The Anonymous Widower

Data Centre In The Shed Reduces Energy Bills To £40

The title of this post, is the same as that of this article on the BBC.

This is the sub-heading.

An Essex couple have become the first people in the country to trial a scheme that sees them heat their home using a data centre in their garden shed.

These three introductory paragraphs add some detail.

Terrence and Lesley Bridges have seen their energy bills drop dramatically, from £375 a month down to as low as £40, since they swapped their gas boiler for a HeatHub – a small data centre containing more than 500 computers.

Data centres are banks of computers which carry out digital tasks. As the computers process data, they generate lots of heat, which is captured by oil and then transferred into the Bridges’ hot water system.

Mr Bridges, 76, says keeping his two-bed bungalow near Braintree warm was a necessity as his wife has spinal stenosis and is in “a lot of pain” when it gets colder.

I think this simple idea is absolutely brilliant and very technically sound.

Here are some further thoughts.

It Would Be Ideal For A House Like Mine

My house is a modern three-bedroomed house with a garage and when I asked Google AI how many UK houses had garages, I received this answer.

Approximately 38% of dwellings in England have a garage, according to a 2020 report. While a specific UK-wide figure is not available, extrapolating this percentage to the total number of UK dwellings suggests there are over 10 million houses with garages, though the actual figure may vary across different regions.

Looking at the picture in the BBC article, I feel that this HeatHub could fit in my house.

I would expect that any house with a garage, a small garden or a big enough boiler space could accommodate a HeatHub.

Obviously, the house would need.

  • A boiler, that provides heating and hot water.
  • A good broadband connection.

My house has both.

Would My House’s Heating System Need To Be Modified?

It looks like it’s just a boiler replacement, so I don’t think so, but it may need to be moderbnised with digital controllers to get the best out of the system.

Will There Be Other Systems Like Thermify’s Heat Hub?

Some of our electricity suppliers seem very innovative and the market is very competitive.

Would they just sit back and let coompetitors take their customers? I doubt it!

So I suspect there will be other systems, each with their own features.

I have already, written about heata, which uses similar principles to give affordable hot water in British Gas Partners With heata On Trial To Reuse Waste Heat From Data Processing.

The BBC article gives some examples of data centres used to provide heating, so it is worth reading the full article.

 

 

November 16, 2025 Posted by | Artificial Intelligence, Computing, Energy | , , , , , | 2 Comments

Can A Broken Humerus Affect Your Hand And Wrist Long Term?

Sixty-four years ago, my left humerus was broken at school and I don’t think the local hospital fixed it too well. I also don’t think I had the best of physiotherapy, after some of my experiences with physios since my stroke, which have been of a generally very high-quality, from both the NHS and private physiotherapists.

The wrist has not been misbehaving itself recently, so I asked Google AI, the question in the title of this post and received this reply.

Yes, a broken humerus can affect your hand and wrist long-term, especially if a nerve like the radial nerve is injured during the fracture or surgery. This can cause temporary issues like wrist drop, which is the inability to extend the wrist and fingers, often improving with therapy. In rare cases, if nerve recovery is incomplete, surgical procedures may be necessary to restore function, though most fractures have an excellent long-term outlook with proper rehabilitation.

Note.

  1. I certainly didn’t have proper rehabilitation in 1961 at Highlands Hospital in Winchmore Hill.
  2. I wonder if I have actually suffered from wrist drop in recent years.
  3. I suspect that now there are better treatments available.

Google seem to have scraped the article from the respectable Cleveland Clinic.

Why Has My Left Humerus Got Worse In The Last Few Months?

I wonder, if it is new BYD buses on route 141.

  • I always sit or stand downstairs, as at 78, I don’t want too risk climbing the stairs.
  • The buses are more pokey and the seats are narrower than say a Routemaster or other British bus.
  • On Routemasters and other British buses, I usually sit on the far-right seat to protect the humerus.
  • It is getting increasingly knocked if I sit in the left-hand seat of a right-sided pair, by peoples’ backpacks.
  • The seats are narrow on the BYD buses, and if sitting in a left-hand seat of a left-sided pair, my left humerus rubs  against the outside wall of the bus. This is worse with a large person in the right seat.
  • If I sit in the right-hand seat of a left-sided pair, it’s usually better, but if there’s a large person in the left seat, because of the narrow seats, the arm get knocked.
  • On the BYD buses, there are no forward facing seats downstairs on the right side.
  • There are some forward facing seats at the right side at the back, but they are difficult for me to climb into.
  • The corridor from the front to the back in the bus is narrow and I sometimes bump the left humerus.
  • I met a lady with a pram, who finds the corridor narrow for her pram.
  • The step-up and down into the bus is higher and puts strain on my knees, unless I get it right.

I do wonder if the BYD buses were designed around smaller oriental people.

I certainly never had these problems, when I was riding on on Routemasters and other British-designed buses.

For the next few works, I will avoid travelling on the BYD buses unless I can sit in the right-hand seat of a pair, by myself.

I can also stand, if the bus isn’t too full. Looking back, I feel, I don’t mind standing on the buses.

I will now be forwarding this post to those that know me well.

November 15, 2025 Posted by | Artificial Intelligence, Design, Health | , , , , , , | Leave a comment

Why Is The Highway Code Only A Code And Not A Law?

If you ask Google AI, the question in the title of this post, you receive this answer.

The Highway Code is not a law in itself, but a collection of rules and guidance for all road users. While it contains some legally enforceable rules (marked with “MUST” or “MUST NOT”), and breaking them is a criminal offence, it also includes non-binding advice. The “code” serves as an authoritative source of information, making it easier for people to understand the law and helping courts to establish liability by using the advisory rules as evidence of a standard of expected behaviour.

So why is it just a collection of rules and guidance?

Coming home yesterday on a bus, a smartly-dressed elderly lady sat next to me and we got talking.

Something must have triggered it, as she told me why the Highway Code was just a code and not a law.

Apparently, her father had written it and he had insisted that it should not be made into law and the government of the day in 1931 had agreed he  should have his way.

I asked Google AI, who actually wrote it and received this answer.

The Highway Code was written by the UK government, with the first edition published in 1931 under the authority of the then Minister of Transport, Herbert Morrison. The code was created as a result of the Road Traffic Act 1930, which required the Minister of Transport to issue the guide for all road users.

It looks like as Herbert Morrison’s daughter has passed on, he didn’t write the Code himself.

November 14, 2025 Posted by | Artificial Intelligence, Transport/Travel | , , , , | Leave a comment

EV Owners To Pay London Congestion Charge From January 2026

The title of this post, is the same as that of this article in The Times.

I asked, Google AI, who will pay the Congestion Charge and received this answer.

Most drivers of petrol or diesel vehicles must pay the London Congestion Charge when driving within the central zone during charging hours. Exemptions apply to those with specific vehicles, such as motorcycles, emergency vehicles, and breakdown service vehicles, as well as individuals with disabilities who have a Blue Badge and are in the “disabled” tax class. Some groups, like residents who applied before August 2020, also receive a significant discount.

Note that the Congestion Charge will increase from £15 a day to £18 a day on January 2.

I can’t see the Labour Party winning the next London elections.

November 13, 2025 Posted by | Artificial Intelligence, Transport/Travel | , , , , , , | 2 Comments

Great Yarmouth Terminal Set For Redevelopment Under Port Of East Anglia Name

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

The UK’s Peel Ports Group has decided to invest a further GBP 10 million (approximately EUR 11.3 million) into its Great Yarmouth site, which is being rebranded as the Port of East Anglia.

These four paragraphs add details to the story.

The newly announced GBP 10 million brings this year’s total investment to GBP 70 million across the site and will be used to redevelop the port’s Northern Terminal, helping to accommodate the next generation of offshore wind projects across the region, according to Peel Ports.

Earlier this year, a substantial investment into its Southern Terminal was announced by the port, which has earmarked GBP 60 million to transform capacity and improve efficiencies.

This involves ensuring the port can support multiple hydrogen, carbon capture, offshore wind, and nuclear projects for decades to come.

Its existing terminals service a variety of construction customers, including infrastructure projects such as Sizewell C and offshore energy projects based in the southern North Sea.

Note.

  1. In Yarmouth Harbour To Be ‘Completed’ In £60m Project, I talk about the work to be done on the Southern Terminal.
  2. The work on the Southern Terminal includes a roll-on roll-off (RORO) lift ramp and a large storage area.
  3. Start on the work on the Southern Terminal will start in 2026.

With all the construction work mentioned in the last two paragraphs, I suspect that the Port of Great Yarmouth will be busy?

These are some further thoughts.

Why Is The Port Of Great Yarmouth Being Renamed?

The article says this.

The new name, which will come into effect in early 2026, also aligns with the creation of a new combined authority for Suffolk and Norfolk, according to Peel Ports.

Peel Ports name change is fairly sensible, but as I was conceived in Suffolk and I’m an Ipswich Town supporter, I don’t feel that the two counties should be merged.

 

Does The Mention Of Hydrogen Mean That The Port Of Great Yarmouth Will Be Hosting A Hydrogen Electrolyser, To Fuel Trucks And Ships?

I asked Google AI, “If A Hydrogen Electrolyser is To Be Built In The Port Of Great Yarmouth?”, and received this answer.

While there are no current public plans for an immediate construction of a large-scale hydrogen electrolyser within the Port of Great Yarmouth, significant port expansion and infrastructure upgrades are underway to ensure it can support future hydrogen projects and related clean energy initiatives.

Note.

  1. If technology to handle hydrogen, is copied from North Sea gas, there is certainly a lot of proven technology that can be used again.
  2. There may even be depleted gas fields, where captured carbon dioxide, hydrogen or North Sea gas can be stored.

I find the most exciting thing, would be to send hydrogen to Germany.

Why Would Anybody Export Hydrogen To Germany?

I asked Google AI, the question in the title of this section and received this answer.

Countries would export hydrogen to Germany because Germany has a large, growing demand for hydrogen to power its heavily industrialised economy and achieve its decarbonisation goals, but lacks sufficient domestic renewable energy capacity to produce the required amounts.

Germany also, uses a lot of bloodstained Russian gas and indigenous polluting coal.

How Could Anybody Export Hydrogen To Germany?

  1. Wilhelmshaven is one of the main import ports for hydrogen in North West Germany.
  2. Great Yarmouth is probably the closest larger port to Germany.
  3. Great Yarmouth and Wilhelmshaven are probably about 300 miles apart, by the shortest route.
  4. Great Yarmouth would need to build infrastructure to export hydrogen.

The easiest way to transport the hydrogen from Great Yarmouth to Wilhelmshaven, is probably to use a gas tanker built especially for the route.

This Google Map shows the route between Great Yarmouth and Wilhelmshaven.

 

Note.

  1. The North-East corner of East Anglia with Great Yarmouth to the North of Lowestoft, is in the bottom-left corner of the map.
  2. Wilhelmshaven is a few miles inland in the top-right corner of the map.
  3. Could a coastal tanker go along the Dutch and German coasts to Wilhelmshaven?

I have no skills in boats, but would Great Yarmouth to Wilhelmshaven to take hydrogen to Germany?

RWE Are Developing Three Wind Farms To The North-East of Great Yarmouth

RWE are a large German Electricity company and the UK’s largest generator of electricity.

The company is developing three wind farms to the North-East of Great Yarmouth.

  • Norfolk Boreas – 1.2 GW – 45 miles offshore
  • Norfolk Vanguard West – 1.2 GW – 29 miles offshore
  • Norfolk Vanguard East – 1.2 GW – 28 miles offshore

Note.

  1. The electricity for all three wind farms is to be brought ashore at Happisburgh South, which is about 22 miles North of Great Yarmouth.
  2. The original plan was to take the electricity halfway across Norfolk to the Necton substation to connect to the grid.
  3. The natives will not be happy about a 4.2 GW overhead line between Happisburgh and Necton.
  4. RWE have built offshore electrolysers before in German waters.
  5. Could an electrical cable or a hydrogen pipe be laid in the sea between Happisburgh South and the Port of Great Yarmouth?
  6. The electrolyser could either be offshore at Happisburgh or onshore in the Port of Great Yarmouth.

As I don’t suspect these three wind farms will be the last connected to the Port of Great Yarmouth, I would expect that RWE will put the electrolyser offshore at Happisburgh  and connect it by a hydrogen pipeline to the Port of Great Yarmouth.

Could There Be A Connection To The Bacton Gas Terminal?

Consider.

The Bacton Gas Terminal, which feeds gas into the UK Gas Network, is only 4.2 miles up the coast from Happisburgh South.

Some climate scientists advocate blending hydrogen into the gas supply to reduce carbon emissions.

In Better Than A Kick In The Teeth – As C Would Say!, I disclosed that I now have a new hydrogen-ready boiler, so I’m not bothered, if I get changed to a hydrogen blend.

So could hydrogen from the Norfolk wind farms be fed into the grid to reduce carbon emissions?

Could The Port Of Great Yarmouth Become A Hydrogen Distribution Centre?

Thinking about it, the port could also become a distribution centre for green hydrogen.

Consider.

  • Hydrogen-powered ships, tugs and workboats could be refuelled.
  • Hydrogen-powered trucks could also be refuelled.
  • Tanker-trucks could distribute hydrogen, to truck and bus operators, farms and factories, that need it for their transport and operations.
  • I believe, that construction equipment will be increasingly hydrogen-powered.

In my life, I have lived at times in two country houses, that were heated by propane and there are about 200,000 off-grid houses in the UK, that are heated this way.

The two houses, where I lived would have been a nightmare to convert to heat pumps, but it would have been very easy to convert them to a hydrogen boiler and power it from a tank in the garden.

It should be noted, that the new boiler in my house in London is hydrogen-ready.

So the Port of Great Yarmouth could be the major centre for hydrogen distribution in Norfolk.

In the 1960s, I used to work in ICI’s hydrogen plant at Runcorn. If you ride in a hydrogen bus in England, it is likely that the hydrogen came from the same plant. Handled correctly, hydrogen is no less safe and reliable than natural gas or propane.

 

 

 

 

October 31, 2025 Posted by | Artificial Intelligence, Energy, Energy Storage | , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Rolls-Royce Successfully Tests First Pure Methanol Marine Engine – Milestone For More Climate-Friendly Propulsion Solutions

The title of this post, is the same as that of this press release from Rolls-Royce.

These four bullet points act as sub-headings.

  • World first: first high-speed 100 percent methanol engine for ships successfully tested
  • Cooperation: Rolls-Royce, Woodward L’Orange and WTZ Roßlau are developing sustainable propulsion technology in the meOHmare research project
  • Green methanol: CO2-neutral, clean and safe marine fuel
  • Dual-fuel engines as a bridging technology on the road to climate neutrality

Rolls-Royce has successfully tested the world’s first high-speed marine engine powered exclusively by methanol on its test bench in Friedrichshafen. Together with their partners in the meOHmare research project, Rolls-Royce engineers have thus reached an important milestone on the road to climate-neutral and environmentally friendly propulsion solutions for shipping.

“This is a genuine world first,” said Dr. Jörg Stratmann, CEO of Rolls-Royce Power Systems AG. “To date, there is no other high-speed engine in this performance class that runs purely on methanol. We are investing specifically in future technologies in order to open up efficient ways for our customers to reduce CO2 emissions and further expand our leading role in sustainable propulsion systems.”

Rolls-Royce’s goal is to offer customers efficient ways to reduce their CO2 emissions, in-line with the ‘lower carbon’ strategic pillar of its multi-year transformation programme. The project also aligns with the strategic initiative in Power Systems to grow its marine business.

These are some questions.

Why Methanol?

Rolls-Royce answer this question in the press release.

Green methanol is considered one of the most promising alternative fuels for shipping. If it is produced using electricity from renewable energies in a power-to-X process, its operation is CO2-neutral. Compared to other sustainable fuels, methanol is easy to store, biodegradable, and causes significantly fewer pollutants.

“For us, methanol is the fuel of the future in shipping – clean, efficient, and climate-friendly. It burns with significantly lower emissions than fossil fuels and has a high energy density compared to other sustainable energy sources,” said Denise Kurtulus.

Note that Denise Kurtulus is Senior Vice President Global Marine at Rolls-Royce.

Could Methanol-Powered Engines Be Used In Railway Locomotives?

Given, there are hundreds of railway locomotives, that need to be decarbonised, could this be handled by a change of fuel to methanol?

I asked Google AI, the question in the title of this section and received the following answer.

Yes, methanol-powered engines can be used in railway locomotives, but they require a modification like high-pressure direct injection (HPDI) technology to be used in traditional compression ignition (CI) diesel engines. These modified engines typically use methanol as the primary fuel with a small amount of diesel injected to act as a pilot fuel for ignition, a process known as “pilot ignition”. Research and simulations have shown that this approach can achieve performance and thermal efficiencies close to those of standard diesel engines

From the bullet points of this article, it looks like Rolls-Royce have this pilot ignition route covered.

How Easy Is Methanol To Handle?

Google AI gave this answer to the question in the title of this section.

Methanol is not easy to handle safely because it is a highly flammable, toxic liquid that can be absorbed through the skin, inhaled, or ingested. It requires rigorous safety measures, proper personal protective equipment (PPE), and good ventilation to mitigate risks like fire, explosion, and severe health consequences, including blindness or death.

It sounds that it can be a bit tricky, but then I believe with the right training much more dangerous chemicals than methanol can be safety handled.

How Easy Is Green Methanol To Produce?

Google AI gave this answer to the question in the title of this section.

Producing green methanol is not easy; it is currently more expensive and capital-intensive than traditional methods due to high production costs, feedstock constraints, and the need for specialized infrastructure. However, new technologies are making it more feasible, with methods that combine renewable energy with captured carbon dioxide and renewable hydrogen to synthesize methanol.

Production methods certainly appear to be getting better and greener.

Which Companies Produce Methanol In The UK?

Google AI gave this answer to the question in the title of this section.

While there are no major, existing methanol production companies in the UK, Proman is planning to build a green methanol plant in the Scottish Highlands, and other companies like Wood PLC and HyOrc are involved in the engineering and construction of methanol production facilities in the UK. Several UK-based companies also act as distributors or suppliers for products, such as Brenntag, Sunoco (via the Anglo American Oil Company), and JennyChem.

It does appear, that we have the capability to build methanol plants and supply the fuel.

How Is Green Methanol Produced?

Google AI gave this answer to the question in the title of this section.

Green methanol is produced by combining carbon dioxide  and hydrogen under heat and pressure, where the hydrogen is created using renewable electricity and the carbon dioxide is captured from sustainable sources like biomass or industrial emissions. Two main pathways exist e-methanol uses green hydrogen and captured carbon dioxide, while biomethanol is made from the gasification of biomass and other organic waste. 

Note.

  1. We are extremely good at producing renewable electricity in the UK.
  2. In Rolls-Royce To Be A Partner In Zero-Carbon Gas-Fired Power Station In Rhodesia, I discuss how carbon dioxide is captured from a power station in Rhodesia, which is a suburb of Worksop.

In the Rhodesia application, we have a Rolls-Royce mtu engine running with carbon-capture in a zero-carbon manner, producing electricity and food-grade carbon-dioxide, some of which could be used to make methanol to power the Rolls-Royce mtu engines in a marine application.

I am absolutely sure, that if we need green methanol to power ships, railway locomotives  and other machines currently powered by large diesel engines, we will find the methods to make it.

What Are The Green Alternatives To Methanol For Ships?

This press release from Centrica is entitled Investment in Grain LNG, and it gives hints as to their plans for the future.

This heading is labelled as one of the key highlights.

Opportunities for efficiencies to create additional near-term value, and future development options including a combined heat and power plant, bunkering, hydrogen and ammonia.

Bunkering is defined in the first three paragraphs of its Wikipedia entry like this.

Bunkering is the supplying of fuel for use by ships (such fuel is referred to as bunker), including the logistics of loading and distributing the fuel among available shipboard tanks. A person dealing in trade of bunker (fuel) is called a bunker trader.

The term bunkering originated in the days of steamships, when coal was stored in bunkers. Nowadays, the term bunker is generally applied to the petroleum products stored in tanks, and bunkering to the practice and business of refueling ships. Bunkering operations take place at seaports and include the storage and provision of the bunker (ship fuels) to vessels.

The Port of Singapore is currently the largest bunkering port in the world. In 2023, Singapore recorded bunker fuel sales volume totaling 51,824,000 tonnes, setting a new industry standard.

Note.

  1. After Rolls-Royce’s press release, I suspect that methanol should be added to hydrogen and ammonia.
  2. I don’t think Centrica will be bothered to supply another zero-carbon fuel.
  3. I can see the Isle of Grain providing a lot of fuel to ships as they pass into London and through the English Channel.
  4. Centrica have backed HiiROC technology, that makes hydrogen efficiently.

I can see the four fuels ammonia, hydrogen, LNG and methanol competing with each other.

What Are The Green Alternatives To Methanol For Railway Locomotives?

The same fuels will be competing in the market and also Hydrotreated Vegetable Oil (HVO) will be used.

October 28, 2025 Posted by | Transport/Travel, Hydrogen, Artificial Intelligence | , , , , , , , , , , , | Leave a comment

I’ve Just Had An MRI Scan And I’ve Got A Pain In My Foot

I will try and use the AI functions of Google to make some sense of the title of this post.

These are the questions I asked.

Why Is My Left Foot Painful After An MRI Scan Of My Brain?

Google gave this AI Overview.

A foot pain after a brain MRI is likely unrelated to the scan itself. MRI scans are not known to cause pain in extremities, though some patients may experience temporary discomfort from having to lie still for an extended period. It’s more probable that the pain is coincidental, or due to another underlying issue unrelated to the MRI, such as a pre-existing condition or new injury.

Note.

  1. It is a hot day.
  2. I did a fair bit of walking to get to and from the MRI Scan.
  3. I don’t think it was lying still for an extended period.
  4. I felt a bit dehydrated after the scan.

Overall, my left foot is occasionally in pain and red. Certainly more often than my right! It doesn’t appear to be red today.

Can An MRI Scan Make You Dehydrated?

Google gave this AI Overview.

While MRI scans themselves don’t cause dehydration, staying well-hydrated is important, especially if contrast dye is used. Drinking plenty of fluids after an MRI with contrast helps flush the dye out of your system. Though dehydration can occur naturally, it’s not a direct effect of the MRI itself.

I didn’t have any dye.

But I was desperate for a drink, so I went into the first cafe, that I passed and had a coffee and cake.

Can An MRI Scan Stimulate Blood Flow?

Google gave this AI Overview.

While MRI machines don’t directly stimulate blood flow in the sense of causing it to increase, they can visualize and measure blood flow. Functional MRI (fMRI) specifically detects changes in blood flow related to brain activity as the brain uses more oxygen in active areas, leading to increased blood flow to those areas. Standard MRI can also be used to visualize blood vessels and assess blood flow, but it doesn’t directly cause the flow to change.

As I have now changed my shoes and socks to my slippers and the pain has disappeared, I suspect it was the new shoes.

I wrote this post, to show the quality of the answers of artificial intelligence to simple medical questions.

From my knowledge of data analysis, I suspect there’s much more to come with medical diagnosis using AI. Especially, if you login to a medical diagnosis computer system, that has details of your medical history.

I always remember my first B12 injection, after I had been diagnosed with coeliac disease.

October 27, 2025 Posted by | Artificial Intelligence, Computing, Health | , | Leave a comment

UK’s Largest Solar Plant Cleve Hill Supplying Full Power To The Grid

The title of this post, is the same as that of this article on the Solar Power Portal.

This is the sub-heading.

Quinbrook Infrastructure Partners has completed construction and started commercial operations of the 373MW Cleve Hill Solar Park, now the largest operational in the UK.

Note.

  1. According to Quinbrook, during the commissioning phase in May, electricity exports from Cleve Hill peaked at a level equivalent to 0.7% of the UK’s national power demand.
  2. Construction of the 373 MW solar project began in 2023, and Quinbrook said construction is now underway on a 150 MW co-located battery energy storage system (BESS).
  3. The gas-fired power stations at Coolkeeragh, Corby, Enfield, Great Yarmouth and Shoreham are all around 410-420 MW for comparison.
  4. On completion of the BESS, Cleve Hill will go from the largest solar plant in the UK to the largest co-located solar plus storage project constructed in the UK.
  5. The solar and storage plant was the first solar power project to be consented as a nationally significant infrastructure project (NSIP) and is supported by the largest solar + BESS project financing undertaken in the UK.

This Google Map shows the location of the solar farm with respect to Faversham.

Note.

The town of Faversham to the left of the middle of the map.

Faversham station has the usual railway station logo.

The North Kent coast is at the top of the map.

Cleve Hill Solar Park is on the coast to the East of the River  Swale.

This second Google Map shows a close up of the solar farm.

Note.

  1. The large number of solar panels.
  2. The North Kent coast is at the top of the map.
  3. The River Swale in the South-West corner of the map.
  4. It appears that Cleve Hill substation is at the right edge of the map.
  5. The boxes at the left of the substation appear to be the batteries.
  6. The 630 MW London Array wind farm, which has been operational since 2013, also connects to the grid at Cleeve Hill substation.
  7. When completed, the London Array was the largest offshore wind farm in the world.

As a Control Engineer, I do like these Battery+Solar+Wind power stations, as they probably provide at least a reliable 500 MW electricity supply.

Could A System Like Cleeve Hill Solar Park Replace A 410 MW Gas-Fired Power Station?

The three elements of Cleeve Hill are as follows.

  • Solar Farm – 373 MW
  • BESS – 150 MW
  • Wind Farm – 630 MW

That is a total of only 1,153 MW, which means a capacity factor of only 35.6 % would be needed.

How Much Power Does A Large Solar Roof Generate?

Some people don’t like solar panels on farmland, so how much energy  do solar panels on a warehouse roof generate?

This Google Map shows Amazon’s warehouse at Tilbury.

I asked Google AI to tell me about Amazon’s solar roof at Tilbury and it said this.

Amazon’s solar roof at the Tilbury fulfillment center is the largest rooftop solar installation at any Amazon site in Europe, featuring 11,500 panels across the two-million-square-foot roof. Unveiled in 2020, it is part of Amazon’s larger goal to power its operations with 100% renewable energy by 2025 and reduce its emissions, contributing to its Climate Pledge to be net-zero carbon by 2040.

It generates 3.4 MW, which is less that one percent of Cleeve Hill Solar Park.

 

 

October 27, 2025 Posted by | Artificial Intelligence, Energy, Energy Storage | , , , , , , , , | 2 Comments

NSTA Gives 1.1bn Barrel Boost To North Sea Oil Reserve Estimates

The title of this post, is the same as that of an article on Energy Voice.

As I don’t have access to Energy Voice articles, I asked Google AI what it can tell me of North Sea oil and gas reserves boost and received this answer.

North Sea oil and gas reserves have increased by 1.1 billion barrels, driven by new licensing rounds, with the North Sea Transition Authority (NSTA) reporting a 31% rise in potential resources. This boost could significantly impact the UK’s energy security and economy by potentially allowing the UK to meet half its oil and gas needs and support jobs. However, this development occurs alongside political debate over new drilling licenses and the UK’s Net Zero targets.

These are my thoughts.

Am I Using AI To Get Round The Paywall?

Some may argue that I am, but then as my tame and pleasureable lawyer has passed on, I shall leave this question to Google’s lawyers.

Although in the 1970s, I will admit to spending hours in libraries finding data and algorithms for the solution of these problems.

  • The understanding of the dynamics of the sulphonation reaction, which may have led to a valuable patent.
  • The linking between datasets, which may have led to the first relational database.

My searches these days, would be a lot easier with artificial intelligence.

A 31% Rise Is Very Worthwhile

This article in the Telegraph also looks at the NSTA report and these are three paragraphs.

Martin Copeland, the chief financial officer at Serica Energy, a North Sea oil and gas producer, said: “This NSTA report shows that there at least 11 billion barrels of oil and gas which could still be developed in the North Sea.

“This almost meets the amount that the Climate Change Committee says we will need before the net zero target year of 2050 of 13 billion to 15 billion barrels.

“So with the right policy changes and tax regime, the UK could effectively be self-sufficient on the oil and gas it will need and would otherwise have to import.”

The rise must surely be very worthwhile for the UK.

October 20, 2025 Posted by | Artificial Intelligence, Computing, Energy | , , | Leave a comment

How Will The UK Power All These Proposed Data Centres?

On Wednesday, a cardiologist friend asked me if we have enough power to do Trump’s UK AI, so I felt this post might be a good idea.

Artificial Intelligence Gave This Answer

I first asked Google AI, the title of this post and received this reply.

The UK will power proposed data centres using a mix of grid-supplied low-carbon electricity from sources like offshore wind and through on-site renewable generation, such as rooftop solar panels. Data centre operators are also exploring behind-the-meter options, including battery storage and potential future nuclear power, to meet their significant and growing energy demands. However, the UK’s grid infrastructure and high energy prices present challenges, with industry calls for grid reform and inclusion in energy-intensive industry support schemes to facilitate sustainable growth.

Google also pointed me at the article on the BBC, which is entitled Data Centres To Be Expanded Across UK As Concerns Mount.

This is the sub-heading.

The number of data centres in the UK is set to increase by almost a fifth, according to figures shared with BBC News.

These are the first three paragraphs.

Data centres are giant warehouses full of powerful computers used to run digital services from movie streaming to online banking – there are currently an estimated 477 of them in the UK.

Construction researchers Barbour ABI have analysed planning documents and say that number is set to jump by almost 100, as the growth in artificial intelligence (AI) increases the need for processing power.

The majority are due to be built in the next five years. However, there are concerns about the huge amount of energy and water the new data centres will consume.

Where Are The Data Centres To Be Built?

The BBC article gives this summary of the locations.

More than half of the new data centres would be in London and neighbouring counties.

Many are privately funded by US tech giants such as Google and Microsoft and major investment firms.

A further nine are planned in Wales, one in Scotland, five in Greater Manchester and a handful in other parts of the UK, the data shows.

While the new data centres are mostly due for completion by 2030, the biggest single one planned would come later – a £10bn AI data centre in Blyth, near Newcastle, for the American private investment and wealth management company Blackstone Group.

It would involve building 10 giant buildings covering 540,000 square metres – the size of several large shopping centres – on the site of the former Blyth Power Station.

Work is set to begin in 2031 and last for more than three years.

Microsoft is planning four new data centres in the UK at a total cost of £330m, with an estimated completion between 2027 and 2029 – two in the Leeds area, one near Newport in Wales, and a five-storey site in Acton, north-west London.

And Google is building a data centre in Hertfordshire, an investment worth £740m, which it says will use air to cool its servers rather than water.

There is a map of the UK, with dots showing data centres everywhere.

One will certainly be coming to a suitable space near you.

Concerns Over Energy Needs

These three paragraphs from the BBC article, talk about the concerns about energy needs.

According to the National Energy System Operator, NESO, the projected growth of data centres in Great Britain could “add up to 71 TWh of electricity demand” in the next 25 years, which it says redoubles the need for clean power – such as offshore wind.

Bruce Owen, regional president of data centre operator Equinix, said the UK’s high energy costs, as well as concerns around lengthy planning processes, were prompting some operators to consider building elsewhere.

“If I want to build a new data centre here within the UK, we’re talking five to seven years before I even have planning permission or access to power in order to do that,” he told BBC Radio 4’s Today programme.

But in Renewable Power By 2030 In The UK, I calculated that by 2030 we will add these yearly additions of offshore wind power.

  • 2025 – 1,235 MW
  • 2026 – 4,807 MW
  • 2027 – 5,350 MW
  • 2028 – 4,998 MW
  • 2029 – 9,631 MW
  • 2030 – 15,263 MW

Note.

  1. I have used pessimistic dates.
  2. There are likely to be more announcements of offshore wind power in the sea around the UK, in the coming months.
  3. As an example in Cerulean Winds Submits 1 GW Aspen Offshore Wind Project In Scotland (UK), I talk about 3 GW of offshore wind, that is not included in my yearly totals.
  4. The yearly totals add up to a total of 58,897 MW.

For solar power, I just asked Google AI and received this answer.

The UK government aims to have between 45 and 47 gigawatts (GW) of solar power capacity by 2030. This goal is set out in the Solar Roadmap and aims to reduce energy bills and support the UK’s clean power objectives. The roadmap includes measures like installing solar on new homes and buildings, exploring solar carports, and improving access to rooftop solar for renters.

Let’s assume that we only achieve the lowest value of 45 GW.

But that will still give us at least 100 GW of renewable zero-carbon power.

What will happen if the wind doesn’t blow and the sun doesn’t shine?

I have also written about nuclear developments, that were announced during Trump’s visit.

This is an impressive array of nuclear power, that should be able to fill in most of the weather-induced gaps.

In Renewable Power By 2030 In The UK, I also summarise energy storage.

For pumped storage hydro, I asked Google AI and received this answer.

The UK’s pumped storage hydro (PSH) capacity is projected to more than double by 2030, with six projects in Scotland, including Coire Glas and Cruachan 2, potentially increasing capacity to around 7.7 GW from the current approximately 3 GW. This would be a significant step towards meeting the National Grid’s required 13 GW of new energy storage by 2030, though achieving this depends on policy support and investment.

There will also be smaller lithium-ion batteries and long duration energy storage from companies like Highview Power.

But I believe there will be another source of energy that will ensure that the UK achieves energy security.

SSE’s Next Generation Power Stations

So far two of these power stations have been proposed.

  • Keadby will be 900 MW and has this web site.
  • Ferrybridge will be 1200 MW and has this web site.

Note.

  1. Both power stations are being designed so they can run on natural gas, 100 % hydrogen or a blend of natural gas and hydrogen.
  2. Keadby will share a site with three natural gas-powered power stations and be connected to the hydrogen storage at Aldbrough, so both fuels will be available.
  3. Ferrybridge will be the first gas/hydrogen power station on the Ferrybridge site and will have its own natural gas connection.
  4. How Ferrybridge will receive hydrogen has still to be decided.
  5. In Hydrogen Milestone: UK’s First Hydrogen-to-Power Trial At Brigg Energy Park, I describe how Centrica tested Brigg gas-fired power station on a hydrogen blend.
  6. The power stations will initially run on natural gas and then gradually switch over to lower carbon fuels, once delivery of the hydrogen has been solved for each site.

On Thursday, I went to see SSE’s consultation at Knottingley for the Ferrybridge power station, which I wrote about in Visiting The Consultation For Ferrybridge Next Generation Power Station At Knottingley.

In the related post, I proposed using special trains to deliver the hydrogen from where it is produced to where it is needed.

Could HiiROC Be Used At Ferrybridge?

Consider.

  • HiiROC use a process called thermal plasma electrolysis to split any hydrocarbon gas into hydrogen and carbon black.
  • Typical input gases are chemical plant off gas, biomethane and natural gas.
  • Carbon black has uses in manufacturing and agriculture.
  • HiiROC uses less energy than traditional electrolysis.
  • There is an independent power source at Ferrybridge from burning waste, which could be used to ower a HiiROC  system to generate the hydrogen.

It might be possible to not have a separate hydrogen feed and still get worthwhile carbon emission savings.

Conclusion

I believe we will have enough electricity to power all the data centres, that will be built in the next few years in the UK.

Some of the new power stations, that are proposed to be built, like some of the SMRs and SSE’s Next Generation power stations could even be co-located with data centres or other high energy users.

In Nuclear Plan For Decommissioned Coal Power Station, I describe how at the former site of Cottam coal-fired power station, it is proposed that two Holtec SMR-300 SMRs will be installed to power advanced data centres. If the locals are objecting to nuclear stations, I’m sure that an SSE Next Generation power station, that was burning clean hydrogen, would be more acceptable.

 

 

 

 

September 23, 2025 Posted by | Artificial Intelligence, Computing, Energy, Energy Storage, Hydrogen, World | , , , , , , , , , , , , , , , , , , , , | Leave a comment