The Anonymous Widower

Renewable Power’s Effect On The Tory Leadership Election

I wouldn’t normally comment on the Tory Leadership Election, as I don’t have a vote and my preference has already been eliminated.

But after reading this article on the Telegraph, which is entitled Britain Will Soon Have A Glut Of Cheap Power, And World-Leading Batteries To Store It, I feel I have to comment both about this election and the General Election, that will follow in a few years.

These two paragraphs from the article illustrate the future growth of offshore wind power.

It is a point about the mathematical implications of the UK’s gargantuan push for renewables. Offshore wind capacity is going to increase from 11 to 50 gigawatts (GW) by 2030 under the Government’s latest fast-track plans.

RenewableUK says this country currently has a total of 86GW in the project pipeline. This the most ambitious rollout of offshore wind in the world, ahead of China at 78GW, and the US at 48GW.

If we assume that there is eight years left of this decade, that means that we should install about 4.9 GW of offshore wind every year until 2030. If we add in planned solar and onshore wind developments, we must be looking at at least 5 GW of renewable energy being added every year.

We have also got the 3.26 GW Hinckley Point C coming on stream.

I think we can say, that when it comes to electricity generation, we will not be worried, so Liz and Rishi can leave that one to the engineers.

If we have an electricity problem, it is about distribution and storage.

  • We need more interconnectors between where the wind farms are being built and where the electricity will be used.
  • National Grid and the Government have published plans for two interconnectors between Scotland and England, which I wrote about in New Electricity ‘Superhighways’ Needed To Cope With Surge In Wind Power.
  • We need energy storage to back up the wind and solar power, when the wind isn’t blowing and the sun isn’t shining.

I think it is reasonable to assume, that we will get the interconnectors we need and the Telegraph article puts forward a very feasible and affordable solution to the energy storage problem, which is described in these two paragraphs from the article.

That is now in sight, and one of the world leaders is a British start-up. Highview Power has refined a beautifully simple technology using liquid air stored in insulated steel towers at low pressure.

This cryogenic process cools air to minus 196 degrees using the standard kit for LNG. It compresses the volume 700-fold. The liquid re-expands with a blast of force when heated and drives a turbine, providing dispatchable power with the help of a flywheel.

The article also talks of twenty energy storage systems, spread around the UK.

  • They will have a total output of 6 GW.
  • In total they will be able to store 600 GWh of electricity.

The first one for Humberside is currently being planned.

Surely, building these wind and solar farms, interconnectors and energy storage systems will cost billions of pounds.

Consider.

  • Wind and solar farms get paid for the electricity they generate.
  • , Interconnectors get paid for the electricity they transfer.
  • Energy storage systems make a profit by buying energy when it’s cheap and selling it, when the price is better.
  • In World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, I talked about how Aviva were funding the world’s largest wind farm at Hornsea.
  • National Grid has a history of funding interconnectors like the North Sea Link from large financial institutions.

I believe that the islands of Great Britain and Ireland and the waters around our combined shores will become the largest zero-carbon power station in the world.

This will attract engineering companies and financial institutions from all over the world and we will see a repeat of the rush for energy that we saw for oil and gas in the last century.

If we get the financial regime right, I can see a lot of tax money flowing towards the Exchequer.

The big question will be what do we do with all this energy.

  • Some will be converted into hydrogen for transport, the making of zero-carbon steel and cement and for use as a chemical feedstock.
  • Industries that use a lot of electricity may move to the UK.
  • A large supply of electricity and hydrogen will make it easy to decarbonise housing, offices and factories.

The Telegraph article also says this.

Much can be exported to the Continent through interconnectors for a fat revenue stream, helping to plug the UK’s trade deficit, and helping to rescue Germany from the double folly of nuclear closures and the Putin pact. But there are limits since weather patterns in Britain and Northwest Europe overlap – partially.

I suspect that more energy will be exported to Germany than most economists think, as it will be needed and it will be a nice little earner for the UK.

Given the substantial amount of German investment in our wind industry, I do wonder, if Boris and Olaf did a deal to encourage more German investment, when they met in April this year.

  • BP have been backed with their wind farms by a German utility company.
  • RWE are developing the Sofia wind farm.
  • Only last week, the deal for the NeuConnect interconnector between the Isle of Grain and Wilhelmshaven was signed.
  • Siemens have a lot of investments in the UK.

I wouldn’t be surprised to see more German investments in the next few months.

The Golden Hello

Has there ever been a Prime Minister, who will receive such a golden hello, as the one Liz or Rishi will receive in September?

The Tory Leadership Election

Some of the candidates said they would reduce taxes , if they won and Liz Truss is still saying that.

I wonder why Rishi isn’t saying that he would reduce taxes, as he must know the cash flow that is coming. It may be he’s just a more cautious soul.

 

 

 

July 30, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , , , , , , , , | 2 Comments

Can Highview Power’s CRYOBattery Compete With Pumped Storage Hydroelectricity?

In this article on the Telegraph, Rupert Pearce, who is Highview’s chief executive and ex-head of the satellite company Inmarsat, discloses this.

Highview is well beyond the pilot phase and is developing its first large UK plant in Humberside, today Britain’s top hub for North Sea wind. It will offer 2.5GW for over 12 hours, or 0.5GW for over 60 hours, and so forth, and should be up and running by late 2024.

The Humberside plant is new to me, as it has not been previously announced by Highview Power.

  • If it is built it will be megahuge with a storage capacity of 30 GWh and a maximum output of 2.5 GW.
  • Humberside with its connections to North Sea Wind, will be an ideal location for a huge CRYOBattery.
  • The world’s largest pumped storage hydroelectric power station is Fengning Pumped Storage Power Station in China and it is 40 GWh.

Pumped storage hydroelectric power stations are the gold standard of energy storage.

In the UK we have four pumped storage hydroelectric power stations.

With two more under construction.

As energy is agnostic, 30 GWh of pumped storage hydroelectric power at Coire Glas is the equivalent of 30 GWh in Highview Power’s proposed Humberside CRYOBattery.

Advantages Of CRYOBatteries Over Pumped Storage Hydroelectric Power

I can think of these advantages.

  • Cost
  • Could be build on the flat lands of East Anglia or Lincolnshire
  • Factory-built
  • NIMBYs won’t have much to argue about
  • No dams
  • No flooding of valleys
  • No massive construction sites.
  • No mountains required
  • No tunnels
  • Small footprint

I suspect that a large CRYOBattery could be built well within a year of starting construction.

Rupert Pearce’s Dream

The Telegraph article says this and I suspect it’s a quote from Rupert Pearce.

Further projects will be built at a breakneck speed of two to three a year during the 2020s, with a target of 20 sites able to provide almost 6GW of back-up electricity for four days at a time, or whatever time/power mix is optimal.

6 GW for four days is 576 GWh, which if it were spread around twenty sites is 28.8 GWh per site, which is just under the 30 GWh of the proposed Humberside CRYOBattery.

Conclusion

You can just imagine the headlines in The Sun!

Man In Bishop’s Stortford Shed Saves The World!

This story on the BBC, which is entitled Meet The British Inventor Who Came Up With A Green Way Of Generating Electricity From Air – In His Shed, explains my suggested headline.

Now that’s what I call success!

 

July 29, 2022 Posted by | Energy, Energy Storage | , , , , , , , | 4 Comments

How Will Highview Power Affect The Lithium-Ion Grid Battery Market?

In this article on the Telegraph, Rupert Pearce, who is Highview’s chief executive and ex-head of the satellite company Inmarsat, discloses this.

Highview is well beyond the pilot phase and is developing its first large UK plant in Humberside, today Britain’s top hub for North Sea wind. It will offer 2.5GW for over 12 hours, or 0.5GW for over 60 hours, and so forth, and should be up and running by late 2024.

The Humberside plant is new to me, as it has not been previously announced by Highview Power.

  • If it is built it will be megahuge with a storage capacity of 30 GWh and a maximum output of 2.5 GW.
  • Humberside with its connections to North Sea Wind, will be an ideal location for a huge CRYOBattery.
  • The world’s largest battery is at Ouarzazate Solar Power Station in Morocco and it is 3 GWh.
  • The world’s largest pumped storage power station is Fengning Pumped Storage Power Station in China and it is 40 GWh.

The proposed Humberside battery also has a smaller sibling under construction at Carrington in Manchester.

This will have a storage capacity of 250 MWh and a maximum output of 50 MW.

Factors Affecting The Choice

Several factors will affect the choice between lithium-ion batteries and Highview Power’s CRYOBattery.

Reliability

Reliability is paramount and whilst lithium-ion batteries batteries have a high level of reliability, there probably needs to be more development and quality assurance before CRYOBatteries have a similar level of reliability.

Size

The largest lithium-ion battery, that has been proposed in the UK, is the 320 MW/640 MWh battery that will be installed at the Gateway Energy Centre in Essex.

This size of CRYOBattery should be possible, but this size is probably in range of both lithium-ion and CRYOBatteries.

Safety

The Wikipedia entry for Battery Storage Power Station has this to say about Safety.

Some batteries operating at high temperatures (sodium–sulfur battery) or using corrosive components are subject to calendar ageing, or failure even if not used. Other technologies suffer from cycle ageing, or deterioration caused by charge-discharge cycles. This deterioration is generally higher at high charging rates. These two types of ageing cause a loss of performance (capacity or voltage decrease), overheating, and may eventually lead to critical failure (electrolyte leaks, fire, explosion).

An example of the latter was a Tesla Megapack in Geelong which caught fire, fire and subsequent explosion of battery farm in Arizona, fire of Moss Landing battery farm. Concerns about possible fire and explosion of a battery module were also raised during residential protests against Cleve Hill solar farm in United Kingdom. Battery fire in Illinois resulted in “thousands of residents” being evacuated, and there were 23 battery farm fires in South Korea over the period of two years. Battery fires may release a number of dangerous gases, including highly corrosive and toxic hydrogen fluoride.

The long term safety of a CRYOBattery is probably not yet known in detail, but I suspect in some applications, CRYOBatteries could be safer than chemical batteries.

Environmental Factors

I suspect that CRYOBatteries can be built without any hard-to-mine or environmentally-unfriendly materials like lithium.

Cost

The article in The Telegraph, says this about costs.

Mr Pearce said Highview’s levelised cost of energy (LCOE) would start at $140-$150, below lithium, and then slide on a “glide path” to $100 with over time.

It does look that the all important factor of cost could be the clincher in the choice between the two systems.

For larger batteries, the CRYOBattery will probably have a larger advantage.

Conclusion

I can see Highview Power and their CRYOBatteries putting up a good fight against lithium-ion batteries, especially with larger batteries, where they have a larger cost advantage.

In the UK, we will know they have won an advantage, if the two big battery-storage funds; Gore Street and Gresham House, start to install CRYOBatteries.

 

 

July 29, 2022 Posted by | Energy, Energy Storage | , , , , , , , | Leave a comment

Britain Will Soon Have A Glut Of Cheap Power, And World-Leading Batteries To Store It

The title of this post, is the same as that of this article on the Telegraph.

This is the first four paragraphs.

Today’s electricity price shock is the last crisis of the old order. Britain will soon have far more power at times of peak production than it can absorb. The logistical headache will be abundance.

Wind and solar provided almost 60pc of the UK’s power for substantial stretches last weekend, briefly peaking at 66pc. This is not to make a propaganda point about green energy, although this home-made power is self-evidently displacing liquefied natural gas (LNG) imported right now at nosebleed prices.

It is a point about the mathematical implications of the UK’s gargantuan push for renewables. Offshore wind capacity is going to increase from 11 to 50 gigawatts (GW) by 2030 under the Government’s latest fast-track plans.

RenewableUK says this country currently has a total of 86GW in the project pipeline. This the most ambitious rollout of offshore wind in the world, ahead of China at 78GW, and the US at 48GW.

The article goes on to give a comprehensive account of where we are with renewables, where we are going and how we will handle things, when the wind doesn’t blow.

Dogger Bank

The article says this about the Dogger Bank wind farm, which is being developed by SSE.

The giant hi-tech turbines to be erected on the Dogger Bank, where wind conditions are superb, bear no resemblance to the low-tech, low-yield dwarves of yesteryear. The “capacity factor” is approaching 60pc, which entirely changes the energy equation.

A capacity factor of 60 % seems a bit high to me and is what can be expected with the latest floating turbines. But these are fixed to the sea floor.

The Wikipedia entry for the Dogger Bank wind farm, says this about the building of the the first two sections of the massive wind farm.

On 21 September 2020, it was announced that Dogger Bank A and B will use 190 GE Haliade-X 13 MW offshore wind turbines over both sites, meaning that 95 turbines will be used on each site.[19] The availability of upgraded Haliade-X turbines rated at 13 MW rather than 12 MW means that each site will be capable of generating up to 1.235 GW, for a total of 2.47 GW. Turbines will be pre-assembled at Able Seaton Port in Hartlepool, an activity that will lead to the creation of 120 skilled jobs at the port during construction. Turbine installation is expected to commence in 2023 at Dogger Bank A.[20] Power Purchase Agreements (PPA) for 15 years were signed in November 2020. Offshore cable laying started in April 2022. Installation of the turbine foundations was started in July 2022.

This GE data sheet about the Haliade-X offshore wind turbine, says this about capacity factor.

it also features a 60-64% capacity factor above industry standard. Capacity factor compares how much energy was generated against the maximum that could have been produced at continuous full power operation during a specific period of time.

A 60-64% capacity factor is exceptional.

Current plans for Dogger Bank indicate that 3.6 GW will be installed and operational by 2024/25.

Could that mean that Dogger Bank will be able to deliver 2.16 GW almost continuously, on GE’s figures? Sizewell B is only 1.25 GW.

Sofia Wind Farm

There was going to be a fourth section to Dogger Bank, but this is now the separate Sofia wind farm.

  • It is being developed by RWE.
  • The first phase of three has a capacity of 1.4 MW. Does that mean Sofia will eventually be a 4.2 GW wind farm?
  • RWE seem to be putting in a very large offshore substation. Could this support a lot more turbines?
  • The wind farm seems to be using high-specification SiemensGamesa 14MW SG 14-222 DD wind turbines, which have a Power Boost facility to deliver up to 15 MW.
  • I can’t find anything about capacity factor.

Wikipedia gives a delivery date of 2023 for the first phase of Sofia.

Storing Electricity

The article says this about storing electricity.

Much of the power will have to be stored for days or weeks at a time. Lithium batteries cannot do the job: their sweet spot is two hours, and they are expensive. You need “long duration” storage at a cost that must ultimately fall below $100 (£82) per megawatt hour (MWh), the global benchmark of commercial viability.

That is now in sight, and one of the world leaders is a British start-up. Highview Power has refined a beautifully simple technology using liquid air stored in insulated steel towers at low pressure.

I have had Highview Power on my radar for some time.

Highview Power

What is there not to like about Highview Power?

  • The original idea was developed in a shed in Bishop’s Stortford, by a lone inventor.
  • Sumitomo are one of their backers.
  • They are also backed by English Universities and the UK Government.
  • They have run a successful pilot plant in Bury.
  • They are now building their first full-size 50 MW/250 MWh commercial plant at Carrington near Manchester.
  • Much of the equipment they use to build their batteries is standard equipment from world-class companies like MAN.
  • There are no exotic and expensive materials used.

The writer of the article has obviously had a long chat with Rupert Pearce, who is Highview’s chief executive and ex-head of the satellite company Inmarsat.

Pearce happily discloses this monster.

Highview is well beyond the pilot phase and is developing its first large UK plant in Humberside, today Britain’s top hub for North Sea wind. It will offer 2.5GW for over 12 hours, or 0.5GW for over 60 hours, and so forth, and should be up and running by late 2024.

Note.

  1. The world’s largest battery is at Ouarzazate Solar Power Station in Morocco and it is 3 GWh.
  2. Highview’s Humberside battery is megahuge at 30 GWh.
  3. The world’s largest pumped storage power station is Fengning Pumped Storage Power Station in China and it is 40 GWh.
  4. My experience of doing the calculations for large reaction vessels and other structures, tells me, that Highview should be able to construct huge systems.

I suspect that it will be easier and more affordable to build the Humberside battery.

This is another pair of paragraphs.

Mr Pearce said Highview’s levelised cost of energy (LCOE) would start at $140-$150, below lithium, and then slide on a “glide path” to $100 with over time. The company has parallel projects in Spain and Australia but Britain is the showroom.

“The UK is a fantastic place to do this. It has one of the most innovative grids in the world and an open, fair, liquid, market mechanism with absolute visibility,” he said.

It looks to me, that Rupert Pearce has taken Highview Power to a different level, in his short tenure at the company.

The world will soon be very familiar with the name of Highview Power.

July 29, 2022 Posted by | Energy, Energy Storage | , , , , , , | 10 Comments

SolarDuck & RWE Will Build A Floating Solar Park In The North Sea

The title of this post, is the same as that of this article on CleanTechnica.

This is the sub-title.

SolarDuck and RWE will work together on an offshore floating solar project in the North Sea that will include battery storage.

These two paragraphs explain the concept.

Offshore wind is poised to provide a significant proportion of Europe’s electrical energy in the near future. But those towers and turbines have to be spaced fairly far apart to avoid interfering with each other. That leaves a lot of open ocean in between them, ocean that has sunlight falling on it all day long.

SolarDuck, a Dutch/Norwegian company, is working on floating solar technology that would float on the surface of the ocean to generate electricity to supplement the output from those offshore wind turbines. They already need to have undersea cables to carry their electricity ashore. Why not leverage that infrastructure to carry electricity from solar panels as well?

I would only worry about the economics.

I very much feel that the structures can be robust enough, given the wealth of experience with offshore oil and gas platforms and the experience in World War 2 with Lily and Clover.

July 26, 2022 Posted by | Energy, Energy Storage | , , | 3 Comments

The World Economic Forum Talk About Gravitricity

This article on the World Economic Forum is entitled How Gravity Batteries Will Help Us Switch To Renewable Energy.

The article is a must-read and Gravitricity must be very pleased with the contents and placement of the article.

As an investor in Gravitricity, through crowd-funding, I am certainly pleased.

July 13, 2022 Posted by | Energy, Energy Storage, Finance | , , | Leave a comment

Will We Run Out Of Power This Winter?

Someone asked me if we will run out of power, if Vlad the Mad cuts all the gas to Western Europe.

This was my reply.

It appears that this year, 3.2 GW of new offshore wind farms could start producing electricity, followed by similar amounts in both 2023 and 2024.

One of those to come on stream about now is the 1.4 GW Hornsea 2 wind farm!

The follow-up 2.9 GW Hornsea 3, signed a contract last week for delivery in 2026/27.

Moray East in Scotland and Triton Knoll off Lincolnshire, are also scheduled to come on stream this year and they’re around 900 MW each.

As someone, who used to write project management software, I hope the companies building these fields have enough resources, in terms of people, boats, cranes and money. But as the companies are all the Shells of the wind industry, I would hope they have got their sums right.

What About The Contracts for Difference Awarded In Allocation Round 4?

We are currently fighting two wars at the moment.

  • The main war in Ukraine, where we are giving that unfortunate country all the help we can.
  • The secondary war in the UK against energy prices.

Would it help our cause in both wars, if we produced more energy?

  • More renewable energy would reduce our dependence on imported gas.
  • The gas saved could go to Europe.
  • Europe would not be buying Vlad the Mad’s bloodstained gas.
  • Replacing gas with solar and wind power might reduce energy prices.

If I put myself in the position of a struggling farmer with a contract for difference to build a solar farm on a poor field, I would want that farm to be earning money as soon as possible.

  • Now that I have the contract can I start assembling that solar farm?
  • Similar arguments can probably be used for onshore wind, which must be easier to assemble, than offshore wind.
  • I don’t think that the hard-pressed energy suppliers would bother, if they received some quality cheap electricity earlier than they expected.
  • Obviously, all the cables and the substations would need to be in place.

So I think that it is reasonable to assume, that energy might ramp up quicker than expected.

It could even be more front-loaded, if all the installers got a shift on.

Every little helps!

New Renewable Energy In 2023?

These wind farms are scheduled for commissioning in 2023.

  • Neart Na Gaoithe – 450 MW
  • Sofia Offshore Wind Farm – 1400 MW
  • Seagreen Phase 1 – 1075 MW

We could see 2925 MW of offshore wind power commissioned in 2023.

New Renewable Energy In 2024?

These renewable energy sources are scheduled for commissioning in 2024.

  • Dogger Bank A – 1200 MW
  • Round 4 Solar – 125.7 MW
  • Dogger Bank B – 1200 MW
  • Dogger Bank C – 1200 MW

Note, where a windfarm is given a commissioning date of 2023/24  in Wikipedia , I will put it in 2024.

We could see  3726 MW of renewable energy commissioned in 2024.

New Renewable Energy In 2025?

These renewable energy sources are scheduled for commissioning in 2025.

  • Moray West – 1200 MW
  • Round 4 Solar – 1958 MW
  • Round 4 Onshore Wind – 888 MW
  • Round 4 Energy from Waste – 30 MW
  • Vanguard Boreas Phase 1 – 1400 GW

We could see  6476 MW of renewable energy commissioned in 2025.

New Renewable Energy In 2026?

These renewable energy sources are scheduled for commissioning in 2026.

  • East Anglia 1 North – 800 MW
  • East Anglia 2 – 900 MW
  • Round 4 Tidal Stream – 5.62 MW

We could see  1705 MW of renewable energy commissioned in 2026.

New Renewable Energy In 2027?

These renewable energy sources are scheduled for commissioning in 2027.

  • Round 4 Tidal Stream – 35.2 MW
  • Round 4 Floating Offshore Wind – 32 MW
  • Round 4 Offshore Wind – 5594 MW
  • Hornsea 3 Offshore Wind – 2852 MW
  • Hinckley Point C Nuclear – 3,260 MW

We could see  13173 MW of renewable energy commissioned in 2027.

Too Much Electricity!

Summarising the figures for new capacity gives.

  • 2022 – 3200 MW
  • 2023 – 2925 MW
  • 3024 – 3726 MW
  • 2025 – 6476 MW
  • 2026 – 1705 MW
  • 2027 – 11773 MW

This totals to 28554 MW.

One problem we may have is too much electricity and as we are not blessed with much storage in the UK, where will be able to put it?

In a strange way, Vlad the Mad may solve the problem, by cutting off Europe’s gas.

We have a few interconnectors, where we can export the electricity to allow the Belgians, Dutch, French and the Germans to have a shower.

It looks like construction may be starting soon for another interconnector. NeuConnect will have a capacity of 1.4 GW between the Isle of Grain and Wilhelmshaven.

Conclusion

If I was the German Chancellor, I’d do everything in my power to accelerate the construction of NeuConnect!

July 10, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , , , , , , , | 24 Comments

2.2 GW Of Solar Farms To Be Installed In The UK

This document from the Department of Business, Industry and Industrial Strategy lists all the Contracts for Difference Allocation Round 4 results for the supply of zero-carbon electricity that were announced yesterday.

There were sixty-six solar power projects, that totalled up to 2.2 GW, which gives an average size of 33.3 MW.

  • Many complain that we don’t have enough sun in this country, so surely solar farms totalling up to 2.2 GW is an astonishing figure.
  • For a comparison, Hinckley Point C will supply 3.26 GW.
  • In Cleve Hill Solar Park, I wrote about the largest, which will be a 350 MW solar farm with a 700 MWh battery.
  • Sixty-one are in England, two are in Wales and surprisingly three are in Scotland, So being that far North isn’t as bad for solar power, as you might think.
  • It looks like 251.38 MW are proposed to be installed in 2023/24 and 1958.03 MW in 2024/25.

The Wikipedia entry for Solar Power In The United Kingdom, gives these numbers.

UK solar PV installed capacity at the end of 2017 was 12.8 GW, representing a 3.4% share of total electricity generation. Provisionally, as of the end of January 2019 there was 13,123 MW installed UK solar capacity across 979,983 installations. This is an increase of 323 MW in slightly more than a year. A new record peak generation from photovoltaics was set at 9.68 GW on 20 April 2020.

How many people correctly predicted that the UK would be be generating so much energy from the sun?

How Many Of These Solar Farms Will Be Co-located With Batteries Or Wind Farms?

Consider.

  • Cleve Hill Solar Park will be a 350 MW solar farm, that is co-located with a 700 MWh battery.
  • Is it significant that the battery could supply 350 MW for two hours?
  • It also connects to the grid at the same substation, that connect the London Array offshore wind farm.
  • As substations are complicated and probably expensive bits of electrical gubbins, sharing a substation is probably a good idea to save costs.

I hope that companies like wind and solar farm developers, the National Grid and Network Rail talk a lot to each other, so that efficient infrastructure is developed.

Conclusion

Over the years 2023 to 2025, we should develop these solar farms at a rate of around 0.7 GW per year.

Can we sustain that rate in the future or will we run out of land?

 

July 10, 2022 Posted by | Energy, Energy Storage | , , , | 6 Comments

Birth Of A Station

Thanet Parkway station is under construction and should be opened in May next year.

Work is progressing as this Google Map shows.

Note.

  1. The A299 goes across the top of the map.
  2. The Ashford – Canterbury – Ramsgate Line runs diagonally from South-West to North-East across the map.
  3. Ashford and Canterbury are to the South-West.
  4. Ramsgate is to the North-East.

The new Thanet Parkway station appears to be being built on the triangular site between the A299 and the railway.

  • There appear to be two entrances/exits to the station from the A299.
  • The pedestrian bridge over the railway is under construction.
  • The roads and walkways around the station are being laid.

This video gives more details of the station.

Parking At Thanet Parkway

According to the video, there are nearly three hundred parking spaces, with a number of disabled spaces and spaces with charging for electric cars.

Is that going to be enough spaces?

But at least, there may be fields around the station, that could be used to provide additional parking.

Richborough Energy Park

This Google Map shows the area around the station and to the South towards Richborough.

Note.

  1. The under-construction Thanet Parkway station is in the North-East corner of this map to the West of the village of Cliffsend.
  2. The dual-carriageway of the A256 runs North-South down the map to a roundabout.
  3. To the West of the roundabout is Richborough Energy Park.

This Google Map shows the are round the energy park and the roundabout in more detail.

Note.

  1. The Richborough substation in the South-West corner of the map.
  2. The Richborough Energy Park sits to the East of the substation.
  3. The solar panels to the North of the roundabout are the 4.9 MW Ebbsfleet Solar Farm, which is part of Richborough Energy Park.

Richborough Energy Park is an ongoing project.

The national grid interconnector from the original power station is still in place, and is now the grid link for the 300 MW offshore Thanet Wind Farm.

It is the terminal for the NemoLink interconnector to Belgium.

Wikipedia says this about future plans.

The current owner of the site, BFL Management Ltd, plan to bring the site back into use as a £750 million green energy park. There are additional plans to create additional recycling and green energy facilities on site, including an anaerobic digester, a waste processing plant, a biomass combined heat and power generator, a pyrolysis plant and a peak demand 30MW diesel generator. When fully operational, the park could provide up to 1,400MW of power, employing 100 full-time equivalent, with up to 500 jobs in the construction phase.

I am surprised, that there is no mention of batteries or energy storage.

This press release from Network Rail is entitled Charge While You Travel With New Electric Vehicle Charging Points At Network Rail Stations.

This the body of the press release

Rail passengers with electric vehicles will be able to charge while they travel thanks to the introduction of 450 new electric vehicle charging points at Network Rail-managed car parks at railway stations.

The charging points, powered by guaranteed renewable energy, provide enough power to fully charge a vehicle in as little as 3-4 hours.

In this phase, Network Rail has powered: 160 charging points in Reading, 111 in Manchester, 84 in Edinburgh, 56 at Leeds and 41 in Welwyn Garden City.

Electric vehicle charging points will be installed across 10% of car parking spaces (approximately 779 spaces) at car parks managed by Network Rail by March 2024.

Rail is already the leading form of green public transport and this marks another milestone in Network Rail’s commitment to a low-emission railway – making sure rail is environmentally-friendly, resilient to climate change and able to provide an excellent service for years to come.

The new Compleo charging points are marked with green parking bays and passengers can pay for what they need quickly and easily via the APCOA Connect app.

Note, that there is no mention, if these are vehicle-to grid (V2G) chargers.

In Airport Plans World’s Biggest Car Parks For 50,000 Cars, I stated my belief that car parks, with hundreds or even thousands of vehicles could be turned into giant grid batteries.

  • All electric vehicles, when they are parked would be plugged in to V2G chargers.
  • The vehicle and the grid, would know your expected return time and how much power you would need. Probably from a parking app, assisted by AI!
  • If the grid borrowed your electricity, whilst you were away, you wouldn’t know, until you received the payment for the loan.
  • If your car runs on hydrogen, the parking could also handle the battery, that all hydrogen-powered vehicles have.

Thanet Parkway station would be an ideal station for such a parking system for electric vehicles.

July 10, 2022 Posted by | Energy Storage, Transport/Travel | , , , , , , , | 1 Comment

Cleve Hill Solar Park

This document from the Department of Business, Industry and Industrial Strategy lists all the Contracts for Difference Allocation Round 4 results for the supply of zero-carbon electricity that were announced yesterday.

There were sixty-six solar power projects, that totalled up to 2.2 GW, which gives an average size of 33.3 MW.

I looked at the list and found the following.

  • All contracts had the same strike price of £45.99 per MWh.

The largest solar farm with a contract is Cleve Hill Solar Park.

  • ,Cleve Hill Solar Park received a contract for 112 MW.
  • According to Wikipedia, the solar park will have a battery of 700 MWh.
  • Will the battery enable the solar park to supply 112 MW on a twenty-four seven basis?
  • According to Wikipedia, solar farms have a capacity factor of about 10 % in the UK.
  • The Cleve Hill Solar Park will have a capacity of 350 MW.
  • On a typical day, it will generate 350 * 24 *0.1 = 840 MWh
  • The Contract for Difference mechanism  means they get the strike price for each MWh of electricity up to the level in the contract, which is 112 MW.
  • I suspect that for several months of the year, the solar park will be able to supply 112 MW to the grid.
  • I do feel that overnight and on sunless winter days, the system will provide a lot less electricity.
  • This page on the EMR web site explains Contract for Difference mechanism.

This extract from Wikipedia, describes, the solar park’s connection to the National Grid.

Across the marsh run the 400kV powerlines of the national grid. They are supported by eight 40m pylons. There is a large 150/400kV electricity substation at Cleve Hill, serving the London Array offshore wind farm that lies to the north beyond the mouth of the Thames Estuary. The output from the Solar Farm will use this substation to connect to the grid. Here, a battery array will placed, that will charge from the sunlight during the day and release the energy at night when it is needed.

I can build a table showing the earnings on a per day and per year basis, against average output.

  • 20 MW – £22,076.20 per day – £8,057,448 per year
  • 50 MW  – £55,188 per day – £20,143,620 per year
  • 70 MW – £77,263.20 per day – £28,201,068 per year
  • 100 MW  – £110,376 per day – £40,287,240 per year
  • 112 MW – £123,621.12 per day – £45,121,708.80 per year

Note.

  1. I have assumed the year is 365 days.
  2. As a time-expired Control Engineer, I know that the battery can be optimised to supply the electricity, when it is needed and the price is highest.
  3. I wouldn’t be surprised to see co-operation between the London Array and Cleve Hill Solar Farm, as on a sunless but windy day, there may be scope to store excess wind energy in the battery for later release.

On this brief look, it appears that owning a solar farm, can be a nice little-earner.

Thoughts On The Battery

Consider.

  • According to Wikipedia, the solar park will have a battery of 700 MWh.
  • One of the largest lithium batteries in the UK is the one at Clay Tye in Essex, which is just under 200 MWh.

I suspect that lithium ion batteries will not be used.

Highview Power are building a 250 MWh battery in Manchester.

  • This battery will be able to supply 50 MW.
  • The batteries use liquid air as an energy storage medium.
  • The company says the design can be extended up to a GWh by adding more tanks for the liquid air.
  • The only fossil fuels used in Highview’s batteries is probably some lubricating oil.

I feel that a Highview battery or something similar would be an ideal solution at Cleve Hill Solar Farm.

I should be noted that the London Array is a 630 MW wind farm, so the London Array and Cleve Hill Solar Farm have a combined nameplate capacity of 980 MW.

I feel there is a case for a larger battery at the substation, to give the grid an almost-guaranteed GW all day.

It would be large than most if not all gas-fired power stations.

It could be used to balance the grid.

The controlling software would optimise the finances by buying and selling electricity at the right time.

July 9, 2022 Posted by | Energy, Energy Storage | , , , , , | 8 Comments