The Anonymous Widower

Thoughts On The Eastern Leg Of High Speed Two

These are a few thoughts on the Eastern Leg of High Speed Two.

Serving The North-East Quarter Of England From London

In Anxiety Over HS2 Eastern Leg Future, I gave a table of timings from London to towns and cities in the North-East quarter of England from Lincoln and Nottingham Northwards.

I’ll repeat it here.

  • Bradford – Will not be served by High Speed Two – One hour and fifty-four minutes
  • Cleethorpes – Will not be served by High Speed Two – Two hours and fifty-one minutes
  • Darlington – One hour and forty-nine minutes – One hour and forty-nine minutes
  • Doncaster – Will not be served by High Speed Two – One hour
  • Edinburgh – Three hours and forty minutes via Western Leg – Three hours and thirty minutes.
  • Grimsby – Will not be served by High Speed Two – Two hours and thirty-six minutes
  • Harrogate – Will not be served by High Speed Two – One hour and fifty-two minutes
  • Huddersfield – Will not served by High Speed Two – Two hours and eight minutes
  • Hull – Will not be served by High Speed Two – One hour and fifty minutes
  • Leeds – One hour and twenty-one minutes – One hour and thirty minutes
  • Lincoln – Will not be served by High Speed Two – One hour and fifty-one minutes
  • Middlesbrough – Will not be served by High Speed Two – Two hours and twenty minutes
  • Newcastle – Two hours and seventeen minutes – Two hours and sixteen minutes
  • Nottingham – One hour and seven minutes – One hour and fifty minutes
  • Scarborough – Will not be served by High Speed Two – Two hours and fifty-seven minutes
  • Sheffield – One hour and twenty-seven minutes – One hour and twenty-seven minutes
  • Skipton – Will not be served by High Speed Two – Two hours and seven minutes
  • Sunderland – Will not be served by High Speed Two – Two hours and thirty minutes
  • York – One hour and twenty-four minutes – One hour and twenty-four minutes

Note.

  1. I have included all destinations served by Grand Central, Hull Trains and LNER.
  2. I have included Nottingham and Sheffield for completeness and in case whilst electrification is installed on the Midland Main Line, LNER run services to the two cities.
  3. I suspect LNER services to Bradford, Harrogate, Huddersfield and Skipton will split and join at Leeds.

There are a total of nineteen destination in this table.

  • Twelve are not served by High Speed Two.
  • Six are not more than fifteen minutes slower by the East Coast Main Line.

Only Nottingham is substantially quicker by High Speed Two.

Serving The North-East Quarter Of England From Birmingham

Fenland Scouser felt the above table might be interesting to and from Birmingham with or without the Eastern Leg of High Speed Two.

I think, I can give more information than that and it should be possible to give for each destination the following.

  • Whether of not the route exists on High Speed Two.
  • Time on High Speed Two from Birmingham.
  • Time on High Speed Two and Northern Powerhouse Rail from Birmingham via Manchester
  • Time by current trains from Birmingham

In the following table, the fields are in the order of the previous table.

  • Bradford – No direct route – No time – One hour and three minutes – Two hours and twenty-seven minutes
  • Cleethorpes – No direct route – No time – Three hours and eight minutes – Three hours and eighteen minutes
  • Darlington – Route Exists – One hour and twenty-three minutes – One hour and forty minutes – Two hours and fifty-five minutes
  • Doncaster – No direct route – No time – One hour and thirty-six minutes – Two hours and nineteen minutes
  • Edinburgh- Route Exists – Three hours and fourteen minutes – Four hours – Four hours and thirteen minutes
  • Grimsby – No direct route – No time – Two hours and fifty-three minutes – Three hours and three minutes
  • Harrogate – No direct route – No time – One hour and twenty-eight minutes – Three hours
  • Huddersfield – No direct route – No time – Fifty-six minutes – Two hours and eleven minutes
  • Hull – No direct route – No time – One hour and forty-four minutes – Three hours and two minutes
  • Leeds – Route Exists – Forty-nine minutes – One hour and six minutes – One hour and fifty-nine minutes
  • Lincoln – No direct route – No time – Two hours and fifty-three minutes – Two hours and thirteen minutes
  • Middlesbrough – No direct route – No time – Two hours and twenty-nine minutes – Three hours and thirty-two minutes
  • Newcastle – No direct route – No time – Two hours and four minutes – Three hours and twenty-six minutes
  • Nottingham – Route Exists – Fifty-seven minutes – Two hours and fifty-five minutes – One hour and ten minutes
  • Sheffield – Route Exists – Thirty-five minutes – One hour and thirty-four minutes – One hour and fifteen minutes
  • Skipton – No direct route – No time – One hour and forty-three minutes – Two hours and fifty-two minutes
  • Sunderland – No direct route – No time – Two hours and fifty-nine minutes – Three hours and fifty-eight minutes
  • York – Route Exists – Fifty-seven minutes – One hour and twenty-eight minutes – Two hours and twenty-seven minutes

Note.

  1. No time means just that!
  2. One of the crucial times is that Birmingham Curzon Street and Leeds is just an hour and six minutes via High Speed Two and Northern Powerhouse Rail. This time gives good times to all destinations served from Leeds.
  3. Nottingham and Sheffield are both around an hour and fifteen minutes from Birmingham New Street, by the current trains.

I’ll now look at some routes in detail.

Birmingham And Leeds

The time of one hour and six minutes is derived from the following.

  • Birmingham Curzon Street and Manchester Piccadilly by High Speed Two – Forty-one minutes
  • Manchester Piccadilly and Leeds by Northern Powerhouse Rail – Twenty-five minutes

It would be seventeen minutes slower than the direct time of forty-nine minutes.

But it is quicker than the current time of one hour and fifty-nine minutes

Note.

  1. As Manchester Piccadilly will have a time to and from London of one hour and eleven minutes, Leeds will have a time of one hour and twenty-six minutes to London via Northern Powerhouse Rail and Manchester.
  2. If the Eastern Leg is built, The London and Leeds time will be one hour and twenty-one minutes.
  3. The Eastern Leg would therefore save just five minutes.

The Northern Powerhouse route could probably mean that Huddersfield, Bradford and Hull would be served by High Speed Two from London.

Manchester Airport, Manchester Piccadilly and Leeds would be connected by a tunnel deep under the Pennines.

  • Manchester Piccadilly, Huddersfield and Bradford could be underground platforms added to existing stations.
  • Piccadilly and Leeds would have a journey time of under 25 minutes and six trains per hour (tph).
  • The tunnel would also carry freight.
  • It would be modelled on the Gotthard Base Tunnel in Switzerland.

I wrote full details in Will HS2 And Northern Powerhouse Rail Go For The Big Bore?

Birmingham And Nottingham

The time of two hours and fifty-five minutes is derived from the following.

  • Birmingham Curzon Street and Manchester Piccadilly by High Speed Two – Forty-one minutes
  • Manchester Piccadilly and Leeds by Northern Powerhouse Rail – Twenty-five minutes
  • Leeds and Nottingham – One hour and forty-nine minutes

It would be one hour and fifty-eight minutes slower than the direct time of fifty-nine minutes.

The current time of one hour and ten minutes is much quicker.

Birmingham And Sheffield

The time of two hours and thirty-four minutes is derived from the following.

  • Birmingham Curzon Street and Manchester Piccadilly by High Speed Two – Forty-one minutes
  • Manchester Piccadilly and Leeds by Northern Powerhouse Rail – Twenty-five minutes
  • Leeds and Sheffield – One hour and twenty-eight minutes

It would be one hour and fifty-nine minutes slower than the direct time of thirty-five minutes.

The current time of one hour and fifteen minutes is much quicker.

Conclusions On The Timings

I am led to the following conclusions on the timings.

The building of the Eastern Leg of High Speed Two gives the fastest times between Birmingham and Leeds, Nottingham and Sheffield.

But if the Eastern Leg of High Speed Two is not built, then the following is true, if Northern Powerhouse Rail is created between Manchester and Leeds.

The time of an hour and six minutes between Birmingham Curzon Street and Leeds is probably an acceptable time.

This time probably enables  acceptable times between Birmingham Curzon Street and destinations North of Leeds.

But with Nottingham and Sheffield the current CrossCountry service is faster than the route via Manchester.

The speed of the CrossCountry services surprised me, but then there is a section of 125 mph running between Derby and Birmingham, which is used by CrossCountry services between Birmingham New Street and Leeds, Nottingham and Sheffield.

This table gives details of these services.

  • Birmingham New Street and Leeds – 116,4 miles – One hour and 58 minutes – 59.3 mph
  • Birmingham New Street and Nottingham – 57.2 miles – One hour and 14 minutes – 46.4 mph
  • Birmingham New Street and Sheffield – 77.6 miles – One hour and 18 minutes – 59.7 mph

Note.

  1. The Leeds and Sheffield services are run by 125 mph Class 220 trains.
  2. The Notting service is run by 100 mph Class 170 trains.
  3. All trains are diesel-powered.

As there is 125 mph running between Derby and Birmingham, the train performance probably accounts for the slower average speed of the Nottingham service.

CrossCountry And Decarbonisation

Consider.

  • CrossCountry has an all-diesel fleet.
  • All train companies in the UK are planning on decarbonising.
  • Some of CrossCountry’s routes are partially electrified and have sections where 125 mph running is possible.

The only standard train that is built in the UK that would fit CrossCountry’s requirements, would appear to be one of Hitachi’s 125 mph trains like a bi-mode Class 802 train.

  • These trains are available in various lengths
  • Hitachi will be testing battery packs in the trains in the next year, with the aim of entering service in 2023.
  • Hitachi have formed a company with ABB, which is called Hitachi ABB Power Grids to develop and install discontinuous electrification.

When CrossCountry do replace their fleet and run 125 mph trains on these services several stations will be connected to Birmingham for High Speed Two.

The route between Leeds and Birmingham via Sheffield is part of the Cross Country Route, for which electrification appears to have planned in the 1960s according to a section in Wikipedia called Abortive British Rail Proposals For Complete Electrification,

I suspect that the following times could be achieved with a frequency of two tph

  • Birmingham New Street and Leeds – 90 minutes
  • Birmingham New Street and Nottingham – 60 minutes
  • Birmingham New Street and Sheffield – 60 minutes

It is not the Eastern Leg of High Speed Two, but it could do in the interim.

Electrification Of The Midland Main Line

I don’t believe that the Midland Main Line needs full electrification to speed up services to Derby, Nottingham and Sheffield, but I believe that by fitting batteries to Hitachi’s Class 810 trains, that will soon be running on the line and using the Hitachi ABB Power Grids system of discontinuous electrification, that the route can be decarbonised.

I would also apply full digital in-cab signalling to the Midland Main Line.

Conclusion

We will need the Eastern Leg of High Speed Two at some time in the future, but if we do the following we can do more than cope.

  • Create Northern Powerhouse Rail between Manchester and Leeds, so that High Speed Two can serve Leeds and Hull via Manchester.
  • Decarbonise CrossCountry with some 125 mph battery-electric trains.
  • Electrify the Midland Main Line.

I would also deliver as much as possible before Phase 1 and 2a of High Speed Two opens.

 

August 24, 2021 Posted by | Transport/Travel | , , , , , , , , , , , | 4 Comments

DfT and Arriva CrossCountry Sign Agreement

The title of this post, is the same as that of this article on Railway News.

This is the introductory paragraph.

The franchisee CrossCountry, which is owned by Arriva, has signed a three-year agreement with the Department for Transport to bring the franchise in line with the Emergency Recovery Measures Agreements (ERMAs).

CrossCountry has the following trains in its fleet.

34 x Class 220 trains

24 x Class 221 trains

This gallery shows Class 220 trains and the closely related Class 222 trains, which are in service with East Midlands Railways.

Note that these three fleets of Bombadier Voyager trains are now twenty years old and will probably need a makeover soon.

If they have a problem it is that they are diesel multiple units and create a lot of noise and pollution in stations and depots.

This is said in the Railway News article.

One element of this new contract is a focus on reducing the environmental impact of the operator’s diesel fleet.

, Two separate projects are mentioned.

  • Using a separate electrical supply to Turbostars during cleaning.
  • Use of on-train batteries on the Voyagers in stations.

In Have Bombardier Got A Cunning Plan For Voyagers?, I gave my thoughts on the second project, when Bombardier proposed it in 2018.

I can see the following scenario happening.

  • When the new Class 805 trains are delivered, Avanti West Coast’s Class 220 trains are transferred to Arriva CrossCountry.
  • When the new Class 810 trains are delivered, East Midland Railway’s Class 222 trains are transferred to Arriva CrossCountry.
  • CrossCountry update their Voyagers with batteries.
  • CrossCountry retire their InterCity 125 trains.

CrossCountry may have enough trains to run a mainly Voyager fleet, backed up by a few Turbostars.

Could Bombardier’s Plan Be Revived In A Different Form?

If CrossCountry had all the Voyages, they would have the following fleet.

  • 34 x four-car Class 220 trains – Currently with CrossCountry.
  • 20 x five-car Class 221 trains – Currently with Avanti West Coast
  • 20 x five-car Class 221 trains – Currently with CrossCountry
  • 4 x four-car Class 221 trains – Currently with CrossCountry
  • 6 x seven-car Class 222 trains – Currently with East Midlands Trains
  • 17 x five-car Class 222 trains – Currently with East Midlands Trains
  • 4 x four-car Class 222 trains – Currently with East Midlands Trains

This totals to eighty-five trains with a total of 285 intermediate cars, of which 128 were built with tilt for Class 221 trains.

Currently CrossCountry has a total of 58 four- and five-car Voyagers and enough Class 43 power cars for six InterCity 125 trains.

If they rearranged the non-tilting intermediate cars of the Voyagers, 157 intermediate cars is enough for one of the following.

  • 78 – four-car trains
  • 52 – five-car trains
  • 39 – six-car trains
  • 26 – eight-car trains
  • 22 – nine-car trains

Add in forty five-car Class 221 trains and there is more than enough trains for CrossCountry to run their current services without the retired InterCity 125s.

CrossCountry would also be able to form the trains into the lengths they needed for efficient services.

This formation photographed at Basingstoke could be formed of a single train, if they wished, as they have more than enough coaches.

I suspect in true design engineering fashion, engineers at CrossCountry have got the toy trains or Lego bricks out to shuffle the coaches on a big table to see what are the best train lengths for their network.

If they decided to go the eight-car route, which could give up to twenty-six trains, this would be more than enough to be able to retire the InterCity 125s.

Could one of the Intermediate cars be converted into a pantograph and battery car?

  • If the diesel engine and the associated gubbins were to be removed, this would save around two tonnes in weight.
  • A two-tonne battery could probably have a capacity of 200 kWh.
  • Bombardier probably have ideas about how a car could be converted.

Someone could have a lot of fun playing musical carriages and the following trains could be created.

  • A fleet of Voyager bi-mode  trains of optimum length for CrossCountry’s route network.
  • Most services would be run by single trains, which must give advantages to the operator, their staff and passengers.
  • All braking would be regenerative braking to battery to save energy.
  • Where electrification exists, the trains could use it.
  • All station stops would be performed on battery power.

There might even be some left over driving cars and some intermediate cars to be converted into battery electric trains for another route.

Conclusion

There is a route there for CrossCountry to have a much more environmentally-friendly fleet, better suited to their needs

  • The Turbostars would be given a local electricity supply to cut noise and pollution during overnight cleaning.
  • The InterCity 125s would be retired.
  • CrossCountry acquires as many Voyagers as it needs after Avanti West Coast and East Midlands Railway get their new trains.
  • The Voyagers carriages would be shuffled so that they could handle all routes and replace the InterCity 125s.
  • The design exists to convert the Voyagers into diesel-electric-battery tri-mode high speed trains.

Note.

  1. There are enough trains to do a gradual conversion, with CrossCountry having enough trains for a full service at all times.
  2. All trains will probably have been built this century or nearly so!

I also feel, that the fleet would be a marketing asset, rather than a bit of a discouragement to use CrossCountry’s services again.

 

 

 

October 16, 2020 Posted by | Transport/Travel | , , , , , , , , , | 5 Comments

CrossCountry’s Bournemouth And Manchester Piccadilly Service

Whilst I was at Basingstoke station yesterday one of CrossCountry‘s services between Bournemouth and Manchester Piccadilly came through, so I took these pictures.

It was a long formation of Class 220 trains.

Could This Service Be Replaced By Hitachi Regional Battery Trains?

This Hitachi infographic gives the specification of the Hitachi Regional Battery Train.

I feel that in most condition, the range on battery power can be up to 56 miles.

I can break the Bournemouth and Manchester Piccadilly route into a series of legs.

  • Bournemouth and Basingstoke – 60 miles – 750 VDC third-rail electrification
  • Basingstoke and Reading – 15.5 miles – No electrification
  • Reading and Didcot North Junction – 18 miles – 25 KVAC overhead electrification
  • Didcot North Junction and Oxford – 10 miles – No electrification
  • Oxford and Banbury – 22 miles – No electrification
  • Banbury and Leamington Spa – 20 miles – No electrification
  • Leamington Spa and Coventry – 10 miles – No electrification
  • Coventry and Manchester Piccadilly – 101 miles – 25 KVAC overhead electrification

Note.

  1. 63 % of the route is electrified.
  2. The short 15.5 mile gap in the electrification between Basingstoke and Reading should be an easy route for running on battery power.
  3. But the 62 mile gap between Didcot North Junction and Coventry might well be too far.

The train would also need to be able to work with both types of UK electrification.

If some way could be found to bridge the 62 mile gap reliably, Hitachi’s Regional Battery Trains could work CrossCountry’s service between Bournemouth and Manchester Piccadilly.

Bridging The Gap

These methods could possibly  be used to bridge the gap.

A Larger Battery On The Train

If you look at images of MTU’s Hybrid PowerPack, they appear to show a basic engine module with extra battery modules connected to it.

Will Hitachi and their battery-partner; Hyperdrive Innovation use a similar approach, where extra batteries  can be plugged in as required?

This modular approach must offer advantages.

  • Battery size can be tailored to routes.
  • Batteries can be changed quickly.

The train’s software would know what batteries were fitted and could manage them efficiently.

I wouldn’t be surprised to see Hitachi’s Regional Battery Train able to handle a gap only six miles longer than the specification.

Battery And Train Development

As Hitachi’s Regional Battery Train develops, the following should happen.

  • Useable battery capacity will increase.
  • The train will use less electricity.
  • Actions like regenerative braking will improve and recover more electricity.
  • Driving and train operating strategies will improve.

These and other factors will improve the range of the train on batteries.

A Charging Station At Banbury Station

If some form of Fast Charge system were to be installed at Banbury station, this would enable a train stopping at Banbury to take on enough power to reliably reach Oxford or Coventry depending, on their final destination.

This method may add a few minutes to the trip, but it should work well.

Electrification Of A Section Of The Chiltern Main Line

This could be an elegant solution.

I have just flown my helicopter between Bicester North and Warwick Parkway stations and these are my observations.

  • The Chiltern Main Line appears to be fairly straight and has received a top class Network Rail makeover in the last couple of decades.
  • There are a couple of tunnels, but most of the bridges are new.
  • Network Rail have done a lot of work on this route to create a hundred mph main line.
  • It might be possible to increase the operating speed, by a few mph.
  • The signalling also appears modern.

My untrained eye, says that it won’t be too challenging to electrify between say Bicester North station or Aynho Junction in the South and Leamington Spa or Warwick Parkway stations in the North. I would think, that the degree of difficulty would be about the same, as the recently electrified section of the Midland Main Line between Bedford and Corby stations.

The thirty-eight miles of electrification between Bicester North and Warwick Parkway stations would mean.

  • The electrification is only eight-and-a-half miles longer than Bedford and Corby.
  • There could be journey time savings.
  • As all trains stop at two stations out of Banbury, Leamington Spa, Warwick and Warwick Parkway, all pantograph actions could be performed in stations, if that was thought to be preferable.
  • Trains would be able to leave the electrification with full batteries.
  • The electrification may enable some freight trains to be hauled between Didcot and Coventry or Birmingham using battery electric locomotives.

Distances of relevance from the ends of the electrification include.

  • London Marylebone and Bicester North stations – 55 miles
  • London Marylebone and Aynho junction – 64 miles
  • Didcot North and Aynho junctions – 28 miles
  • Leamington Spa and Coventry stations – 10 miles
  • Leamington Spa and Birmingham Snow Hill stations – 23 miles
  • Leamington Spa and Stratford-upon-Avon stations – 15 miles
  • Warwick Parkway and Birmingham New Street stations – 20 miles
  • Warwick Parkway and Birmingham Snow Hill stations – 20 miles
  • Warwick Parkway and Kidderminster – 40 miles
  • Warwick Parkway and Stratford-upon-Avon stations – 12 miles

These figures mean that the following services would be possible using Hitachi’s Regional Battery Train.

  • Chiltern Railways – London Marylebone and Birmingham Moor Street
  • Chiltern Railways – London Marylebone and Birmingham Snow Hill
  • Chiltern Railways – London Marylebone and Kidderminster
  • Chiltern Railways – London Marylebone and Stratford-upon-Avon
  • CrossCountry – Bournemouth and Manchester Piccadilly
  • CrossCountry – Southampton Central and Newcastle
  • Midlands Connect – Oxford and Birmingham More Street – See Birmingham Airport Connectivity.

Other services like Leicester and Oxford via Coventry may also be possible.

As I see it, the great advantage of this electrification on the Chiltern Main Line is that is decarbonises two routes with the same thirty-eight miles of electrification.

Conclusion

CrossCountry’s Bournemouth And Manchester Piccadilly service could be run very efficiently with Hitachi’s proposed Regional Battery Train.

My preferred method to cross the electrification gap between Didcot North junction and Coventry station would be to electrify a section of the Chiltern Main Line.

  • The electrification would be less than forty miles.
  • I doubt it would be a challenging project.
  • It would also allow Hitachi’s proposed trains to work Chiltern Main Line routes between London Marylebone and Birmingham.

I am fairly certain, that all passenger services through Banbury would be fully electric.

 

August 15, 2020 Posted by | Transport/Travel | , , , , , , , , , , , , | Leave a comment

Beeching Reversal – Unlocking Capacity And Services Through Bramley (Hants)

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

Bramley Station

Bramley (Hants) station is on the  Reading-Basingstoke Line, which is 15.5 miles long.

  • The line is double-track.
  • Bramley station is the nearest one to Basingstoke station.
  • The two stations are about five miles apart.
  • The basic local service is two trains per hour (tph), with trains taking a few minutes under half-an-hour.
  • The speed limit is listed in Wikipedia at 75 mph and my Class 165 train was travelling at about 60 mph on both journeys between Basingstoke and Bramley stations.

This Google Map shows Bramley station.

Note the level crossing, just to the North of the station.

These are some pictures, that I took, whilst I spent about thirty minutes at Bramley station.

Note

  1. In the thirty minutes, I was at the station, two long freight trains and three passenger trains came through.
  2. The level crossing barriers were going up and down like a whore’s drawers.
  3. Each level crossing closure resulted in long queues at the barriers.

It reminded me how bad the level crossing at Brimsdown station used to be in the Peak in 1966, when I crossed it twice every day to go to and from work at Enfield Rolling Mills. At least I was on two wheels and it gave me a break from pedalling!

There is more on the problems of the level crossing on this article on the Bramley Parish Council web site, which is entitled Living With Our Level Crossing.

Current Future Plans For the Reading-Basingstoke Line

The Wikipedia entry for the Reading-Basingstoke Line has a Future section, where this is said.

The railway is listed with Network Rail as part of route 13, the Great Western main line, and was due to be electrified with 25 kV overhead wiring by 2017 as part of the modernisation of the main line.[8] In July 2007, plans were agreed to build a station in Reading south of Southcote Junction in the Green Park business park, serving the southern suburbs of Reading and also the Madejski Stadium. Construction of Reading Green Park railway station was expected to be completed in 2010; the plans were suspended in 2011, but were reinstated in 2013. It is now set to open by the end of 2020[9], with electrification along the line at a later date.

It is my view, that the new Reading Green Park station will probably mean that four tph between Reading and Basingstoke stations will be needed. especially if a second new station were to be built at Chineham.

But four tph would probably be impossible, without improving the traffic of both rail and road through Bramley.

Solving The Level Crossing Problem

Ideally, the level crossing should be closed and the road diverted or put on a bridge,

If you look at a wider map of the area, building a by-pass to enable road traffic to avoid the crossing will be difficult if not impossible.

But this is not an untypical problem on rail networks and not just in the UK.

I suspect that with precise train control using digital ERTMS  signalling, trains and level crossing closures can be timed to improve traffic on both road and rail.

Consider.

  • If trains crossed on the level crossing and they were under precise control, this would reduce the number of level crossing closures per hour.
  • If the line speed was higher and the trains ran faster, this should ease timetabling, as there could be more train paths per hour.
  • Faster accelerating electric trains would save time too, by shortening station dwell times.
  • A third track might be laid in places.
  • The signalling could possibly drive the train or tell the driver exactly what speed to travel, so trains passed on the crossing or in the station.

As Network Rail and their contractors roll-out ERTMS, they’ll discover better and more intelligent ways to deploy the system.

Electric Trains Would Help

Electric trains accelerate faster and if they use regenerative braking to batteries, this cuts station dwell times.

But powering them by electrification would mean the connecting lines between the Reading and Basingstoke Lines and the nearest electrified lines would also have to be electrified.  This would make the scheme excessively expensive.

But Battery Electric Trains Could Be Better!

I believe that battery electric trains, would be a more-than-viable alternative.

  • You still get the performance advantages of electric trains.
  • With charging at just one end of the route, a battery electric train could run a round trip on battery power.

The big advantage, would be that the only new electrification infrastructure needed would be to charge the trains.

Charging Battery Electric Trains At Reading Station

Reading is a fully electrified station and the shuttle trains to and from Basingstoke station, appear to use Platform 2.

This Google Map shows electrification gantries over Platforms 1, 2 and 3 at Reading station.

Note.

  1. The route between Reading station and Southcote junction, where the Basingstoke and Newbury routes divide, may be under two miles, but it is fully electrified.
  2. Trains take three minutes to travel between Reading station and Southcote junction.
  3. Trains wait for up to twenty minutes in the platform at Reading station.

It would appear that trains get enough time at Reading to fully charge the batteries.

Charging Battery Electric Trains At Basingstoke Station

The shuttle trains between Reading and Basingstoke stations, appear to use Platform 5 in Basingstoke station.

This Google Map shows Platform 5 at Basingstoke station.

Platform 5 is towards the top of the map and contains a two-car train.

These pictures show the platform.

Note.

  1. There would appear to be space on the North side of Platform 5 to install another platform, if one should be needed.
  2. It appears from the Google Map, that Platform 5 could take a four-car train.
  3. The platform is wide and spacious for passengers.
  4. I suspect a Fast Charge system of some sort could be installed in this platform.

As at Reading, trains can take around twenty minutes to turn back at Basingstoke, which would be ideal for a battery charge.

What Trains Could Work The Shuttle?

After South Western Railway‘s interim Managing Director; Mark Hopwood’s comments, that led me to write Converting Class 456 Trains Into Two-Car Battery Electric Trains, these trains must be a possibility.

I also think, that as both South Western Railway and Great Western Railway are both First Group companies, there won’t be too much argument about who supplies the trains for the shuttle.

CrossCountry Trains Between Reading And Basingstoke

CrossCountry will need to replace their Class 220 trains with electric or bi-mode trains soon, to meet the dates for decarbonisation.

The prime candidate must be a dual-voltage version of Hitachi’s Regional Battery Train, which could easily work the 15.5 miles between Reading and Basingstoke on battery power, after charging up on the electrification at both ends.

The trains could also be easily fitted with the ERTMS signalling equipment that will be required to go smoothly along the line.

Freight Trains Between Reading And Basingstoke

We might see this section of the UK rail network, electrified for freight, but as it would require lots of connecting electrification, I think it is more likely that freight locomotives will be powered by an alternative fuel like hydrogen or bio-diesel. This would cut electrification needs, but still reduce carbon emissions.

Freight locomotives are already being fitted with the required ERTMS signalling equipment.

 

Conclusion

I am absolutely sure, that there’s a technological solution in there, that can increase the number of trains through Bramley.

But diverting the road traffic and clossing the level crossing would appear to be difficult.

 

 

August 14, 2020 Posted by | Transport/Travel | , , , , , , , , , | 3 Comments