The Anonymous Widower

Northern Seeks Battery-Hybrid Class 195 Variant

The title of this post, is the same as that of this article on Railway Gazette.

This is the introduction to the article.

Northern Trains is seeking to introduce a battery-diesel hybrid version of its CAF Class 195 diesel multiple-units.

The article makes these points.

  • The trains will be used on the lines modernised under the TransPennine Upgrade.
  • Offers for trains with finance is being requested.
  • Technology similar to Chiltern Rail’s Class 165 Hydrive train from Magtec would be ideal.

But I am not sure that this is the right train.

In How Much Electrification Will There Be In The TransPennine Route Upgrade?, I came to this conclusion.

By electrifying all the lines in the TransPennine Upgrade, it would allow all the stopping and slower services to be run by battery-electric trains.

I also said that battery-electric trains from both Hitachi and CAF had enough range to work all the TransPennine routes.

Given that I had my first ride in a battery-electric train in 2015, they have certainly been a long time coming.

It’s almost, as if the Men from the Ministry believe that battery trains will be inferior to diesel.

January 13, 2022 Posted by | Transport/Travel | , , , , , | 43 Comments

More On Batteries On Class 802 Trains

In the December 2021 Edition there’s an article called Battery Trial For TPE ‘802’.

Class 802 trains are now involved in two battery trials.

This article puts some flesh of the bones of the two trials.

It is hoped that replacing one diesel engine (generator unit) with a battery pack will enable the following.

  • Reduction of carbon emissions by at least 20 %.
  • Reduction of fuel consumption.
  • The ability to rely on battery power when entering and leaving stations to reduce noise pollution and emissions.

This paragraph explains a possible way the trains will be operated.

Another option is to use the battery to provide ‘classic’ hybridisation efficiency, allowing most diesel running to be done fuel-efficiently under two engines rather than three. In this case, the battery module would provide top-up power for peak demand and give regenerative braking capability when operating in diesel mode, which the trains currently do not have.

This is one of the aims of the GWR trial and I suspect anybody, who has owned and/or driven a hybrid car will understand Hitachi’s thinking.

The next paragraph is very revealing.

To fully test the 6m-long, 2.2m-wide battery module, the intention is for it to be flexibly programmable in order for different approaches to charging, including from the overhead line power supply, diesel engines and during braking , to be evaluated.

It looks to me that Hyperdrive Innovation will earn their fees for the battery design and manufacture.

This picture shows the underneath of a Class 802 train.

Note.

  • The car is 26 metres long
  • The car is 2.75 metres wide.
  • The MTU 12V 1600 diesel engines, fitted to a Class 802 train, each weigh around two tonnes.
  • The engines have a power output of 700 kW

I would think that the 6 x 2.2 m battery would fit under the car easily.

As an engineer, who has evaluated all sorts of weight and balance problems, I would make the battery similar in weight to the diesel engine. This would mean that the existing mountings for the diesel engine  should be able to support the battery pack. It would also probably mean that the handling of a car with a diesel engine and one with a battery pack should be nearer to being identical.

Tesla claim an energy density of 250 Wh/Kg for their batteries, which would mean a battery with the weight of one of the diesel engines could have a capacity of around 500 kWh.

As a Control Engineer, I believe that Hitachi and Hyperdrive Innovation have a tricky problem to get the algorithm right, so that the trains perform equally well under all conditions. But with a good simulation and lots of physical testing, getting the algorithm right is very much a solvable problem.

The article says this about the reliability of the diesel engines or generator units (GU) as Hitachi call them.

Whilst reliability of the generator units (GU) has improved, operators of the bi-mode sets still report frequent issues  which see sets ending their daily diagram with one out of use.

I wonder, if battery packs will improve reliability.

From statements in the article, it looks like Hitachi, MTU and the train operating companies are being cautious.

The article also says this about the design of the battery packs.

The battery pack has been designed so it is a like-for-like replacement for a GU, which can maintain or improve performance, without compromising on seats or capacity.

I have always said it would be plug-and-play and this would appear to confirm it.

How Will The Batteries Be Charged?

I showed this paragraph earlier.

To fully test the 6m-long, 2.2m-wide battery module, the intention is for it to be flexibly programmable in order for different approaches to charging, including from the overhead line power supply, diesel engines and during braking , to be evaluated.

GWR and TPE run their Class 802 trains to several stations without electrification. and they will probably need some method of charging the battery before leaving the station.

This is Hitachi’s infographic for the Hitachi Intercity Tri-Mode Battery Train.

Note.

  1. This infographic was published with the Hitachi press release announcing the development of the tri-mode train for GWR.
  2. One diesel engine has been replaced by a battery pack.
  3. Charging the battery can be under wires or 10-15 minutes whilst static.
  4. At some stations like Exeter St. Davids, Penzance, Plymouth or Swansea, heavily-laden services might need the assistance of batteries to get up to operating speed.

The infographic released with the Hitachi press release announcing the trials for TPE.

It is similar, but it says nothing about charging.

So how will these trains be charged in stations like Hull, Middlesbrough. Penzance, Scarborough and Swansea, so they leave on their return journey with a full battery?

Consider.

  • The formation of a five-car Class 802 train is DPTS-MS-MS-MC-DPTF.
  • Pantographs appear to be on both driver cars.
  • The middle three cars have diesel engines.
  • Only the middle three cars have traction motors.
  • There is probably a high-capacity electrical bus running the length of the train, to enable electricity to power all the cars from either or both paragraphs, when running on an electrified line.

The simplest way to charge the batteries would probably be to install a short lengthy of 25 KVAC overhead electrification in the station and then to charge the batteries the driver would just raise the pantograph and energise the electrical bus, which would then feed electricity to the batteries.

I wrote about Furrer + Frey’s Voltap charging system in Battery Train Fast Charging Station Tested. This charging system would surely work with Hitachi’s designs as batteries can be charged from overhead electrification.

Conclusion

I suspect that Hitachi will achieve their objectives of saving fuel and cutting emissions.

But there is more than this project to just replacing one diesel engine with a battery pack  and seeing what the savings are.

It appears that the battery packs could have an effect on train reliability.

If the battery packs are truly like-for-like with the diesel engines, then what will be effect of replacing two and three diesel engines in a five-car Class 802 train with battery packs.

Will it be possible to develop an ability to setup the train according to the route? It’s only similar to the way Mercedes probably set up Lewis Hamilton’s car for each circuit.

But then the speed Formula One cars lap Silverstone is not that different to the maximum speed of a Hitachi Class 802 train.

 

November 26, 2021 Posted by | Transport/Travel | , , , , , , , , , , | 9 Comments

Hitachi Rail And Angel Trains To Create Intercity Battery Hybrid Train On TransPennine Express

The title of this post, is the same as that of this Press Release from Hitachi Rail.

The press release starts with these three points.

  • Hitachi Rail, Angel Trains and TransPeninne Express (TPE) agree to trial retrofitting battery on intercity train
  • Trial, starting next year, can cut fuel usage by at least 20% and reduce emissions on Transpennine network from 2022 onwards
  • Tri-mode service can cut noise pollution in urban areas and improve air quality.

Hitachi also point to this infographic.

This very much looks to be a step forward from the Intercity Tri-Mode Battery Train that was announced in December 2020 in this press release from Hitachi which is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

The Intercity Tri-Mode Battery Train is described in this Hitachi infographic.

The specifications are very similar, except for the following.

  • The battery range is given as five kilometres.
  • Fuel savings are up to 30% instead of at least 20%.
  • A performance increase of 30 % is claimed.
  • The upgrade appears to be able to be fitted to Hitachi intercity trains, as opposed to a straight replacement of one engine by batteries.

It looks to me, that Hitachi have been working hard to improve their design.

I think this paragraph of the press release is key.

The trial will see a diesel engine replaced by batteries to help power a five-carriage train, along with the two remaining engines. The power provided by the batteries will help to reduce the amount of fuel required to operate the train.

Hitachi don’t say, but I suspect the trains and their batteries have a lot of energy saving features.

  • Regenerative braking is already used to power some services like lighting and air-conditioning on the trains.
  • But I suspect regenerative braking will also be used to recharge the batteries.
  • A sophisticated computer system will drive the train in the most optimal manner.
  • Hopefully, diesel will only be used as a last resort.

Features like these and others will enable the trains to jump gaps in the electrification. As more and more tricks are added and batteries hold more charge, the gaps the trains will be able to cross will get larger.

Five kilometres might not sound much, but I think it could be surprisingly useful.

I will use an example from the Midland Main Line to illustrate how the trains and discontinuous electrification might work.

In Discontinuous Electrification Through Leicester Station, I described the problems at Leicester station and how discontinuous electrification could solve the problem.

The following is a modified extract from that post.

This Google Map shows the bridge and the Southern end of the station.

It looks to me, that Leicester station and the road, would have to be closed to traffic for some time, if the bridge were to be rebuilt, to allow the erection of electrification through the area. Leicester and all train passengers would love that!

A solution could be discontinuous electrification.

  • The electrification from the South, would finish on the South side of bridge.
  • The electrification from the North, would finish at a convenient point in Leicester station or just to the North.
  • Electric trains would cover the gap of up to five kilometres on battery power.

Note.

Pantographs could be raised and lowered, where the wires exist.

Trains would probably use a stopping profile in Leicester station, that ensured they stopped with full batteries.

This would mean they had enough electricity to get back up to speed and reconnect to the electrification on the other side of the station.

To get an idea at how long five kilometres is in the Centre of Leicester, this Google Map shows the Leicester station.

Note that the platforms are around three hundred metres long.

In other words the electrification can be kept well away from the station and its troublesome bridge.

How much money would be saved and disruption avoided?

Application To The TransPennine Express Routes

These are the various routes, where Class 802 trains could be used.

Liverpool Lime Street And Edinburgh, Newcastle, Scarborough Or York

Sections are as follows.

  • Liverpool Lime Street and Manchester Victoria – 31.7 miles – Electrified
  • Manchester Victoria and Stalybridge – 8 miles – Electrified probably by 2024
  • Stalybridge and Huddersfield – 18 miles – Diesel
  • Huddersfield and Dewsbury – 8 miles – Electrified probably by 2024
  • Dewsbury and Leeds – 9.2 miles – Diesel
  • Leeds and York – 25.6 miles – Electrified probably by 2024
  • York and Newcastle – 80.2 miles – Electrified

Note.

  1. All services take a common route between Liverpool Lime Street and York.
  2. A surprising amount is electrified.
  3. A further 42 miles are being electrified.
  4. The 3 km Morley Tunnel between Dewsbury and Leeds might not be electrified.
  5. The 5 km  Standedge Tunnel between Huddersfield and Stalybridge might not be electrified.

It looks to me that the 5 km battery range will avoid electrification of two long Victorian tunnels.

Manchester Airport And Newcastle Or Redcar Central

Sections are as follows.

  • Manchester Airport and Manchester Victoria – 13.2 miles – Electrified
  • Manchester Victoria and Stalybridge – 8 miles – Electrified probably by 2024
  • Stalybridge and Huddersfield – 18 miles – Diesel
  • Huddersfield and Dewsbury – 8 miles – Electrified probably by 2024
  • Dewsbury and Leeds – 9.2 miles – Diesel
  • Leeds and York – 25.6 miles – Electrified probably by 2024
  • York and Newcastle – 80.2 miles – Electrified
  • Northallerton and Redcar Central – 29 miles – Diesel

The route goes through the Morley and Standedge tunnels.

Manchester Piccadilly And Hull

Sections are as follows.

  • Manchester Piccadilly and Stalybridge – 7.5 miles – Electrified probably by 2024
  • Stalybridge and Huddersfield – 18 miles – Diesel
  • Huddersfield and Dewsbury – 8 miles – Electrified probably by 2024
  • Dewsbury and Leeds – 9.2 miles – Diesel
  • Leeds and Selby – 21 miles – Diesel
  • Selby and Hull – 31miles – Diesel

The route goes through the Morley and Standedge tunnels.

Manchester Piccadilly And Huddersfield

The route goes through the Standedge tunnel.

Huddersfield And Leeds

The route goes through the Morley tunnel.

Manchester Airport And Cleethorpes

The Hope Valley Line which is part of this route has three tunnels.

Perhaps they will use a bit of diesel to get through Totley.

The Future

This paragraph sums up what Hitachi and Angel Trains could see as a possible future direction.

Once complete, the trial provides a pathway for Hitachi Rail, the train builder and maintainer, and Angel Trains, the train’s owner to develop plans to retrofit batteries to the wider fleet.

These plans will probably go in the directions like decarbonisation, more efficient operation and better standards for passengers.

Conclusion

This looks like a solution that has been helped by real ale in an appropriate hostelry.

  • The battery range has been chosen so Network Rail don’t necessarily have to electrify the tunnels.
  • Full electrification can be used either side of the tunnels.
  • Will any stations not be electrified. After all if the trains are using battery power in stations do they need electrification?
  • It might be useful to have some more bi-mode freight locomotives, that could traverse the tunnels on diesel or batteries.

Hitachi and Network Rail certainly seem to be cooking up a solution.

 

 

 

November 10, 2021 Posted by | Transport/Travel | , , , , , , , , , | 7 Comments

Thor Point

In his Informed Sources column in the August 2021 Edition of Modern Railways, Roger Ford has a section with the same sub-title as this post.

He discusses what is to happen to the Class 22x fleets of 125 mph diesel trains and then says this about Project Thor, which was an idea of a few years back.

I still believe the addition of a pantograph transformer car to convert a ‘22x’ to a bi-mode has even more potential than the first time round. Routes operated by the CrossCountry ‘22x’ should be early candidates for electrification, and bi-modes are a simple way of boosting the benefits of electrification.

Project Thor is described in a section in the Wikipedia entry for the Voyager train, which is entitled Proposed Conversion To Electrical Operation. This is said.

In 2010 Bombardier proposed the conversion of several Voyager multiple units into hybrid electric and diesel vehicles capable of taking power from an overhead pantograph (electro-diesels EDMUs). The proposal was named Project Thor.

It appears that, one of the reasons the project foundered was that Bombardier had no capability to make steel carriages in the UK.

In the July 2018 Edition of Modern Railways, there is an article entitled Bi-Mode Aventra Details Revealed.

A lot of the article takes the form of reporting an interview with Des McKeon, who is Bombardier’s Commercial |Director and Global Head of Regional and Intercity.

This is a paragraph.

He also confirmed Bombardier is examining the option of fitting batteries to Voyager DEMUs for use in stations.

Nothing more was said.

In the three years since that brief sentence, technology has moved on.

Perhaps most significantly, Hitachi have launched the Hitachi Intercity Tri-Mode Battery Train, which is described in this Hitachi infographic.

Note that one engine is replaced with batteries.

My engineering experience, leads me to believe that Hitachi’s battery pack supplier; Hyperdrive Innovation, is developing a battery-pack that is plug-compatible with the MTU diesel engine, so that batteries and diesel engines can be swapped as required.

For this to be possible, there needs to be a power bus connecting all carriages of the train.

  • This is common practice in the design of electric multiple units.
  • I am certain this power bus exists on the Hitachi Class 800 trains as they have pantographs on both driver cars and all the motor cars are between the driver cars. So it is needed to supply power to the train.
  • A power-bus could be used in a diesel-electric multiple unit like the Voyager, to ensure that in the case of engine failure in one of the cars, the car would still be supplied with hotel power.

Are the Bombardier Voyagers designed with a similar power bus?

If they are, I wonder, if one of the intermediate cars could be converted as follows.

  • Replace the diesel engine and electrical generator with a plug-compatible battery pack of an appropriate size.
  • Fit a lightweight pantograph in the roof of the train.
  • Squeeze in all the electrical gubbins like a transformer underneath the train.

It would probably be a challenging piece of engineering, but if there is sufficient space under the train it should be possible.

But the outcome would be a genuine 125 mph bi-mode multiple unit.

August 15, 2021 Posted by | Transport/Travel | , , , | 13 Comments

First Passenger Journey In The UK With mtu Hybrid PowerPack

The title of this post, is the same as that of this press release from Rolls-Royce.

This is the first paragraph.

The mtu Hybrid-PowerPack has passed another milestone successfully: In the UK, a train with mtu hybrid drive carried passengers for the first time as part of a special journey.

So how did mtu, a German manufacturer of large diesel engines for trains and ships, end up in bed with Rolls-Royce?

Wikipedia says this.

MTU Friedrichshafen remained a subsidiary of DaimlerChrysler until 2006 when it was sold off to the EQT IV private equity fund, becoming a part of the Tognum Corporation.

Rolls-Royce Holdings and Daimler AG acquired Tognum in 2011. In 2014, Tognum was renamed Rolls-Royce Power Systems, having become a 100 per cent subsidiary of Rolls-Royce Holdings.

A bit tortuous, to say the least!

This paragraph from the press release describes the journey.

The journey of the train – called HybridFLEX – was part of celebrations to mark the 25th anniversary of UK rail operator Chiltern Railways, which will use the train on its routes. It is a converted Turbostar DMU, which was previously equipped with a conventional mtu drive system.

It doesn’t sound very special, but it’s the equivalent of taking your BMW, Jaguar or Mercedes from twenty years ago and converting it to a full hybrid car with batteries, to assist the diesel engine.

Fuel and emission savings of 25 per cent are claimed, with the additional benefit that the train will not use the diesel engines in stations or sensitive areas.

In HybridFLEX Battery-Diesel Train Continues Programme Of Testing, I said this.

In the UK, the following diesel multiple units are fitted with modern MTU engines and could be candidates from a replacement power pack.

That is a total of 990 diesel engines.

As some of the Class 196 and Class 197 trains have yet to be delivered, I do wonder, if it would be sensible to deliver them as diesel-battery hybrid trains.

That is a lot of diesel engines, that could be replaced by MTU Hybrid Power Packs.

Conversions of other trains are also ongoing in Germany and Ireland.

This article from Rolls-Royce, is entitled  Hybrid Train Trials and gives a lot more details.

This is a quote from the article on fuel savings.

A fuel saving of 15 per cent is a
fantastic result and means that under
optimum conditions, 20 to 25
per cent should be possible. 

The savings certainly fit with Chiltern’s findings.

I have a few questions.

Can Locomotive Size PowerPacks Be Built?

As an engineer, I don’t see why not!

And there is certainly a need for them to cut diesel usage and carbon emissions with locomotives.

Conclusion

These conversions could be a very good interim solution.

 

July 25, 2021 Posted by | Transport/Travel | , , , , , | 26 Comments

HybridFLEX Battery-Diesel Train Continues Programme Of Testing

The title of this post, is the same as that of this article on Global Railway Review.

This is the first two paragraphs.

The HybridFLEX battery-diesel train is currently undertaking a programme of tests between Duffield and Wirksworth, prior to returning to Chiltern Railways in the summer.

Fitted with a Rolls Royce MTU hybrid drive, the HybridFLEX will cut noise emissions in stations and deliver zero emissions when operating under battery power.

All seems to be going well, according to the article.

I like the concept, as to replace a diesel engine with a diesel-battery hybrid power pack must surely be a sensible way to at least partially decarbonise.

In the UK, the following diesel multiple units are fitted with modern MTU engines and could be candidates from a replacement power pack.

That is a total of 990 diesel engines.

As some of the Class 196 and Class 197 trains have yet to be delivered, I do wonder, if it would be sensible to deliver them as diesel-battery hybrid trains.

 

 

May 29, 2021 Posted by | Transport/Travel | , , , , , | 3 Comments

Trimode Class 93 Locomotives Ordered By Rail Operations (UK)

The title of this post, is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Stadler and Rail Operations (UK) Ltd have signed a framework agreement for the supply of 30 Class 93 trimode locomotives, with an initial batch of 10 scheduled for delivery in early 2023.

Note that the order may have been a long time coming, but it is now for thirty locomotives. In this article on Rail Magazine from December 2018, which is entitled Rail Operations Fuels its Ambitions With Tri-Mode Class 93s, only ten locomotives were to be ordered.

A Few More Details

This article on Rail Engineer, which is entitled, Re-Engineering Rail Freight, gives a few more details about the operation of the Class 93 locomotives.

It says this about operation in electric mode.

In electric mode, the batteries are charged when braking or from the transformer. As the batteries use the space occupied by the braking resistors in the Class 88, when the batteries are fully charged, the locomotive has only its friction brake.

This about operation in diesel-hybrid mode.

In diesel/battery hybrid mode, the batteries are charged both as the train brakes and by the diesel engine when it is not operating under full load. When the train accelerates, the batteries give it the extra power needed to get up to speed. This is a significant benefit as accelerating a freight train of over 1,000 tonnes up to its operating speed can take several minutes.

This is said about the batteries and their effect on performance.

It has two Lithium Titanate Oxide liquid-cooled battery packs, which have a rapid charge and discharge rate. These each have a 40kWh capacity with a peak power of 200kW. Thus, whilst the train is accelerating, the Class 93 will have a peak power of 1,300kW for up to ten minutes, which is almost twice that of a Class 88 in diesel mode.

The batteries would appear to be quite small when you consider, that Vivarail are talking about 424 KWh in one of their Class 230 trains.

This is said about performance.

As a result, the 86-tonne Class 93 is capable of hauling 1,500 tonnes on non-electrified routes and 2,500 tonnes on electrified routes. With a route availability (RA) of seven, it can be used on most of the rail network.

It may not be the largest of locomotives, but it could have a very high performance.

I have a few thoughts.

Regenerative Braking Performance

The Rail Engineer  article says this about the Class 93 locomotive.

  • The train has a total of 80 kWh of battery storage to store braking energy.
  • The locomotive weighs 86 tonnes
  • It can haul 1,500 tonnes on non-electrified lines.

Using a train weight of 1586 tonnes and Omni’s Kinetic Energy Calculator, gives a kinetic energy of 8 kWh at 42.6 mph.

Does this mean that the locomotive is designed to trundle around the countryside at around forty mph?

These are timings from Real Time Trains.

  • Haughley Junction and Ely – 40 miles – 60 minutes – 40 mph
  • Werrington Junction and Doncaster – 86 miles – 130 minutes – 40 mph
  • Werrington Junction and Nuneaton – 67 miles – 123 minutes – 32.7 mph
  • Southampton and Oxford – 74 miles – 120 minutes – 37 mph

There will be savings compared to the current diesel timings, with a Class 93 locomotive.

  • Either side of these sections, the locomotive can use electric power to cut pollution, noise and carbon emissions.
  • Stops and starts on sections without electrification will save diesel and cut carbon emissions.
  • The train will be faster on electrified sections.

I also feel that with its smaller diesel engine, it will be able to maintain similar timings to current trains hauled by Class 66, Class 68 and Class 70 locomotives.

It can haul 2,500 tonnes on non-electrified lines.

Assuming a train weight of 2586 tonnes, the train energy at various speeds is as follows.

  • 40 mph – 114 kWh
  • 60 mph – 258 kWh
  • 80 mph – 459 kWh
  • 100 mph – 718 kWh
  • 110 mph – 868 kWh

Am I right to assume that once the batteries are full, the regenerative braking energy can be returned through the catenary to power other trains?

Operation With 750 VDC Third Rail Electrification

Will some locomotives be fitted with third-rail shoes to work into and out of Southampton?

They would not need to use diesel between and Basingstoke.

Access To Ports And Rail Freight Terminals

I recently wrote Rail Access To The Port Of Felixstowe.

Looking in detail at Felixstowe and how trains will serve the port, this was my conclusion.

I very much feel, that the specification of the Class 93 locomotive with its trimode capability is ideal for working to and from ports and freight terminals.

Looking at the specification, I am certain, that these locomotives can haul a heavy freight train out of Felixstowe on diesel, with help from the batteries.

  • The distance without electrification is around fifteen miles.
  • It takes around thirty minutes.
  • It is fairly flat Suffolk countryside with the possible exception of the climb over Spring Road Viaduct.

The batteries would need to be charged and surely in Felixstowe’s case the best way would be to electrify the two single track access routes between Trimley station and the Port.

  • On leaving, the trains would pass Trimley with full batteries.
  • They could also be at line speed after accelerating using the two miles or so of electrification.
  • They could also enter the Port with full batteries, after charging the batteries on the short length of electrification.

The batteries may be large and powerful enough, to enable diesel free operations in the Port.

Does this partially explain the increase in the order for Class 93 locomotives? There’s not really been a genuine Last-Mile locomotive in the UK before.

Enabling Carbon-Free Ports And Rail Freight Terminals

Regularly, I read reports of ports wanting to do carbon-free.

Class 93 locomotives can help the process, by not using their diesel engines in ports and rail freight terminals.

It might just need a short length of electrification between the port or terminal and the main line, to make sure batteries are fully-charged.

But not at London Gateway!

This Google Map shows the couple of kilometres of track without electrification, that connects London Gateway to the electrified route through East Tilbury station.

London Gateway would appear to be ready for low or possibly zero-carbon access, using Class 93 locomotives.

High Speed Freight Trains

Consider.

  • These Class 93 locomotives will have an operating speed of 110 mph, when running on electrified lines.
  • Currently, many multimode freight trains run at speeds of under 90 mph, as Class 66 locomotives don’t have the power to go faster and the wagons carrying the containers have a lower speed limit.

So with new or refurbished wagons capable of travelling at 110 mph, there will be speed improvements in some containerised freight.

As an example of what happens on the UK rail network, at the present time, I have found a freight train that goes between Felixstowe and Coatbridge near Glasgow,

  • The route is via Ipswich, London, The North London Line and the West Coast Main Line.
  • It can weigh 1600 tonnes.
  • The distance is 483 miles.
  • The service takes around 16 hours.
  • With the exception of between Felixstowe and Ipswich, the route is fully electrified.

I estimate that if this service could run at up to 100 mph on the Great Eastern Main Line and up to 110 mph on the West Coast Main Line, that several hours could be saved.

Electrification Gap Bridging

As I indicated earlier, I believe these Class 93 locomotives will be able to haul a freight train out of Felixstowe to the electrified Great Eastern Main Line.

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I gave a list of typical gaps in the electrification in the UK.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

How many of these gaps could be bridged by a Class 93 locomotive working in a diesel hybrid mode?

Stadler have not confirmed the size of the battery, but have said that it can provide 400 kW of power, which gives a maximum of 1.3 MW, when the batteries are working as afterburners for the diesel engine!

If the article in Rail Engineer is correct, I feel there is a high chance, that a Class 93 locomotive can bridge these gaps, with a load of 1500 tonnes in tow.

It is worth looking at current timings between Haughley Junction and Ely, when hauled by a Class 66 locomotive.

  • The distance is around 40 mph
  • The time taken is around an hour.
  • A Class 66 locomotive would put 2.2 MW at the rail.

This locomotive could need up to 2.2 MWh to bridge the gap.

But I don’t believe that a forty mile gap will be impossible for a Class 93 locomotive.

  • Stadler will have all the performance data of the bi-mode Class 88 locomotive to draw on.
  • The Class 93 locomotive has regenerative braking to help charge the batteries at any stops.
  • Several of the large electrification gaps on the UK rail network are in the flat lands of East Anglia and Lincolnshire.
  • Modern control systems would be able to eke out the power of the batteries.

I wouldn’t be surprised to find that Stadler have had an objective to design a locomotive that can perform like a Class 66 locomotive for two hours.

Conclusion

If Stadler get the specification, performance and reliability of this locomotive right, they will sell a lot of locomotives for operations like these! And not just in the UK!

 

 

January 16, 2021 Posted by | Transport/Travel | , , , , , | 4 Comments

Hitachi Targets Next Year For Testing Of Tri-Mode IET

The title of this post, is the same as that of this article on Rail Magazine.

This is the first two paragraphs.

Testing of a five-car Hitachi Class 802/0 tri-mode unit will begin in 2022, and the train could be in traffic the following year.

It is expected that the train will save more than 20% of fuel on Great Western Railway’s London Paddington-Penzance route.

This is the Hitachi infographic, which gives the train’s specification.

I have a few thoughts and questions.

Will The Batteries Be Charged At Penzance?

Consider.

  • It is probably not a good test of customer reaction to the Intercity Tri-Mode Battery Train, if it doesn’t work on batteries in stations through Cornwall.
  • Every one of the eight stops in Cornwall will need an amount of battery power.
  • London trains seem to take at least half-an-hour to turn round at Penzance.
  • London trains seem to take around 7-13 minutes for the stop at Plymouth.

So I think, that batteries will probably need to be charged at Penzance and possibly Plymouth, to achieve the required battery running,

There is already sufficient time in the timetable.

A charging facility in Penzance station would be a good test of Hitachi’s method to charge the trains.

Will Hyperdrive Innovation’s Battery Pack Be A Simulated Diesel Engine?

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

So will Hyperdrive Innovation’s battery-packs have the same characteristics as the diesel engines that they replace?

  • Same instantaneous and continuous power output.
  • Both would fit the same mountings under the train.
  • Same control and electrical power connections.
  • Compatibility with the trains control computer.

I think they will as it will give several advantages.

  • The changeover between diesel engine and battery pack could be designed as a simple overnight operation.
  • Operators can mix-and-match the number of diesel engines and battery-packs to a given route.
  • As the lithium-ion cells making up the battery pack improve, battery capacity and performance can be increased.
  • If the computer, is well-programmed, it could reduce diesel usage and carbon-emissions.
  • Driver conversion from a standard train to one equipped with batteries, would surely be simplified.

As with the diesel engines, all battery packs could be substantially the same across all of Hitachi’s Class 80x trains.

How Many Trains Can Eventually Be Converted?

Great Western Railway have twenty-two Class 802/0 trains.

  • They are five-cars.
  • They have three diesel engines in cars 2, 3 and 4.
  • They have a capacity of 326 passengers.
  • They have an operating speed of 125 mph on electrification.
  • They will have an operating speed of 140 mph on electrification with in-cab ERTMS digital signalling.
  • They have an operating speed of 110 mph on diesel.
  • They can swap between electric and diesel mode at line speed.

Great Western Railway also have these trains that are similar.

  • 14 – nine-car Class 802/1 trains
  • 36 – five-car Class 800/0 trains
  • 21 – nine-car Class 800/3 trains

Note.

  1. The nine-car trains have five diesel engines in cars 2,3, 5, 7 and 8
  2. All diesel engines are similar, but those in Class 802 trains are more powerful, than those in Class 800 trains.

This is a total of 93 trains with 349 diesel engines.

In addition, there are these similar trains in service or on order with other operators.

Note.

  1. Class 801 trains have one diesel engine for emergency power.
  2. Class 803 trains have no diesel engines, but they do have a battery for emergency power.
  3. Class 805 trains have an unspecified number of diesel engines. I will assume three.
  4. Class 807 trains have no batteries or diesel engines.
  5. Class 810 trains have four diesel engines.

This is a total  of 150 trains with 395 diesel engines.

The Rail Magazine finishes with this paragraph.

Hitachi believes that projected improvements in battery technology, particularly in power output and charge, could enable diesel engines to be incrementally replaced on long-distance trains.

Could this mean that most diesel engines on these Hitachi trains are replaced by batteries?

Five-Car Class 800 And Class 802 Trains

These trains are mainly regularly used to serve destinations like Bedwyn, Cheltenham, Chester, Harrogate, Huddersfield, Hull, Lincoln, Oxford and Shrewsbury, which are perhaps up to fifty miles beyond the main line electrification.

  • They have three diesel engines, which are used when there is no electrification.
  • I can see many other destinations, being added to those reached by the Hitachi trains, that will need similar trains.

I suspect a lot of these destinations can be served by five-car Class 800 and Class 802 trains, where a number of the diesel engines are replaced by batteries.

Each operator would add a number of batteries suitable for their routes.

There are around 150 five-car bi-mode Hitachi trains in various fleets in the UK.

LNER’s Nine-Car Class 800 Trains

These are mainly used on routes between London and the North of Scotland.

In LNER Seeks 10 More Bi-Modes, I suggested that to run a zero-carbon service to Inverness and Aberdeen, LNER might acquire rakes of carriages hauled by zero-carbon hydrogen electric locomotives.

  • Hydrogen power would only be used North of the current electrification.
  • Scotland is looking to have plenty of hydrogen in a couple of years.
  • No electrification would be needed to be erected in the Highlands.
  • InterCity 225 trains have shown for forty years, that locomotive-hauled trains can handle Scottish services.
  • I also felt that the trains could be based on a classic-compatible design for High Speed Two.

This order could be ideal for Talgo to build in their new factory at Longannet in Fife.

LNER’s nine-car Class 800 trains could be converted to all-electric Class 801 trains and/or moved to another operator.

There is also the possibility to fit these trains with a number of battery packs to replace some of their five engines.

If the planned twenty percent fuel savings can be obtained, that would be a major improvement on these long routes.

LNER’s Class 801 Trains

These trains are are all-electric, but they do have a diesel engine for emergencies.

Will this be replaced by a battery pack to do the same job?

  • Battery packs are probably cheaper to service.
  • Battery packs don’t need diesel fuel.
  • Battery packs can handle regenerative braking and may save electricity.

The installation surely wouldn’t need too much test running, as a lot of testing will have been done in Class 800 and Class 802 trains.

East Coast Trains’ Class 803 Trains

These trains have a slightly different powertrain to the Class 801 trains. Wikipedia says this about the powertrain.

Unlike the Class 801, another non-bi-mode AT300 variant which despite being designed only for electrified routes carries a diesel engine per unit for emergency use, the new units will not be fitted with any, and so would not be able to propel themselves in the event of a power failure. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies would face a failure.

The trains are in the process of being built, so I suspect batteries can be easily fitted.

Could it be, that all five-car trains are identical body-shells, already wired to be able to fit any possible form of power? Hitachi have been talking about fitting batteries to their trains since at least April 2019, when I wrote, Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires.

  • I suspect that Hitachi will use a similar Hyperdrive Innovation design of battery in these trains, as they are proposing for the Intercity Tri-Mode Battery Train.
  • If all trains fitted with diesel engines, use similar MTU units, would it not be sensible to only use one design of battery pack?
  • I suspect, that as the battery on a Class 803 train, will be mainly for emergency use, I wouldn’t be surprised to see that these trains could be the first to run in the UK, with a battery.
  • The trains would also be simpler, as they are only battery-electric and not tri-mode. This would make the software easier to develop and test.

If all trains used the same battery pack design, then all features of the pack, would be available to all trains to which it was fitted.

Avanti West Coast’s Class 805 Trains

In Hitachi Trains For Avanti, which was based on an article with the same time in the January 2020 Edition of Modern Railways, I gave this quote from the magazine article.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

Note.

  1. Hitachi use diesel engines with different ratings in Class 800 and Class 802 trains, so can probably choose something suitable.
  2. The Class 805 trains are scheduled to be in service by 2022.
  3. As they are five-cars like some Class 800 and Class 802 trains will they have the same basic structure and a powertrain with three diesel engines in cars 2, 3 and 4?

I think shares a basic structure and powertrain will be very likely, as there isn’t enough time to develop a new train.

I can see that as Hitachi and Great Western Railway learn more about the performance of the battery-equipped Class 802 trains on the London and Penzance route, that batteries could be added to Avanti West Coast’s Class 805 trains. After all London Euston and North Wales and London Paddington and Cornwall are routes with similar characteristics.

  • Both routes have a high speed electrified section out of London.
  • They have a long section without electrification.
  • Operating speeds on diesel are both less than 100 mph, with sections where they could be as low as 75 mph.
  • The Cornish route has fifteen stops and the Welsh route has seven, so using batteries in stations will be a welcome innovation for passengers and those living near the railway.

As the order for the Avanti West Coast trains was placed, whilst Hitachi were probably designing their battery electric upgrade to the Class 800 and Class 802 trains, I can see batteries in the Class 805 trains becoming an early reality.

In Hitachi Trains For Avanti, I also said this.

Does the improvement in powertrain efficiency with smaller engines running the train at slower speeds help to explain this statement from the Modern Railways article?

Significant emissions reduction are promised from the elimination of diesel operation on electrified sections as currently seen with the Voyagers, with an expected reduction in CO2 emissions across the franchise of around two-thirds.

That is a large reduction, which is why I feel, that efficiency and batteries must play a part.

Note.

  1. The extract says that they are expected savings not an objective for some years in the future.
  2. I have not done any calculations on how it might be achieved, as I have no data on things like engine size and expected battery capacity.
  3. Hitachi are aiming for 20 % fuel and carbon savings on London Paddington and Cornwall services.
  4. Avanti West Coast will probably only be running Class 805 trains to Chester, Shrewsbury and North Wales.
  5. The maximum speed on any of the routes without electrification is only 90 mph. Will less powerful engines be used to cut carbon emissions?

As Chester is 21 miles, Gobowen is 46 miles, Shrewsbury is 29.6 miles and Wrexham General is 33 miles from electrification, could these trains have been designed with two diesel engines and a battery pack, so that they can reach their destinations using a lot less diesel.

I may be wrong, but it looks to me, that to achieve the expected reduction in CO2 emissions, the trains will need some radical improvements over those currently in service.

Avanti West Coast’s Class 807 Trains

In the January 2020 Edition of Modern Railways, is an article, which is entitled Hitachi Trains For Avanti.

This is said about the ten all-electric Class 807 trains for Birmingham, Blackpool and Liverpool services.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It may go against Hitachi’s original design philosophy, but not carrying excess weight around, must improve train performance, because of better acceleration.

I believe that these trains have been designed to be able to go between London Euston and Liverpool Lime Street stations in under two hours.

I show how in Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?

Consider.

  • Current London Euston and Liverpool Lime Street timings are two hours and thirteen or fourteen minutes.
  • I believe that the Class 807 trains could perhaps be five minutes under two hours, with a frequency of two trains per hour (tph)
  • I have calculated in the linked post, that only nine trains would be needed.
  • The service could have dedicated platforms at London Euston and Liverpool Lime Street.
  • For comparison, High Speed Two is promising one hour and thirty-four minutes.

This service would be a Marketing Manager’s dream.

I can certainly see why they won’t need any diesel engines or battery packs.

East Midland Railway’s Class 810 Trains

The Class 810 trains are described like this in their Wikipedia entry.

The Class 810 is an evolution of the Class 802s with a revised nose profile and facelifted end headlight clusters, giving the units a slightly different appearance. Additionally, there will be four diesel engines per five-carriage train (versus three on the 800s and 802s), and the carriages will be 2 metres (6.6 ft) shorter.

In addition, the following information has been published about the trains.

  • The trains are expected to be capable of 125 mph on diesel.
  • Is this speed, the reason for the fourth engine?
  • It is planned that the trains will enter service in 2023.

I also suspect, that like the Class 800, Class 802 and Class 805 trains, that diesel engines will be able to be replaced with battery packs.

Significant Dates And A Possible Updating Route For Hitachi Class 80x Trains

I can put together a timeline of when trains are operational.

  • 2021 – Class 803 trains enter service.
  • 2022 – Testing of prototype Intercity Tri-Mode Battery Train
  • 2022 – Class 805 trains enter service.
  • 2022 – Class 807 trains enter service.
  • 2023 – First production Intercity Tri-Mode Battery Train enters service.
  • 2023 – Class 810 trains enter service.

Note.

  1. It would appear to me, that Hitachi are just turning out trains in a well-ordered stream from Newton Aycliffe.
  2. As testing of the prototype Intercity Tri-Mode Battery Train proceeds, Hitachi and the operators will learn how, if batteries can replace some or even all of the diesel engines, the trains will have an improved performance.
  3. From about 2023, Hitachi will be able to design tri-mode trains to fit a customer’s requirements.
  4. Could the powertrain specification of the Class 810 trains change, in view of what is shown by the testing of the prototype Intercity Tri-Mode Battery Train?
  5. In parallel, Hyperdrive Innovation will be building the battery packs needed for the conversion.

Batteries could be fitted to the trains in three ways,

  • They could be incorporated into new trains on the production line.
  • Batteries could be fitted in the depots, during a major service.
  • Trains could be returned to Newton Aycliffe for battery fitment.

Over a period of years as many trains as needed could be fitted with batteries.

Conclusion

I believe there is a plan in there somewhere, which will convert many of Hitachi’s fleets of trains into tri-mode trains with increased performance, greater efficiency and less pollution and carbon emissions.

 

 

January 8, 2021 Posted by | Transport/Travel | , , , , , , , | 3 Comments

Thoughts On Batteries In East Midland Railway’s Class 810 Trains

Since Hitachi announced the Regional Battery Train in July 2020, which I wrote about in Hyperdrive Innovation And Hitachi Rail To Develop Battery Tech For Trains, I suspect things have moved on.

This is Hitachi’s infographic for the Regional Battery Train.

Note.

  1. The train has a range of 90 km/56 miles on battery power.
  2. Speed is given at between 144 kph/90 mph and 162 kph/100 mph
  3. The performance using electrification is not given, but it is probably the same as similar trains, such as Class 801 or Class 385 trains.
  4. Hitachi has identified its fleets of 275 trains as potential early recipients.

It is also not stated how many of the three diesel engines in a Class 800 or Class 802 trains will be replaced by batteries.

I suspect if the batteries can be easily changed for diesel engines, operators will be able to swap diesel engines and battery packs according to the routes.

Batteries In Class 803 Trains

I first wrote about the Class 803 trains for East Coast Trains in Trains Ordered For 2021 Launch Of ‘High-Quality, Low Fare’ London – Edinburgh Service, which I posted in March 2019.

This sentence from Wikipedia, describes a big difference between Class 803 and Class 801 trains.

Unlike the Class 801, another non-bi-mode AT300 variant which despite being designed only for electrified routes carries a diesel engine per unit for emergency use, the new units will not be fitted with any, and so would not be able to propel themselves in the event of a power failure. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies would face a failure.

Nothing is said about how the battery is charged. It will probably be charged from the overhead power, when it is working.

The Intercity Tri-Mode Battery Train

Hitachi announced the Intercity Tri-Mode Battery Train in this press release in December 2020.

This is Hitachi’s infographic for the Intercity Tri-Mode Battery Train.

Note.

  1. The train is battery-powered in stations and whilst accelerating away.
  2. It says that only one engine will be replaced by batteries.
  3. Fuel and carbon savings of 20 % are claimed.

Nothing has been said in anything, I’ve read about these trains, as to whether there is regenerative braking to batteries. I would be very surprised if fuel and carbon savings of 20 % could be attained without regenerative braking to batteries.

In Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?, I discussed the question in the title.

This is a shortened version of what I said in that post.

If you type “Class 800 regenerative braking” into Google, you will find this document on the Hitachi Rail web site, which is entitled Development of Class 800/801 High-speed Rolling Stock for UK Intercity Express Programme.

If you search for brake in the document, you find this paragraph.

In addition to the GU, other components installed under the floor of drive cars include the traction converter, fuel tank, fire protection system, and brake system.

Note that GU stands for generator unit.

The document provides this schematic of the traction system.

Note that BC which is described as battery charger.

Is that for a future traction battery or a smaller one used for hotel power as in the Class 803 train?

As a Control and Electrical Engineer, it strikes me that it wouldn’t be the most difficult problem to add a traction battery to the system.

From what Hitachi have indicated in videos, it appears that they are aiming for the battery packs to be a direct replacement for the generator unit.

Generator Unit Arrangement In Class 810 Trains

When I wrote Rock Rail Wins Again!, which was about the ordering of these trains, the reason for four engines wasn’t known.

It now appears, that the extra power is needed to get the same 125 mph performance on diesel.

The formation of a five-car Class 802 train is as follows.

DPTS-MS-MS-MC-DPTF

Note.

  1. The three generator units are in the three middle cars.
  2. The three middle cars are motored.
  3. The two driver cars are trailer cars.

How are Hitachi going to put four generator units into the three middle cars?

  • I wonder if, the engines can be paired, with some auxiliaries like fuel-tanks and radiators shared between the generators.
  • A well-designed pair might take up less space than two singles.
  • A pair could go in the centre car and singles either side.

It will be interesting to see what the arrangement is, when it is disclosed.

Is there the possibility, that some of the mathematics for the Intercity Tri-Mode Battery Train has indicated that a combination of generator units and battery packs can give the required 125 mph performance?

  • Battery packs could need less space than diesel generators.
  • Regenerative braking could be used to charge the batteries.
  • How far would the train be able to travel without electrification?
  • Trains would not run the diesel engines in the station.
  • Could the fuel and carbon savings of 20 %, that are promised for the Intercity Tri-Mode Battery Train, be realised?

There may be a train buried in the mathematics, that with some discontinuous electrification could handle the East Midlands Railway Intercity services, that generates only a small amount of carbon!

Would A Mix Of Diesel Generators And Battery Packs Enable 125 mph Running?

Consider.

  • The trial Intercity Tri-Mode Battery Train intended for the London Paddington and Penzance route, will probably have two diesel generators and a battery pack according to what Hitachi have said in their infographic for the Intercity Tri-Mode Battery Train.
  • East of Plymouth some of the stretches of the route are challenging, which resulted in the development and ordering of Class 802 trains, that are more powerful, than the Class 800 trains used on easier routes.
  • An Intercity Tri-Mode Battery Train with two diesel generators and a battery pack, needs to be as powerful as a Class 802 train with three diesel generators.
  • So effectively does that mean that in the right installation with top class controlling software, that in fast running, a battery pack can be considered equivalent to a diesel generator?

I don’t know, but if it’s possible, it does bring other advantages.

  • Fuel and carbon savings of 20 %
  • No diesel running in stations or whilst accelerating away.
  • Better passenger environment.

Configurations of 3-plus-1 and 2-plus 2 might be possible.

 

 

December 27, 2020 Posted by | Transport/Travel | , , , , , , , | 5 Comments

Diesel-Battery Hybrid TER Train To Be Tested Next Year

The title of this post, is the same as that of this article on Railway Gazette International.

These are the two introductory paragraphs.

Testing of a Coradia Polyvalent electro-diesel regional trainset fitted with a battery hybrid traction system is to begin early next year and passenger services are planned for 2022, Alstom has announced.

Two of the trainset’s four diesel engines are to be replaced by lithium-ion batteries, which will be used to recover and store braking energy for reuse. It is hoped that this will reduce energy consumption and greenhouse gas emissions by 20%, as well as reducing operating and maintenance costs.

Other points from the article.

  • Testing is planned for 2021, with service entry, the year after.
  • There are 300 of these Polyvalent trains in service.
  • TER trains will stop using diesel by 2030.
  • France intends to run its last diesel train in 2035.

It looks like Alstom are using a similar approach to that of Hitachi in the UK.

It looks like the French are ahead of us in the decarbonisation timetable for rail.

December 2, 2020 Posted by | Transport/Travel | , , , , | Leave a comment