop a separate green hydrogen project, using electrolytic hydrogen production technology, as part of the overall Humber Hub development at Uniper’s Killingholme site. Uniper, along with its project partners, will shortly complete the Project Mayflower feasibility study, part funded by the Department for Transport’s Clean Maritime Demonstration Competition, administered by InnovateUK, looking at the decarbonisation of port related activities at the Port of Immingham.

Note that the sub station for the 1.4 GW Hornsea 2 wind farm is close to both Killingholme power station and the Uniper web site.

What Will Happen To Shell’s Blue Hydrogen Plant?

I think there are two possible scenarios.

  • It will be closed when Uniper’s electrolyser is fully on stream.
  • It will become an emergency hydrogen source, when the wind is not blowing.

In both cases it will produce less carbon dioxide, thus leaving more space in the Northern Endurance Partnership.

Conclusion

It looks like there could be a comprehensive hydrogen production facility at Killingholme.

 

 

 

 

April 13, 2022 Posted by | Energy, Hydrogen | , , , , , , , , , | Leave a comment

BP Plans To Turn Teesside Into First Green Hydrogen Hub

The title of this post, is the same as that of this article in The Times.

This is the first paragraph.

BP plans to build Britain’s biggest “green hydrogen” facility on Teesside to produce the clean fuel for use in new hydrogen-powered lorries and other transport.

Note.

The plans appear to be ambitious starting with a £100 million investment to build a 60 MW electrolyser by 2025, which would rise to as much as 500 MW by 2030.

The electrolyser will be paired with an upwards of a billion pound one gigawatt facility called H2Teesside, that will produce blue hydrogen.

I think there could be more to this than meets the eye.

Using The Carbon Dioxide Rather than Storing It!

I followed the carbon dioxide pipe from the CF fertiliser plant on Teesside using Google maps after seeing a film about it on the BBC. It goes to the Quorn factory and a massive greenhouse. I do wonder, if BP is talking to other companies, who also have a need for large quantities of good quality carbon dioxide.

One could be an Australian company, called Mineral Carbonation International, who have developed a process to convert carbon dioxide into building products like blocks and plasterboard. MCI won a prize at COP26, so could BP be looking at integrating one of these plants into their complex on Teesside?

The Electrolysers

Will BP be purchasing their electrolysers for green hydrogen from ITM Power in Sheffield?

This press release from ITM Power is entitled 12MW Electrolyser Sale.

The customer is not named, but could this be a starter kit for BP?

Alstom’s Hydrogen Aventras

In Alstom And Eversholt Rail Sign An Agreement For The UK’s First Ever Brand-New Hydrogen Train Fleet, I came to this conclusion.

This modern hydrogen train from Alstom is what is needed.

I also felt there could be three similar trains; electric, battery-electric and hydrogen, which would help operators hedge their bets on what type of traction to use.

Teesside must be one of the more likelier places where the Hydrogen Aventras will be carrying passengers.

I wrote about this possibility in Alstom Hydrogen Aventras And Teesside.

A deal between BP and Alstom would surely be in the interest of both companies.

  • Alstom would get a local hydrogen supply.
  • BP would get a first sale.
  • BP would get excellent publicity and a local demonstration of the possibilities of hydrogen.

It might even be possible to supply the hydrogen by pipeline.

November 29, 2021 Posted by | Finance, Hydrogen, World | , , , , , , , , , , , | 3 Comments

Blue Hydrogen Is Not Clean Energy, Says Mining Tycoon

The title of this post, is the same as that of this article on The Times.

This is the first paragraph.

Producing “blue hydrogen” from natural gas is not a clean energy source and is being wrongly promoted as one by the oil and gas industry, a billionaire mining mogul has claimed.

The mining mogul is Andrew Forrest, who is the second richest person in Australia.

I feel he is only partly right, as there are processes coming through that use a catalyst to split the hydrogen from the carbon.

But like the taxi in the picture at the top of the article with Mr. Forrest, his words are all good publicity.

Incidentally, I do believe that in a few years, we’ll have the technology to use so much carbon dioxide efficiently, that we may see gas-fired power stations used to create both energy and carbon dioxide.

November 6, 2021 Posted by | Energy, Hydrogen | , , , , , , | Leave a comment

Do BP And The Germans Have A Cunning Plan For European Energy Domination?

The headline of this post may be slightly tongue in cheek, but I believe that a plan is being hatched.

Preamble

I’ll start with a preamble, where I’ll outline some of the factors behind what may be happening.

Decarbonisation

It is generally accepted by most people that there is a need to decarbonise everything we do.

And large oil companies like Shell, BP and others are starting to move in the same direction.

Hydrogen

Using hydrogen instead of fossil fuels is becoming one of the major routes to decarbonisation.

Hydrogen can be used for the following.

  • Provide power for cars, buses, trucks, trains, locomotives and ships.
  • Hydrogen can be used in steelmaking instead of coking coal.
  • As a chemical feedstock to make ammonia, fertiliser and a large range of petrochemicals.
  • I believe that hydrogen could be a viable fuel to power aircraft over thousands of miles.

Hydrogen will become the most common zero-carbon fuel.

Hydrogen  And Natural Gas

In many applications hydrogen can replace natural gas, so for large users of natural gas, hydrogen offers a route to decarbonisation.

But hydrogen can also be mixed up to a level of around twenty percent in natural gas for partial decarbonisation of applications like space heating. Most industrial uses, boilers and appliances can be made to work very successfully with this mixture.

I grew up in the 1950s with coal gas, which according to Wikipedia had this composition.

  • hydrogen 50%
  • methane 35%
  • carbon monoxide 10%
  • ethylene 5%
  • When we changed over in the 1970s, all my appliances were converted.

This is the UK government description of natural gas.

It contains primarily methane, along with small amounts of ethane, butane, pentane, and propane. Natural gas does not contain carbon monoxide. The by-products of burning natural gas are primarily carbon dioxide and water vapour. Natural gas is colourless, tasteless and odourless.

As with the conversion from coal-gas to natural gas, conversion from Natural gas to a hydrogen/natural  gas mixture and eventually to hydrogen, will be a relatively painless process.

Note that carbon monoxide is a nasty poison and is not contained in either natural gas or hydrogen.

Green Hydrogen And Electrolysis Of Water

Green hydrogen is hydrogen produced exclusively from renewable energy sources.

Typically green hydrogen is produced by electrolysis of water using electricity produced by hydro, solar, tidal or wind.

The largest factory building electrolysers is owned by ITM Power.

  • It is located in Rotherham.
  • The factory has the capacity to build 1 GW of electrolysers in a year.
  • Typical electrolysers have a capacity of several MW.

Ryze Hydrogen are building an electrolyser at Herne Bay, that  will consume 23 MW of solar and wind power and produce ten tonnes of hydrogen per day.

Blue Hydrogen

‘Blue hydrogen is produced through a production process where carbon dioxide is also produced then subsequently captured via carbon capture and storage. In many cases the carbon dioxide is stored in depleted gas fields, of which we have plenty in the North Sea. Over the last few years, research has been ongoing into using the carbon dioxide. Applications in horticulture and agriculture, carbon structures and sustainable aviation fuel are being developed.

Shell have also developed the Shell Blue Hydrogen Process, where the carbon is extracted from methane as carbon dioxide and then stored or used.

CO2 In Greenhouse Horticulture

This paper from The Netherlands is called CO2 In Greenhouse Horticulture.

Read it and you might believe me, when I say, we’ll eat a lot of carbon in the form of tomatoes, salads and soft fruit. We’ll also buy flowers grown in a carbon-dioxide rich atmosphere.

Hydrogen As An Energy Transfer Medium

Every kilogram of natural gas when it burns releases energy, as it does in your boiler or gas hob. So it transfers energy in the form of gas from the gas well or storage tank to your house.

Electricity can also be transferred from the power station to your house using wires instead of pipes.

Hydrogen is being put forward as a means of transferring energy over hundreds of miles.

  • Electricity is converted to hydrogen, probably using an electrolyser, which would be powered by zero-carbon electricity.
  • The hydrogen is transferred using a steel pipe.
  • At the destination, the hydrogen is either distributed to end-users, stored or used in a gas-fired power station, that has been modified to run on hydrogen, to generate electricity.

It sounds inefficient, but it has advantages.

  • Long underwater cables have energy losses.
  • Electrical connections use a lot of expensive copper.
  • Re-use of existing gas pipes is possible.
  • Oil and gas companies like BP and their contractors have been laying gas pipes on land and under water for decades.

If hydrogen has a problem as an energy transfer medium, it is that it us difficult to liquify, as this statement from Air Liquide illustrates.

Hydrogen turns into a liquid when it is cooled to a temperature below -252,87 °C. At -252.87°C and 1.013 bar, liquid hydrogen has a density of close to 71 kg/m3. At this pressure, 5 kg of hydrogen can be stored in a 75-liter tank.

To transport, larger quantities of hydrogen by ship, it is probably better to convert the hydrogen into ammonia, which is much easier to handle.

The Germans and others are experimenting with using liquid ammonia to power large ships.

Hydrogen As An Energy Storage Medium

The UK has a comprehensive National Transmission System for natural gas with large amounts of different types of storage.

This section of the Wikipedia entry is entitled Natural Gas Storage and lists ten large storage facilities in salt caverns and depleted onshore gas fields. In addition, several depleted offshore gas fields have been proposed for the storage of natural gas. Rough was used successfully for some years.

I can certainly see a network of hydrogen storage sites being developed both onshore and offshore around the UK.

Iceland

With its large amount of hydro-electric and geothermal energy, Iceland can generate much more electricity, than it needs and has been looking to export it.

The UK is probably the only country close enough to be connected to Iceland to buy some of the country’s surplus electricity.

There has been a proposal called Icelink, that would build an electrical interconnector with a capacity of around a GW between Iceland at the UK.

But the project seems to have stalled since I first heard about it on my trip to Iceland in 2014.

Could the engineering problems just be too difficult?

The Waters Around The Northern Parts Of Great Britain

Look at a map of the UK and particularly Great Britain and there is a massive area of water, which is not short of wind.

Between Norway, Denmark, Germany, The Netherlands, the East Coast of England, the Northern Coasts of Scotland and Iceland, there are only a few islands.

  • Faroes
  • Orkney
  • Shetlands

To be complete we probably must include hundreds of oil and gas rigs and platforms and the Dogger Bank.

  • Oil and gas companies probably know most there is to know about these waters.
  • Gas pipelines connect the production platforms to terminals at Sullom Voe and along the East Coast from St. Fergus near Aberdeen to Bacton in Norfolk.
  • Many of the oil and gas fields are coming to the end of their working lives.

I believe that all this infrastructure could be repurposed to support the offshore wind industry.

The Dutch Are Invading The Dogger Bank

The Dogger Bank sits in the middle of the North Sea.

  • It is roughly equidistant from Norway, Denmark, the Netherlands and the UK.
  • The Western part is in UK territorial waters.
  • The Eastern part is mainly in Dutch territorial waters.

On the UK part, the Dogger Bank Wind Farm is being developed.

  • The turbines will be between 78 and 180 miles from the shore.
  • It could have a capacity of up to 5 GW.
  • It would be connected to East Yorkshire or Teesside.

On their side of the Dogger Bank, the Dutch are proposing the North Sea Wind Power Hub.

  • It is a collaboration between the Dutch, Germans, and Danes.
  • There have been reports, that up to 110 GW of turbines could be installed.
  • It will be connected to the Dogger Bank Wind Farm, as well as The Netherlands.

It is also planned that the connections to the Dogger Bank will create another interconnector between the UK and the Continent.

The Shetland Islands

The Shetland Islands are the only natural islands with a large oil and gas infrastructure in the waters to the North of Great Britain.

They have a large gas and oil terminal at Sullom Voe.

  • Oil is transported to the terminal by pipelines and tanker.
  • Oil is exported by tanker.
  • Gas is imported from oil and gas fields to the West of the islands through the West of Shetland Pipeline.
  • The gas-fired Sullom Voe power station provide about 80 MW of power to the islands.

This document on the APSE web site is entitled Future Hydrogen Production In Shetland.

It describes how the Shetland Islands can decarbonise and reposition themselves in the energy industry to be a major producer of hydrogen.

It gives these two facts about carbon emissions in the Shetlands Islands and Scotland.

  • Annual per capita CO2 emissions in the Shetland Islands are 17 tonnes.
  • In Scotland they are just 5.3 tonnes.

By comparison, the UK average is 5.55 and Qatar is 37.29.

Currently, the annual local market for road, marine and domestic fuel calculated
at around £50 million.

These are the objectives of the Shetland’s plan for future hydrogen production.

  • Supply 32TWh of low carbon hydrogen annually, 12% of the expected UK total requirement, by 2050
  • Provide more than 3GW of wind generated electrical power to Shetland, the UK grid, generating green hydrogen and electrification of the offshore oil and gas sector
  • Enable all West of Shetland hydrocarbon assets to be net zero by 2030 and abate 8Mt/year CO2 by 2050
  • Generate £5bn in annual revenue by 2050 and contribute significantly to the UK Exchequer.

They also envisage removing the topsides of platforms, during decommissioning of mature East of Shetland
oil fields and repurposing them for hydrogen production using offshore wind.

That is certainly a powerful set of ambitions.

This diagram from the report shows the flow of electricity and hydrogen around the islands, terminals and platforms.

Note these points about what the Shetlanders call the Orion Project.

  1. Offshore installations are electrified.
  2. There are wind turbines on the islands
  3. Hydrogen is provided for local energy uses like transport and shipping.
  4. Oxygen is provided for the fish farms and a future space centre.
  5. There is tidal power between the islands.
  6. There are armadas of floating wind turbines to the East of the islands.
  7. Repurposed oil platforms are used to generate hydrogen.
  8. Hydrogen can be exported by pipeline to St. Fergus near Aberdeen, which is a distance of about 200 miles.
  9. Hydrogen can be exported by pipeline to Rotterdam, which is a distance of about 600 miles.
  10. Hydrogen can be exported by tanker to Rotterdam and other parts of Europe.

It looks a very comprehensive plan!

The German Problem

Germany has an energy problem.

  • It is a large energy user.
  • It has the largest production of steel in Europe.
  • It prematurely shut some nuclear power stations.
  • About a quarter of electricity in Germany comes from coal. In the UK it’s just 1.2 %.
  • It is very reliant on Russian natural gas.
  • The country also has a strong Green Party.
  • Germany needs a lot more energy to replace coal and the remaining nuclear.
  • It also needs a lot of hydrogen to decarbonise the steel and other industries.

Over the last few months, I’ve written these articles.

Germany seems to have these main objectives.

  • Increase their supply of energy.
  • Ensure a plentiful supply of hydrogen.

They appear to be going about them with a degree of enthusiasm.

BP’s Ambition To Be Net Zero By 2050

This press release from BP is entitled BP Sets Ambition For Net Zero By 2050, Fundamentally Changing Organisation To Deliver.

This is the introductory paragraph.

BP today set a new ambition to become a net zero company by 2050 or sooner, and to help the world get to net zero. The ambition is supported by ten aims

The ten aims are divided into two groups.

Five Aims To Get BP To Net Zero

These are.

  1. Net zero across BP’s operations on an absolute basis by 2050 or sooner.
  2. Net zero on carbon in BP’s oil and gas production on an absolute basis by 2050 or sooner.
  3. 50% cut in the carbon intensity of products BP sells by 2050 or sooner.
  4. Install methane measurement at all BP’s major oil and gas processing sites by 2023 and reduce methane intensity of operations by 50%.
  5. Increase the proportion of investment into non-oil and gas businesses over time.

I would assume that by gas, they mean natural gas.

Five Aims To Help The World Get To Net Zero

These are.

  1. More active advocacy for policies that support net zero, including carbon pricing.
  2. Further incentivise BP’s workforce to deliver aims and mobilise them to advocate for net zero.
  3. Set new expectations for relationships with trade associations.
  4. Aim to be recognised as a leader for transparency of reporting, including supporting the recommendations of the TCFD.
  5. Launch a new team to help countries, cities and large companies decarbonise.

This all does sound like a very sensible policy.

BP’s Partnership With EnBW

BP seemed to have formed a partnership with EnBW to develop offshore wind farms in the UK

Their first investment is described in this press release from BP, which is entitled BP Advances Offshore Wind Growth Strategy; Enters World-Class UK Sector With 3GW Of Advantaged Leases In Irish Sea.

This is the first five paragraphs.

bp and partner EnBW selected as preferred bidder for two highly-advantaged 60-year leases in UK’s first offshore wind leasing round in a decade.

Advantaged leases due to distance from shore, lower grid cost, synergies from scale, and faster cycle time.

Projects expected to meet bp’s 8-10% returns aim, delivering attractive and stable returns and integrating with trading, mobility, and other opportunities.

Annual payments expected for four years before final investment decisions and assets planned to be operational in seven years.

In the past six months bp has entered offshore wind in the UK – the world’s largest market – and the US – the world’s fastest-growing market.

Note.

  1. EnBW are Energie Baden-Wuerttemberg AG, who, according to Wikipedia, are the third largest utilities company in Germany.
  2. It also appears, that EnBW have developed wind farms.

BP have issued this infographic with the press release.

Note.

  1. The lease areas don’t appear to be far from the Morecambe Bay gas field.
  2. The Morecambe Bay gas field is coming to the end of its life.
  3. The Morecambe Bay gas field is connected to the Rampside gas terminal at Barrow-in-Furness.
  4. At peak production 15 % of the UK’s natural gas came from Morecambe Bay.

I just wonder, if there is a cunning plan.

Could the platforms be repurposed to act as electrical hubs for the wind turbines?

  • 3GW of electricity would produce 55 tonnes of hydrogen per day.
  • The hydrogen would be exported to the Rampside gas terminal using the existing pipelines.
  • There may be savings to be made, as HVDC links are expensive.
  • BP either has the engineering to convert the platforms or they know someone who does.
  • Would the industrial complex at Barrow-in-Furnace and the nearby Sellafield complex have a use for all that hydrogen?
  • Or would the hydrogen be used to fuel Lancashire’s buses and trucks on the M6.

It certainly looks to me, that it could be a possibility, to bring the energy ashore as hydrogen.

BP Seeking Second Wind Off Scotland

The title of this section, is the same as that of this article in The Times.

These are the first two paragraphs.

BP is preparing to bid for the rights to build wind farms off Scotland as it signals no let-up in expansion after a £900 million splurge on leases in the Irish Sea.

The London-based oil giant caused waves in February by offering record prices to enter the UK offshore wind market through a Crown Estate auction of seabed leases off England and Wales.

As I said earlier.

  • The Shetland Islands are developing themselves as a giant hydrogen factory.
  • There are pipelines connecting platforms to the Sullom Voe Terminal.
  • There are plans to convert some of the redundant platforms into hydrogen production platforms.
  • The islands will be developing ways to export the hydrogen to the South and Europe.

BP also operates the Schiehallion oil and gas field to the West of the Shetlands, which is connected to the Sullom Voe Terminal by the West of Shetland pipeline.

Could BP and EnBW be coming to the party?

They certainly won’t be arriving empty-handed.

Does BP Have Access To Storage Technology?

I ask this question because both the Morecambe Bay and Shetland leases could be built with co-located depleted gas fields and offshore electrolysers.

So could hydrogen gas be stored in the gas fields?

I think it could be a possibility and would mean that hydrogen would always be available.

Could Iceland Be Connected To Schiehallion Via A Gas Pipeline?

I estimate that Iceland and Schiehallion would be about six hundred miles.

This wouldn’t be the longest undersea gas pipeline in the world as these two are longer.

The Langeled pipeline cost £1.7 billion.

Conclusion

I think there’s more to the link-up between BP and EnBW.

I am fairly certain, that BP are thinking about converting some redundant gas platforms into hubs for wind turbines, which use the electricity to create hydrogen, which is then exported to the shore using existing gas pipelines and onshore terminals.

Could it be said, that BP will be recycling oil and gas platforms?

I feel that the answer is yes! Or at least maybe!

The answer my friend is blowing in the wind!

May 6, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Plans Announced For ‘Low Carbon’ Power Stations In Lincolnshire

The title of this post, is the same as that of this article on the BBC.

This is the introductory paragraph.

Hundreds of jobs could be created after plans were announced to build two “low carbon” power stations in North Lincolnshire.

Last year, I only had one night away from home and that was in Doncaster, from where I explored North East Lincolnshire and wrote Energy In North-East Lincolnshire, where I made a few predictions.

These are my thoughts on my predictions and other points made in the BBC article.

Keadby 1

Keadby 1 is a 734 MW gas-fired power station, that was commissioned in 1996.

Keadby 2

  • Keadby 2 will be a 840 MW gas-fired power station.
  • It will be possible to add Carbon Capture and Storage technology to Keadby 2 to make the plant net-zero carbon.
  • Keadby 2 will be able to run on hydrogen.

Keadby 2 is under construction.

Keadby 3 And Keadby 4

I predicted that two new power stations would be added to the Keadby cluster.

  • When I wrote the other post, SSE were still designing Keadby 3, but had said it would be a 910 MW station.
  • This would mean that Keadby 1, Keadby 2 and Keadby 3 would have a combined capacity of 2484 MW of electricity.
  • Adding a fourth station, which I called Keadby 4, which I proposed to be the same size as Keadby 3 would give a combined capacity of 3394 MW.

This will be more than the planned capacity of the under-construction Hinckley Point C nuclear power station will be able to generate 3200 MW.

The BBC article says this about the plans for Keadby.

One plant would burn natural gas and use carbon capture technology to remove the CO2 from its emissions. The CO2 would then be transported along pipelines before being securely stored in rocks under the North Sea.

The hydrogen power station would produce “zero emissions at the point of combustion”, its developers claimed.

It looks like Keadby will have the power of a Hinckley Point nuclear station, but running on gas.

Carbon Capture And Storage

From what I read on the sseThermal web site and published in Energy In North-East Lincolnshire, it looks like Keadby 2 and Keadby 3 will use carbon capture and storage and Keadby 4 will use hydrogen.

There are plenty of depleted gas fields connected to the Easington terminal that can be used for carbon-dioxide storage.

The Zero Carbon Humber Network

The Zero Carbon Humber is going to be a gas network along the Humber, that will distribute hydrogen to large industrial users and return carbon dioxide for storage under the North Sea.

This map shows the Zero Carbon Humber pipeline layout.

Note.

  1. The orange line is a proposed carbon dioxide pipeline
  2. The black line alongside it, is a proposed hydrogen pipeline.
  3. Drax, Keadby and Saltend are power stations.
  4. Easington gas terminal is connected to around twenty gas fields in the North Sea.
  5. The terminal imports natural gas from Norway using the Langeled pipeline.
  6. The Rough field has been converted to gas storage and can hold four days supply of natural gas for the UK.

I can see this network being extended, with some of the depleted gas fields being converted into storage for natural gas, hydrogen or carbon dioxide.

Enter The Vikings

This article on The Times is entitled SSE and Equinor’s ‘Blue Hydrogen’ Power Plant Set To Be World First.

This is the introductory paragraph.

The world’s first large-scale power station to burn pure hydrogen could be built in Britain this decade by SSE and Equinor to generate enough low-carbon energy to supply more than a million homes.

This second paragraph explains the working of the production of the blue hydrogen.

The proposed power station near Scunthorpe would burn “blue hydrogen”, produced by processing natural gas and capturing and disposing of waste CO2 in a process that has low but not zero emissions. Equinor is already working on plans for a blue hydrogen production facility at Saltend in the Humber.

This may seem to some to be a wasteful process in that you use energy to produce blue hydrogen from natural gas and then use the hydrogen to generate power, but I suspect there are good reasons for the indirect route.

I believe that green hydrogen will become available from the North Sea from combined wind-turbine electrolysers being developed by Orsted and ITM Power, before the end of the decade.

Green hydrogen because it is produced by electrolysis will have less impurities than blue hydrogen.

Both will be zero-carbon fuels.

According to this document on the TNO web site, green hydrogen will be used for fuel cell applications and blue hydrogen for industrial processes.

Blue hydrogen would be able to power Keadby 2, 3 and 4.

I can see a scenario where Equinor’s blue hydrogen will reduce the price of hydrogen steelmaking and other industrial processes. It will also allow the purer and more costly green hydrogen to be reserved for transport and other fuel cell applications.

Using The Carbon Instead Of Storing

The document on the TNO web site has this surprising paragraph.

Hydrogen produced from natural gas using the so-called molten metal pyrolysis technology is called ‘turquoise hydrogen’ or ‘low carbon hydrogen’. Natural gas is passed through a molten metal that releases hydrogen gas as well as solid carbon. The latter can find a useful application in, for example, car tyres. This technology is still in the laboratory phase and it will take at least ten years for the first pilot plant to be realised.

This technical paper is entitled Methane Pyrolysis In A Molten Gallium Bubble Column Reactor For Sustainable Hydrogen Production: Proof Of Concept & Techno-Economic Assessment.

This may be a few years away, but just imagine using the carbon dioxide from power stations and industrial processes to create a synthetic rubber.

But I believe there is a better use for the carbon dioxide in the interim to cut down the amount that goes into long-term storage, which in some ways is the energy equivalent of landfill except that it isn’t in the least way toxic, as carbon-dioxide is one of the most benign substances on the planet.

Lincolnshire used to be famous for flowers. On a BBC Countryfile program a couple of weeks ago, there was a feature on the automated growing and harvesting of tulips in greenhouses.

There are references on the Internet to  of carbon dioxide being fed to flowers in greenhouses to make them better flowers.

So will be see extensive building of greenhouses on the flat lands of Lincolnshire growing not just flowers, but soft fruits and salad vegetables.

Conclusion

The plans of SSE and Equinor as laid out in The Times and the BBC could create a massive power station cluster.

  • It would be powered by natural gas and hydrogen.
  • Blue hydrogen will be produced by an efficient chemical process.
  • Green hydrogen will be produced offshore in massive farms of wind-turbine/electrolysers.
  • It would generate as much electricity as a big nuclear power station.
  • All carbon-dioxide produced would be either stored or used to create useful industrial products and food or flowers in greenhouses.

Do power stations like this hasten the end of big nuclear power stations?

Probably, until someone finds a way to turn nuclear waste into something useful.

 

April 9, 2021 Posted by | Energy, Hydrogen | , , , , , , , , , , , , | Leave a comment

BP Investigates Potential Of Largest Blue Hydrogen Plant In The United Kingdom

The title of this post, is the same as that of this article on Hydrogen Fuel News.

Some points from the article.

  • A feasibility study is being conducted and a decision will be made 2024.
  • It would be the largest such fascility in the UK.
  • It will be located in the North East of England and called H2Teesside.
  • It could create enough hydrogen to heat a million homes.
  • It would use carbon capture technology.
  • It would have a 1 GW production capacity by 2030.

This project should be gauged alongside the Government’s goal of 5 GW of hydrogen capacity by 2030.

This is the last paragraph.

The goal of the introduction of the H2 is to make it easier for residential and industrial customers to use their existing gas connections to decarbonise.

As an example of the things that will happen, last night, I read of a proposal to power hydrogen buses, using hydrogen delivered through the current gas mains.

I wouldn’t be surprised to see a hydrogen filling system, that could be built into your drive or garage, so you can refuel your hydrogen car.

March 24, 2021 Posted by | Hydrogen | , , , , | Leave a comment