The Anonymous Widower

Financing For 135 Hybrid Trainsets Agreed

The title of this post, is the same as this article on Railway Gazette International.

This is the introductory paragraph.

The European Investment Bank agreed a €450m financing package on July 23 which will support Trenitalia’s plans to order 135 electric-diesel-battery hybrid regional multiple-units at total cost of €960m.

The trains are from Hitachi’s Caravaggio family and will be built in their Italian plant at Pistoia. Their operation is described in this sentence.

They will use conventional overhead electrification where available, with ‘cutting-edge’ engines for operation onto non-electrified routes as well as batteries to eliminate emissions for the ‘last mile’ and in urban areas.

That sounds extremely sophisticated to me.

Is The Powertrain Technology Transferrable To The UK?

I have republished this post with a link to the original article, as it occurs to me, that Avanti West Coast, East Midlands Railway, Great Western Railway. LNER and other train operating companies could be in need of a train with a sophisticated Diesel/Electric/Battery Hybrid powertrain.

So will Hitachi be using a powertrain like this in the UK?

 

July 27, 2020 Posted by | Finance, Transport | , , , | 2 Comments

Iarnród Éireann Orders Stage V MTU PowerPacks

The title of this post, is the same as that as this article on Railway Gazette International.

The IE 22000 Class trains appear to be the main rolling stock of Irish Rail.

The Railway Gazette International article describes in detail how MTU are updating the standard diesel engines in these trains with their latest Hybrid PowerPacks.

The aim is to achieve a reduction of over thirty percent in both fuel consumption and carbon dioxide emissions.

From reading the article, it doesn’t appear to be a challenging project, once the testing is complete.

It does appear that MTU seem to get these conversion projects right.

Progress On The Porterbrook HybridFLEX Project

There is another engine conversion project, that uses MTU PowerPacks, underway in the UK, which I wrote about in Rolls-Royce And Porterbrook Launch First Hybrid Rail Project In The UK With MTU Hybrid PowerPacks, in September 2018.

Porterbrook call it the HybridFLEX project. I wonder how it is getting on.

This article on Diesel and Gas Turbine Worldwide, which is entitled Ricardo Leading Hybrid Train Project In UK, is the last reference I can find in January 2019.

As there are over two hundred trains, that can be converted in the UK, I’m looking forward to the rolling out of Porterbrook’s HybridFLEX project.

I suspect operators are too, as they’d like to save all that diesel.

July 27, 2020 Posted by | Transport | , , , | 1 Comment

Our Sustainability Journey

The title of this post, is the same as that of this press release on the Rolls-Royce web site.

It is sub-titled.

Paul Stein’s Thoughts On Sustainability And Electrification

Paul Stein is Rolls-Royce’s Chief Technology Officer, so what he says is important.

This press release was the source of the information behind Distributed Propulsion ‘Maybe The Only Means’ For Small Electric Flight Progress, which I wrote about Rolls-Royce’s beer keg-sized 2.5 MW generator.

This is the third paragraph.

We’ve taken great steps at Rolls-Royce with our three-pillar sustainability approach of developing the gas turbine to even greater efficiency, supporting the introduction of Sustainable Aviation Fuel and creating new, disruptive technologies such as electrification.

These are definitely, the three pillars of wisdom, when it comes to sustainable aviation.

E-Fan X

This paragraph is Paul Stein’s view of the E-Fan X.

One of the great endeavours in the latter category has been our E-Fan X programme in partnership with Airbus. From our side, this has involved creating a hybrid-electric power generation system at a scale never previously seen in our industry, comprised of an embedded AE2100 gas turbine driving a 2.5MW generator and 3000V power electronics and an electric propulsion unit. What has been particularly encouraging has been the amount of industry interest and support for this programme, and I know everyone at Rolls-Royce and Airbus has been truly grateful for that.

He states that the E-Fan  has now concluded, but a several valuable lessons have been learned.

2.5 MW Generator

He describes the generator like this.

Amongst the many great achievements from E-Fan X has been the generator – about the same size as a beer keg – but producing a staggering 2.5 MW. That’s enough power to supply 2,500 homes and fully represents the pioneering spirit on this project.

The press release discloses that the heart of this staggering generator is a Rolls-Royce AE2100 gas turbine, which powers the latest version of the legendary Lockheed Hercules; the C-130J Super Hercules.

Wikipedia gives this data for the AE2100D2 version of the engine.

  • Length – three metres
  • Diameter – 0.73 metres
  • Weight – 783 kilograms
  • Maximum Power Output – 3458 kW
  • Fuel Consumption – 0.25/kW/h

It looks like in the E-Fan X application, the engine is not at full power.

Use With Aviation Biofuel

Aviation Biofuel is described like this in the first sentences of its Wikipedia entry.

Aviation biofuel is a biofuel used for aircraft. It is considered by some to be the primary means by which the aviation industry can reduce its carbon footprint. After a multi-year technical review from aircraft makers, engine manufacturers and oil companies, biofuels were approved for commercial use in July 2011.

But it doesn’t necessarily mean growing large amounts of crops and converting it to the fuel. Altalto, who are backed by British Airways, Shell, Oxford University and the British Government are building a plant at Immingham to convert household and industrial waste into aviation biofuel.

I would expect that Rolls-Royce have made sure that the generator will work with aviation biofuel.

A Memory Of Emergency Power Generation

About twenty-five years, there was a major power failure after a thunder storm, where I lived in Suffolk and C and myself went to bed in the dark. We awoke to full power in the morning, after a good night’s sleep with no disturbance.

Imagine my surprise, when I let the dogs out to find parked in the field in front of the house, a very large articulated truck.

I was greeted by an engineer, who asked if I minded, his generator in my field. I seem to remember my response was to offer him a cup of tea, which he refused, as he said he had everything he needed in the truck.

It turned out that the main sub-station for the area had received a direct lightning strike and had been destroyed. So to supply power to all the nearby villages, as my farm was at the end of the supply, it was the most convenient place to plug in a transportable gas-turbine generator. The generator was in the field for about ten days and the whole operation impressed me with its professionalism.

But with this new 2.5 MW generator from Rolls-Royce, there would only need to be a small 3.5 tonne four-wheeled truck, to include the generator, fuel and living quarters for the engineer

We have made a lot of progress in twenty-five years.

A Modern Railway Locomotive

The power of this new Class 68 diesel locomotive, that was built in Spain, by Swiss company Stadler is a very healthy 2,800 kW.

Consider these facts about a Class 68 locomotive.

  • Thirty-four of these locomotives have been produced for the UK.
  • They are powered by a Caterpillar C175-16 engine, which weighs thirteen tonnes.
  • The transmission of these locomotives is electric, which means that the diesel engine drives a generator and the train is driven by electric traction motors.
  • The locomotive is equally at home hauling intermodal freight trains and passenger trains for Chiltern Railways or TransPennine Express.
  • According to Wikipedia, Class 68 locomotives comply with Stage III A of the European emission standards but not Stage III B. But that is much better than most of our noisy, smelly and polluting diesel locomotives.

Class 68 locomotives are members of the UKLight family of locomotives, which contains, these two other locomotives.

  • Already in service is the Class 88 locomotive, which is a bi-mode locomotive, which is capable of running on electrification or the on-board 0.7 MW diesel engine.
  • Under development is the Class 93 locomotive, which is a tri-mode 110 mph locomotive, which is capable of running on electrification, the on-board 0.7 MW diesel engine or battery power.

Stadler seem to be able to mix-and-match various power sources to provide versatile and highly-desirable locomotives.

I feel it would be feasible to design a railway locomotive with the following power sources.

  • 25 KVAC  overhead or 750 VDC third-rail electrification, providing up to perhaps the four MW of a Class 88 locomotive.
  • A Rolls-Royce gas-turbine generator running on aviation biofuel, providing up to perhaps three MW.
  • Batteries up to a weight of perhaps ten tonnes.

I am sure that it could handle many of the routes still run with diesel locomotives in the UK.

  • It would handle all locomotive-hauled passenger services and would be electric-only in stations.
  • It certainly solves the problem of hauling long intermodal freight trains between Felixstowe and the Midlands and the North.
  • To handle the heaviest stone and aggregate trains, it might need a more powerful generator, but I’m sure Rolls-Royce would oblige.

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I gave a list of routes, that would need to be handled by a battery electric locomotive.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

Will Rolls-Royce’s generator be able to supply 2.5 MW for up to four hours?

This would need two-and-a-half tonnes of aviation biofuel, which would be around 3,200 litres, which could be carried in the 5,000 litre tank of a Class 68 locomotive.

It certainly seems feasible to replace diesel locomotives with gas-turbine locomotives running on aviation biofuel, to reduce net carbon emissions and reduce noise and pollution.

But this is not just a UK problem and many countries, who rely on diesel-hauled rail freight, would look seriously at such a locomotive.

Underfloor Mounting In Passenger Trains

These pictures show the space underneath a Hitachi Class 800 train.

The red cap visible in some pictures is the filler for the oil or diesel for the MTU 12V 1600 R 80L diesel engine used to power the trains away from electrification.

This diesel engine has this specification.

  • It produces 560 kW of power.
  • It weighs around six tonnes.
  • Its is about 4 x 2.5 x 1 metres in size.

The diesel engine produces about a fifth of the power as the gas-turbine generator, which is also smaller and very much lighter in weight.

It should also be noted, that a nine-car Class 800 train has five of these MTU diesel engines.

At a first glance, it would appear Hitachi could find one of Rolls-Royce’s gas-turbine generators very useful.

  • It might even enable self-powered high speed trains to run on lines without electrification at speeds well in excess of 140 mph.
  • I can certainly see, High Speed Two’s classic-compatible trains having one or possibly two of these generators, so they can extend services on lines without electrification.

We shouldn’t forget that one version of British Rail’s Advanced Passenger Train was to be gas-turbine powered.

A Class 43 Diesel Power-Car

Rolls-Royce would need a test-bed for a trial rail application of their 2.5 MW generator and there is probably no better trial vehicle, than one of the numerous Class 43 power-cars waiting to be scrapped. They could probably obtain a complete InterCity 125, if they wanted one for a realistic weight, test equipment and a second power-car for comparison and rescue.

But seriously, if we are going to remove diesel from UK railways by 2040, a solution needs to be found for the GWR Castles, ScotRail’s Inter7Citys and NetworkRail’s New Measurement Train.

One of the great advantages of these staggering (Rolls-Royce’s Chief Technology Officer’s word, not mine!) generators is that they are controlled by Full Authority Digital Engine Control or FADEC.

FADEC will give the pilots in a Hercules or other aircraft, all the precise control they need and I doubt Rolls-Royce will leave FADEC out of their gas turbine generator, as it would give the operator or driver extremely precise control.

A driver of a GWR Castle equipped with two gas-turbine power-cars, would be able to do the following.

  • Adjust the power to the load and terrain, with much more accuracy, than at present.
  • Shut the engines down and start them quickly, when passing through sensitive areas.
  • Cut carbon-dioxide emissions, by simply using a minimum amount of fuel.

I would put a battery in the back of the Class 43, to provide hotel power for the passenger coaches.

Running current MTU engines in the Class 43s, on biodiesel is surely a possibility, but that not an elegant engineering solution. It also doesn’t cut carbon emissions.

As there are still over a hundred Class 43s in service, it could even be a substantial order.

It should also be noted, that more-efficient and less-polluting MTU engines were fitted in Class 43s from 2005, so as MTU is now part of Rolls-Royce, I suspect that Rolls-Royce have access to all the drawings and engineers notes, if not the engineers themselves

But it would be more about publicity for future sales around the world, with headlines like.

Iconic UK Diesel Passenger Trains To Receive Green Roll-Royce Jet Power!

COVID-19 has given Rolls-Royce’s aviation business a real hammering, so perhaps they can open up a new revenue stream by replacing the engines of diesel locomotives,

A Class 55 Locomotive

Why Not?

A Class 55 locomotive is diesel electric and there are thousands of diesel locomotives in the world, built to similar basic designs, that need a more-efficient and more environmentally-friendly replacement for a dirty, smelly, noisy and polluting diesel power-plant.

Marine Applications

The Wikipedia entry for the Cat C175, says this.

The Cat C175 is often used in locomotives and passenger-class ships.

I suspect there will be marine applications for the gas-turbine generator.

Conclusion

I’m very certain that Rolls-Royce’s pocket power station has a big future.

Who said that dynamite comes in small parcels?

 

 

July 19, 2020 Posted by | Energy, Transport | , , , , , , , , , , | 6 Comments

Thoughts On The Actual Battery Size In Class 756 Trains And Class 398 Tram-Trains

A Freedom of Information Request was sent to Transport for Wales, which said.

Please confirm the battery capacity and maximum distance possible under battery power for the Tram/Train, 3 & 4 Car Flirts.

The reply was as follows.

The batteries on the new fleets will have the following capacities: –

  • Class 756 (3-car) Flirt – 480 kWh
  • Class 756 (4-car) Flirt – 600 kWh
  • Class 398 tram-trains – 128 kWh

I will now have thoughts on both vehicles separately.

Class 756 Trains

In More On Tri-Mode Stadler Flirts, I speculated about the capacity of the batteries in the tri-mode Stadler Flirts, which are now called Class 756 trains, I said this.

I wonder how much energy storage you get for the weight of a V8 diesel, as used on a bi-mode Flirt?

The V8 16 litre diesel engines are made by Deutz and from their web site, it looks like they weigh about 1.3 tonnes.

How much energy could a 1.3 tonne battery store?

The best traction batteries can probably store 0.1 kWh per kilogram. Assuming that the usable battery weight is 1.2 tonnes, then each battery module could store 120 kWh or 360 kWh if there are three of them.

I also quoted this from the July 2018 Edition of Modern Railways.

The units will be able to run for 40 miles between charging, thanks to their three large batteries.

Since I wrote More On Tri-Mode Stadler Flirts in June 2018, a lot more information on the bi-mode Stadler Class 755 Flirt has become available and they have entered service with Greater Anglia.

Four-car trains weigh around 114 tonnes, with three-car trains around a hundred. I can also calculate kinetic energies.

How Good Was My Battery Size Estimate?

These are my estimate and the actual values for the three batteries in Class 756 trains

  • My estimate for Class 756 (3- & 4-car) – 120 kWh
  • Class 756 (3-car) Flirt – 160 kWh
  • Class 756 (4-car) Flirt – 200 kWh

So have Stadler’s battery manufacturer learned how to squeeze more kWh into the same weight of battery?

In Sparking A Revolution, I talked about Hitachi’s bullish plans for battery-powered trains, in a section called Costs and Power.

In that section, I used Hitachi’s quoted figures, that predicted a five tonne battery could hold a massive 15 MWh in fifteen years time.

If Stadler can get the same energy density in a battery as Hitachi, then their battery trains will have long enough ranges for many applications.

Class 398 Tram-Trains

In Sheffield Region Transport Plan 2019 – Tram-Trains Between Sheffield And Doncaster-Sheffield Airport, I showed this map of the route the trams would take.

I also said this about the tram-trains.

The distance between Rotherham Parkgate and Doncaster is under twelve miles and has full electrification at both ends.

The Class 399 tram-trains being built with a battery capability for the South Wales Metro to be delivered in 2023, should be able to reach Doncaster.

But there are probably other good reasons to fully electrify between Doncaster and Sheffield, via Meadowhall, Rotherham Central and Rotherham Parkgate.

The major work would probably be to update Rotherham Parkgate to a through station with two platforms and a step-free footbridge.

Currently, trains take twenty-three minutes between Rotherham Central and Doncaster. This is a time, that the tram-trains would probably match.

If you adopt the normal energy consumption of between three and five kWh per vehicle mile on the section without electrification between Rotherham Parkgate and Doncaster, you get a battery size of between 108 and 180 kWh.

It looks to me, that on a quick look, a 128 kWh battery could provide a useful range for one of Stadler’s Class 398/399 tram-trains.

Class 398 Tram-Trains Between Cardiff Bay and Cardiff Queen Street Stations

The distance between these two stations is six chains over a mile,

Adding the extra bit to the flourish might make a round trip between Cardiff Queen Street and The Flourish stations perhaps four miles.

Applying the normal energy consumption of between three and five kWh per vehicle mile on the section without electrification between Cardiff Queen Street and The Flourish, would need a battery size of between 36 and 60 kWh.

Conclusion

The battery sizes seem to fit the routes well.

 

 

March 11, 2020 Posted by | Energy Storage, Transport | , , , , , , | 2 Comments

The 125 mph Bi-Mode Flirt

I am convinced that Stadler’s bi-mode Flirt of which Greater Anglia’s Class 755 trains are the first such fleet to go into service anywhere in the world, are trains that are capable of being developed into a train that can cruise at 125 mph.

Rumours Of 125 mph

When the Flirts were first introduced, I asked a driver, if a 125 mph version was possible and he said yes.

Not that Greater Anglia would have much use for a 125 mph bi-mode.

But it had been reported that several of the drivers had been on trips to Switzerland, as part of the design and training process to smooth the entry of the fleet into service.

And all drivers like to talk about their charges be they freight locomotives, high speed trains, heavy trucks, racing cars (I had a Stig in my kitchen!) or complicated dockside or tower cranes.

Norway’s 120 mph Flirts

Norway runs all-electric Flirts at 200 kph or 120 mph, as described here in Wikipedia.

The basic train design should be capable of running at 125 mph.

Could The PowerPack Run At 125 mph?

This picture shows the PowerPack on a Class 755 train.

It is only 6.69 metres long and it weighs 27.9 tonnes.

The weight is not out of line with the weight of the 20.81 metre long driver car, which weighs 27.2 tonnes and the 15.22 metre long pantograph car, which weighs 16 tonnes.

But Stadler have put large dampers between the cars.

The dampers are the long black cylinders connecting the two cars. There are two on this side of the train and I suspect there are two on the other side.

It looks to me, that Stadler have paid very detailed attention to the dynamics of these trains and seem to hae done the following.

  • Carefully balanced the weights.
  • Driven the train from the two bogies under the driving cabs.
  • Used powerful dampers to calm everything down.

This is probably to enable good performance on both fast and not-so-straight routes.

I also suspect that Swiss railways are a much more challenging environment for running trains, than East Anglia and most of our 125 mph lines.

I wouldn’t be surprised to find out that a Class 755 train could run at or near 125 mph on a straight 125 mph line, whilst running on electric power.

Operating Speed On Diesel

I suspect the power requirements for 125 mph would be too much for the installed power in the PowerPack, but 100 mph would certainly be possible.

Ts There A Need For A 125 mph On Electric/100 mph On Diesel Flirt?

If you look at the UK, Hitachi have sold lots of Class 800 and 802 trains, which have a similar performance, but are a few mph faster on diesel.

It would appear that the market is there in the UK.

But the UK is only one of a large number of markets, where Flirts have been sold.

Greater Anglia will be running three services with a large proportion of electrified line.

  • Norwich and Stansted Airport
  • Lowestoft and Liverpool Street
  • Colchester and Peterborough

How the Class 755 trains perform on these services could be crucial to the development and success of Stadler’s unique concept.

 

December 3, 2019 Posted by | Transport | , , | Leave a comment

Will Future Hitachi AT-300 Trains Have MTU Hybrid PowerPacks?

I have mentioned this possibility in a couple of posts and I feel there are several reasons, why this might be more than a possibility!

What Do We Know About The Second Iteration Of An AT-300?

The first order for East Midlands Railway is for thirty-three five-car trains.

  • Four engines instead of three.
  • 125 mph on diesel power.
  • A modified nose profile.

I find the nose profile significant, as I don’t believe that the current trains are aerodynamically much more efficient than British Rail’s legendary InterCity 125 trains.

On the other hand, Bombardier’s Aventras look as if the company’s aerospace division has been involved in the design. They certainly are very quiet, when they pass close by.

The second order for West Coast Rail is thin on detail, but they do mention that services from Euston could reach as far as Godowen.

I would also feel that 125 mph on diesel could be very helpful on the North Wales Coast Line to Holyhead.

Will 140 mph Running Be Commonplace?

Very much so!

For 140 mph running by the current trains, the following is needed.

  • Tracks able to accommodate that speed.
  • ERTMS signalling
  • In-cab signalling

Wikipedia speaks of unspecified minor modifications to the trains.

To answer my question, I believe there will be running over 125 mph, if not 140 mph on substantial stretches of the following lines.

  • East Coast Main Line
  • Great Western Main Line
  • Midland Main Line
  • West Coast Main Line

I also believe other routes could see large increases in operating speed on certain sections.

  • Basingstoke and Exeter
  • Breckland Line
  • Bristol and Exeter
  • East and West Coastways
  • Golden Valley Line
  • Great Eastern Main Line
  • Hitchin and Kings Lynn via Cambridge
  • North Wales Coast Line
  • Reading and Exeter via Newbury

If trains are capable of 125 mph and faster running without electrification, I can see Network Rail, doing what they have shown they can do well on the Midland Main Line, which is increasing line speed.

Note that on my list, I have included the second route to Norwich via the East Coast Main Line, Cambridge and Thetford and Kings Lynn services.

I can envisage hourly 125 mph services to and from Norwich and Kings Lynn joining and splitting at Cambridge and then running at high speed between Kings Cross and Cambridge.

It would be a massive boost for West Norfolk and Norwich, but it would not require extra high speed paths on the East Coast Main Line.

There must be other routes that by proven conventional track engineering can be turned from 80-100 mph lines into 125-140 mph high speed lines. No problem electrification to promote, design and erect. It just needs appropriate trains.

I can see the following routes without electrification being run at 125-140 by the new AT-300 trains.

  • Euston and Holyhead
  • Kings Cross and Cleethorpes via Lincoln
  • Kings Cross and Hull
  • Kings Cross and Kings Lynn/Norwich
  • Liverpool and Edinburgh via Leeds
  • Paddington and Exeter via Basingstoke and Yeovil
  • Paddington and Gloucester/Cheltenham
  • Waterloo and Exeter via Basingstoke and Yeovil

There are probably other routes.

Without doubt, the new AT-300 trains must be able to run at 140 mph on lines without electrification, once Network Rail have raised the operating speed.

Thoughts On AT-300 TrainsWith MTU PowerPacks

These are my thoughts on various topics.

Weight

The data sheet for the MTU PowerPack gives the mass at around five tonnes for a diesel engine of 700 kW.

Depending on the way you read the figures this appears to be less than that of a similar power diesel..

Fuel Economy

This is obviously better and MTU are quoting a forty percent saving.

Regenerative Braking

This comes as standard.

One PowerPack Per Car

I always like this concept, especially as many trains these days seem to have a lot of powered axles.

It also reduces the energy losses in the cables between cars.

The East Midlands Railway trains seem to have five cars and four engines, so is that four motor cars and one trailer.

Would trains be lengthened by adding extra trailer and/or motor cars as appropriate in the middle of the train?

Simpler Control System

MTU will have responsibility for the software of the PowerPack and all Hitachi’s control system for the train, will need to do with the PowerPacks is tell them how much power is required.

Hopefully, this will help in the debugging of the train, for which Bombardier had so much trouble with the Aventra.

Batteries

It appears that the design of the PowerPacks is very flexible with respect to size and number of battery packs.

Would it be an advantage for a train builder or an operator to tailor the battery capacity to the speed and length of a route.

Compatible AT-200 Local Trains

The AT-200 is Hitachi’s smaller and slower train of which the Class 385 train is an example.

If a version were to be produced with say three or four cars and one or more MTU PowerPacks, Hitachi would have a very nice bi-mode with a lot in common with the new AT-300, which would ease servicing for train operators, who were running both trains

Hitachi’s Relationship With MTU

MTU engines are used in the current Hitachi trains, so unless I am told otherwise,I am led to believe they have a good working relationship.

Conclusion

I wouldn’t be surprised to see the next generation of AT-300 use MTU PowerPacks.

November 20, 2019 Posted by | Transport | , , , | 1 Comment

Will We See A Phase Out Of Diesel-Mechanical And Diesel-Hydraulic Multiple Units?

After writing My First Ride In A Class 195 Train, I started to think about the future of diesel multiple units.

The Class 195 trains are powered by one MTU diesel engine, with a rating of 390 kW in each car, that drives the wheels through a ZF Ecolife transmission.

It is all very Twentieth Century!

  • Power comes from one diesel engine per car.
  • There is pollution and carbon-dioxide generated outside the train.
  • Noise is generated outside and inside the train.
  • Braking energy is not captured and used to power the train, or stored for reuse.

We can do so much better than this.

The MTU Hybrid PowerPack

MTU have now developed the MTU Hybrid PowerPack.

This page on the MTU web site, is a document, which describes the PowerPack.

It describes the PowerPack as the next generation of railcar drive.

It lists these benefits.

  • Saving fuel through braking energy recovery
  • Significantly reduced emissions through load point optimization
  • Optimizing travel times with the Boost Mode
  • Significant noise reduction
  • Flexible vehicle deployment and simple retrofitting

In some ways the last point is the most significant.

This is said in the document about deployment and retrofitting.

Naturally, rail vehicles with hybrid drive can also be powered
exclusively by the diesel engine. This also means great flexibility
for the operator: The trains can be deployed on both electrified
and non-electrified rail routes. In addition, upgrading to a trimodal*
power system – with an additional pantograph – is easy because
the system is already equipped with an electric motor. This gives
the operator considerable freedom with regard to deployment of
the vehicles – it‘s a big plus when they can respond flexibly in the
future to every route requirement or tender invitation.

It sounds like MTU have really done their thinking.

If you want to read more, there is this document on the Rolls-Royce web-site, which is entitled Hybrid Train Trials.

Note that Rolls-Royce are MTU’s parent company.

A Simple Trimodal Example

I will give one simple example of where the trimodal technology pf the MTU Hybrid PowerPack, could be used, to great advantage.

Southern have two routes, where they have to use diesel Class 171 trains

  • Eastbourne and Ashford International (42% electrified)
  • London Bridge and Uckfield (45% electrified)

Porterbrook are planning to fit MTU Hybrid PowerPacks to Class 170 trains, as I wrote about in Rolls-Royce And Porterbrook Launch First Hybrid Rail Project In The UK With MTU Hybrid PowerPacks.

As the Class 171 train is very similar to the Class 170 train, I would suspect that Class 171 trains can be converted to diesel hybrids using MTU Hybrid PowerPacks.

It would be very useful, if they could be converted into tri-mode trains, by the addition of third-rail shoe gear.

This would mean, that the two routes run by the Class 171 trains, could be run on electricity for st least 40-45 percent of the route.

I would also think, that adding third-rail shoe gear to a diesel multiple unit, like a Class 171 train, could be easier than adding a pantograph.

When you consider that Southern have twenty Class 171 trains, with a total of fifty-six cars and conversion would therefore need fifty-six MTU Hybrid PowerPacks, this would not be a trivial order for MTU, that could bring substantial benefit to Southern.

I suspect new bi-mode or battery/electric trains would be less good value, than converting trains with MTU Hybrid PowerPacks, in many applications.

Other Technologies

Already other companies and research organisations are getting involved in developing affordable solutions to convert redundant diesel multiple units into more environmentally-friendly and energy efficient trains.

We have also seen train operating companies in a wider sense, buying trains that can easily be updated to zero-carbon trains.

Benefits Of Conversion To Diesel-Hybrid

I believe that conversion to diesel hybrid trains, using MTU Hybrid PowerPacks or similar technologies,  could be advantageous in other ways, in addition to the obvious ones of less noise and pollution.

  • Train operating companies would not need to greatly change their support infrastructure.
  • Driver retraining would probably be a short conversion course.
  • More partially-electrified routes would be possible with efficient modern trains.

I also feel, that if we can convert diesel-mechanical and diesel-hydraulic trains into trains with the ability to use either 25 KVAC overhead or 750 VDC third-rail electrification, this will open up possibilities to create new partially-electrified routes in places, where electrification is either too difficult, too expensive or is opposed by protests.

Trains That Could Be Converted

These trains are ones that can possibly be converted to diesel hybrid trains.

Turbostars

As I said earlier Porterbrook are already planning to convert some of their numerous Class 170 trains to diesel hybrid operation using MTU Hybrid PowerPacks.

Turbostars are a class of diesel trains.

The picture shows a Class 170 train in ScotRail livery, at Brough station, working a service for Northern.

  • They have a 100 mph top speed.
  • They come in two, three or four car sets.
  • They were built between 1996 and 2011.
  • They have a comfortable interior and passengers only complain, when say a Class 170 train is replaced by a Class 156 or even older train.
  • There are a total of 196 Turbostars in various classes.

This description from Wikip[edia, details their drive system.

Much of the design is derived from the Networker Turbo Class 165 and Class 166 trains built by British Rail Engineering Limited’s Holgate Road carriage works. Notable features shared are the aluminium alloy frame and two-speed Voith T211r hydrodynamic transmission system. The diesel engine has changed to an MTU 6R 183TD. A cardan shaft links the output of the gearbox to ZF final drives on the inner bogie of each vehicle. The engine and transmission are situated under the body; one bogie per car is powered, the other bogie unpowered.

It is simple system and well suited to replacement with the MTU Hybrid PowerPack.

As I said earlier, some Turbostars run over partially-electrified routes.

I also said that two of Southern’s routes are partially-electrified with the 750 VDC third-rail system, so could we see some examples making use of this to create a trimodal version.

On the other hand fitting a pantograph for 25 KVAC overhead electrification could be difficult. Although, all  British Rail designs and their derivatives were usually designed, so they could work with every type of K electrification.

Class 165 And Class 166 Trains

The Class 165 and Class 166 trains are the predecessors of the Turbostars, and the later trains share a lot of their features.

As with all British Rail train designs, they have Japanese Knotweed in their DNA and engineers continuously find profitable ways of not sending them to the scrapyard. So they’ll be around for a few years yet!

The owner of these trains; Angel Trains has started a development project to create the Class 165 Hydrive train, which I wrote about in Class 165 Trains To Go Hybrid.

Will we see another hundred or so diesel hydraulic trains in good condition converted to more environmentally-friendly diesel hybrid trains?

Class 195 And Class 196 Trains

The Class 195 and Class 196 trains are still in the process of being built and judging by my first experience of Northern’s Class 195 train, that I wrote about in My First Ride In A Class 195 Train, they would benefit from the fitting of a quieter hybrid drive, like an MTU Hybrid PowerPack.

I suspect that any follow on orders for CAF’s diesel trains could well be built as diesel hybrids.

  • The MTU Hybrid PowerPack could be used to replace the MTU engine and ZF Ecolife transmission.
  • A battery-electric transmission, perhaps even using bogies and traction motors from the Class 331 train, could be developed.

Consider.

  • Building the train around a hybrid transmission, will be probably no more difficult, than building one with a mechanical transmission.
  • The train would create less noise and pollution.
  • Hybrid trains would probably be more marketable to prospective purchasers. See Hybrid Selling.

As CAF are the only manufacturer of new diesel trains in the UK, I don’t think, they will be bothered.

Class 175 Trains

Transport for Wales have a fleet of eleven two-car and sixteen three-car Class 175 trains and they are scheduled to be replaced by a series of new trains starting in 2021.

I suspect the conversion to diesel hybrid will be possible, but even with a full interior refurbishment, will anybody have need for them, as there are already a lot of new 100 mph diesel trains on order, many of which could be delivered as diesel hybrids.

Class 180 Trains

There are fourteen five-car Class 180 trains.

They are 125 mph trains.

The fact that Hull Trains are replacing their Class 180 trains with new Class 802 trains, probably says a lot about the limitations of Class 180 trains.

Conclusion

We will be seeing a lot of hybrid trains, made by updating diesel-mechanichal and diesel-hydraulic trains.

July 17, 2019 Posted by | Transport | , , , | 5 Comments

Tender Set To Be Issued For East West Rail Rolling Stock

The title of the this post is the same as that of this article on Rail Magazine.

Brief details of the fleet include.

  • Eleven trains.
  • Self-propelled.
  • Three cars.

Services are due to commence in 2024, serving Oxford, Aylesbury, Milton Keynes and Bedford.

Here are a few of my thoughts.

Are Three Car Trains Long Enough?

New train services in the UK, especially those on new or reopened routes, seem to suffer from London Overground Syndrome.

I define it as follows.

This benign disease, which is probably a modern version of the Victorian railway mania, was first identified in East London in 2011, when it was found that the newly-refurbished East London Line and North London Line were inadequate due to high passenger satisfaction and much increased usage. It has now spread across other parts of the capital, despite various eradication programs.

The Borders Railway certainly suffered and the London Overground is still adding extra services on the original routes.

Three-car trains may be enough for the initial service, but provision must be made  for running longer trains.

  • The trains that are purchased must be capable of lengthening.
  • Platforms must be built for longer trains.

So often we don’t future-proof new rail routes.

What Performance Is Needed?

I’ll ask this question first, as it may affect the choice of train.

The trains will certainly be at least capable of 100 mph operation.

But I wouldn’t be surprised if they were capable of 110 mph or even 125 mph, as this would surely make it easier for trains to go walkabout on the Great Western, Midland and West Coast Main Lines.

Faster East West trains might also get more services out of the fleet.

Appropriate acceleration and braking would be needed.

Conservative Or Innovative?

Will we get more of the same or will some of the responders to the tender offer trains based on innovative designs?

I would hope that as the line will eventually connect Oxford and Cambridge via Milton Keynes, the trains will take over the flavour of the route and be more innovative.

The Route

The eventual full route of the East West Rail Link will serve these sections.

  • Reading and Ocford – 25 miles – Partially-electrified
  • Oxford and Milton Keynes – 43 miles – Not electrified
  • Milton Keynes and Bedford – 20 miles – Partially-electrified
  • Bedford and Sandy – 10 miles – Not electrified
  • Sandy and Cambridge – 25 miles – Partially-electrified.

Note.

  1. The distances are approximate.
  2. With the exception of Oxford, all the major stations will be served by electric trains on other routes.

It is rather a mixture created out of existing and abandoned routes.

Could Battery Trains Run On The East West Rail Link?

Consider.

  • All the major stations except Oxford have electrification.
  • Sections of the route are electrified.
  • The route is not very challenging.
  • The longest section without electrification is around forty miles.

All this leads me to believe that a battery-electric train with a range of forty miles could handle the route, if there was the means to charge the train at Oxford.

Possibly the easiest way to achieve the charging station at Oxford station, would be to electrify between Didcot Junction and Oxford stations.

In How Much Power Is Needed To Run A Train At 125 mph?, I showed that to run at 125 mph, a train needs around three kWh per vehicle mile.

This would mean that to run between Oxford and Milron Keynes stations, would need a maximum power of around 40*3*3 kWh or 360 kWh.

This is only a 120 kWh battery in each car.

I am fairly certain, that a well-designed battery train could run on the East West Rail Link.

The Usual Suspects

There are several train companies, who could be offering existing trains or their developments.

Alstom

Alstom don’t have a current design of train for the UK, but they are heavily into the development of trains powered by hydrogen.

By 2024, I suspect they will be offering a purpose-built hydrogen-powered train for the UK.

Also, by that time, I think it will be likely, that many buses in cities will be powered by zero-carbon hydrogen and the availability of this fuel would be much better than it is today.

An East West Rail Link running hydrogen-powered trains would go a long way to answer the electrification lobby.

Bombardier

Bombardier are developing a 125 mph bi-mode Aventra with batteries, that they are proposing for various franchises in the UK, including the Midland Main Line.

I believe that by rearranging the components of this train, they could develop a train that would be very suitable for the East West Rail Link.

  • Three cars
  • At least 100 mph operating speed
  • In service by 2024 or earlier.

It could be a bi-mode train with batteries, or if battery and the associated charging technology has improved, it could be a battery-electric train.

The latter would certainly fulfil the flavour of the route.

Bombardier’s Aventra would also have the advantages of an electrical version and the ability to add more cars.

CAF

CAF have recently introduced the Class 195 traincaf in the UK.

But would a diesel train be acceptable on a flagship route?

On the other hand CAF have been delivering battery-powered trams for several years and I wouldn’t be surprised to see the company, offer an innovative battery-electric train for the East West Rail Link.

Hitachi

Hitachi don’t make self-powered trains in the UK.

But in Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires, I wrote about the company’s plans to use batteries as range extenders on their Class 385 trains.

I suspect that by 2024, these trains will be running in Scotland and they will probably be high-quality reliable trains.

So could these trains be able to run between Reading and Cambridge using battery power, topped up at the various sections of electrification along the route.

Hitachi’s development regime is cautious, professional and well-funded, so I suspect they could offer a version of the Class 385 train, for delivery in 2024.

Hitachi would also have the advantages of an electrical version and the ability to add more cars.

Siemens

Siemens have a large number of modern electrical multiple units in the UK, but none are self-powered, except the diesel Class 185 train.

Siemens will have a factory in the UK to built London Underground trains by 2024.

But eleven trains could be an expensive order to fulfil, if it required a new self-powered train design.

Stadler

Stadler are an innovative company and their Class 755 train will shortly be starting passenger service in East Anglia.

  • It is three-cars, which is extendable if required.
  • It has a 100 mph operating speed.
  • It is a bi-mode; diesel and electric train.
  • Trains for Wales have ordered a diesel/electric/battery version.
  • There are rumours of hydrogen-powered versions.

Stadler could certainly deliver some of these trains by 2024.

Summing Up

I would suspect that the front runners are Bombardier, Hitachi and Stadler, with CAF in fourth place.

  • All could probably develop a zero-emission train for the route using battery technology.
  • Stadler will have trains in service this year, and I suspect Bombardier and Hitachi will be running trains by 2022.

I think we could be seeing some very good trains on the route.

 

 

 

 

July 13, 2019 Posted by | Transport | , , , , , , , , , , | 5 Comments

Is Bombardier’s 125 mph Bi-Mode Aventra With Batteries, A 125 mph Battery-Electric Aventra With Added Diesel Power To Extend The Range?

The LEVC TX taxi is described in Wikipedia as a plug-in hybrid range-extender electric vehicle.

Could Bombardier’s 125 mph Bi-mode Aventra with batteries, be an equivalent rail vehicle?

I will start with the Class 720 train for Greater Anglia, which is probably the nearest train to a 125 mph Aventra in production.

  • It is formed of ten-cars.
  • It is 243 metres long.
  • It can accommodate 1,100 seated and 290 standing passengers.
  • It has a 100 mph operating speed, although this article on the East Anglian Daily Times, says it will be tested at up to 110 mph.

I will use this information to make some assumptions about Bombardier’s proposed 125 mph bi-mode Aventra with batteries.

Weight Of A Ten-Car Class 720 Train

In The Formation Of A Class 710 Train, I give the weight and length of a four-car Class 710 train as the following.

  • Weight – 157.8 tonnes
  • Length – 82.88 metres

Adjusting this weight to the 243 metres length of a ten-car Class 720 train, gives a weight of 462.7 tonnes.

This is the best I can do for the moment.

Kinetic Energy Of A Train At 125 mph

This is my calculation.

  • The empty weight of the train is 462.7 tonnes
  • To that must be added 1390 passengers, who average out at 90 Kg each with baggage, bikes and buggies. This is 125.1 tonnes.
  • This gives a total train weight of 587.8 tonnes.
  • Using Omni’s Kinetic Energy Calculator, gives a kinetic energy of 255 kWh at 125 mph.

For those of you, who feel I am a bit cavalier over the use of mass and weight, I agree with you, but many reading this won’t know the difference.

Handling Regenerative Braking

Imagine a train stopping from 125 mph at a station.

  • Looking at the roof of a Class 345 train, they don’t have any resistor banks, so energy must be stored on the train or returned through the electrification. Are all Aventras the same? See Class 710 Train Rooves At Blackhorse Road Station.
  • The batteries must be able to handle all the energy generated by the traction motors in their braking mode.
  • So they must be able to handle the 255 kWh of a train running at 125 mph.

It would probably mean energy storage over 300 kWh.

Some Aventras Are Two Half Trains

In A Detailed Layout Drawing For A Class 345 Train, I give the formation of a nine-car Class 345 train as.

DMS+PMS+MS1+MS3+TS(W)+MS3+MS2+PMS+DMS

Note.

  1. Eight cars have motors and only one doesn’t.
  2. The train is composed of two identical half-trains, which are separated by the TS(W) car.
  3. There are four wheelchair spaces in the TS(W) car.

In this article in Global Rail News from 2011, which is entitled Bombardier’s AVENTRA – A new era in train performance, gives some details of the Aventra’s electrical systems. This is said.

AVENTRA can run on both 25kV AC and 750V DC power – the high-efficiency transformers being another area where a heavier component was chosen because, in the long term, it’s cheaper to run. Pairs of cars will run off a common power bus with a converter on one car powering both. The other car can be fitted with power storage devices such as super-capacitors or Lithium-ion batteries if required. The intention is that every car will be powered although trailer cars will be available.

Unlike today’s commuter trains, AVENTRA will also shut down fully at night. It will be ‘woken up’ by remote control before the driver arrives for the first shift

This was published over seven years ago, so I suspect Bombardier have refined the concept.

The extract talks about pairs of cars, which share the main electrical components.

So in the Class 345 train and possibly the ten-car Class 720 trains, are the DMS and PMS cars at the ends of the train, these pairs of cars?

I like the half-train concept, as I suspect a clever computer system on the train can reconfigure the train, if say a pantograph or other major component fails.

Distributing The Energy Storage

I feel that the best philosophy would be to distribute the batteries and/or supercapacitors through the train.

Energy storage of somewhere between thirty and sixty kWh in each car would probably be more than sufficient to handle the braking energy by a wide margin.

As typically, hybrid buses like London’s New Routemaster have batteries of about 60 kWh, I’m fairly certain a big enough battery could be placed under each car.

My Electrical and Control Engineering experience also suggests that if most axles are powered on the train, distributing the energy storage could mean shorter and more efficient cabling and electricity flows.

Could the train be a formation of more independent cars each with their own computer systems, connected by the common power bus mentioned in the earlier extract and a high-capacity computer network.

How Much Power Would A Train Need In The 125 mph Cruise?

I investigated this question in How Much Power Is Needed To Run A Train At 125 mph? and came to the conclusion, that 3 kWh per vehicle mile is a sensible figure.

I also feel that as the three kWh per vehicle mile relates mainly to an InterCity 125, that Bombardier could do better with a modern train.

Consider.

  • Derby and Leicester are thirty miles apart.
  • A journey takes twenty minutes.
  • A train is running non-stop between the two stations at 125 mph.

Using the train consumption figure of three kWh per vehicle mile, means that a ten-car train would need 900 kWh.

The required power would need to be supplied at a rate of 2,700 kW.

This means one of the following.

  1. The train has an enormous on-board power-unit.
  2. The train has an enormous battery.
  3. The train has a very high aerodynamic and electrical efficiency.

Or it could be a figment of Bombardier’s imagination.

Only the Option 3 is feasible.

Consider.

  • Bombardier also build aircraft and must have some aerodynamicists, wind tunnels and other facilities of the highest class.
  • Aventras seem to have very clean lines.
  • Aventras are very quiet trains inside and outside.
  • Bombardier claim that the trains have intelligent air-conditioning and lighting.
  • Class 710 trains have an average car weight, which is seven percent lighter than Class 378 trains.

It is also known that Bombardier have had a lot of trouble programming the advanced Train Control and Management System (TCMS). I believe that this could be because it is very sophisticated and getting it right took longer than expected.

I say this because the specification for the first version of Artemis was challenging to program as so much was first-of-its-type software. It was late, but once correct, it became an amazing world-wide success.

Is the Aventra another game-changing project?

There are all sorts of ways, that a sophisticated TCMS, can save electricity on a train.

  • Ultra smooth acceleration and braking.
  • Intelligent power management.
  • Precise control of all train systems, like heating, air-conditioning and lighting, according to ambient conditions and passenger loading.
  • GPS or ERTMS-controlled Driver Assistance Systems.

Couple this with lightweight structures, innovative design and world-class aerodynamics and could the train have an electrical usage as low as one kWh per vehicle mile?

This would mean a train between Derby and Leicester would consume 300 kWh, at a rate of 900 kW for twenty minutes.

Have Bombardier read about the design of the Douglas Skyhawk?

Wikipedia says this about the design and development of the aircraft.

The Skyhawk was designed by Douglas Aircraft’s Ed Heinemann in response to a U.S. Navy call for a jet-powered attack aircraft to replace the older Douglas AD Skyraider (later redesignated A-1 Skyraider). Heinemann opted for a design that would minimize its size, weight, and complexity. The result was an aircraft that weighed only half of the Navy’s weight specification. It had a wing so compact that it did not need to be folded for carrier stowage. The first 500 production examples cost an average of $860,000 each, less than the Navy’s one million dollar maximum.

I remember reading how Heinemann was ruthless on saving weight and complexity to get a more capable aircraft.

Every improvement in efficiency means you need less power to power the train, which in a multi-mode train, means one or more of the following.

  • Physically-smaller diesel engines and fuel tanks.
  • Smaller hydrogen fuel cells and hydrogen tanks.
  • Smaller onboard energy storage.

I wouldn’t be surprised to see some radical weight-saving developments in the traction system. Lightweight diesel engines, energy storage and other large electrical components are all possibilities.

This all may seem pie-in-the-sky thinking, but a similar control revolution happened at Rollls-Royce with the RB 211 engine, when around 1990, full authority digital engine control or FADEC was developed

Is another company, with its designers and researchers in Derby going down the same route? Or do they all drink in the same pub?

Rolls-Royce certainly appear to have been successful, with their large aero engines.

I stated earlier that an energy use of one kWh per vehicle mile, would mean a train between Derby and Leicester would consume 300 kWh, at a rate of 900 kW.

Here’s a complete set of figures for a ten-car train.

  • 4 – 1200 kWh – 3,600 kW
  • 3 – 900 kWh – 2,700 kW
  • 2 – 600 kWh – 1800 kW
  • 1 – 300 kWh – 900 kW
  • 0.5 – 150 kWh – 450 kW

The second figure is the energy needed by the train between Derby and Leicester and the third is the rate, it would need to be supplied for a twenty-minute schedule.

Note how, that as the train gets more efficient and needs less power per vehicle mile, the rate of supplying energy to the train gets dramatically less.

Supplying 3,600 kW from electrification would be easy and trains like the Class 390 train are designed to take 5,000 kW to maintain 125 mph. But supplying that energy from on-board diesels or batteries would durely require enormous, heavy components.

Could 125 mph Be Sustained By Diesel Engines?

Bombardier have said, that their proposed High-Speed Bi-Mode Acentra with batteries will have the following characteristics.

  • Ability to run at 125 mph on both electricity and diesel.
  • A flat floor
  • A class-leading passenger environment.

The last two points are the difficult ones, as it means that engines must be smaller.

  • Smaller engines make a flat floor, which is so good for less-mobile passengers, buggy pushers or case-pullers, much easier to design.
  • Smaller engines make much less noise and vibration.

But surely, small engines wouldn’t provide enough power to drive the train at 125 mph.

CAF’s new Class 195 train has a Rolls-Royce MTU 6H1800R85L engine, which is rated at 390 kW in each car. These engines aren’t that noisy and fit neatly under the train floor. But disappointingly, they drive the train, through a noisy ZF Ecolife mechanical transmission.

Dimensions and weight of this engine are as follows.

  • Length – : 2.6-4 metres
  • Width – 2.1- 2.8 metres
  • Height – 0.8 metres
  • Dry Weight – 2.9-4.0 tonnes
  • Wet Weight – 3.0-4.2 tonnes

If engines like this were packaged properly with an alternator to generate electricity, I believe it would be possible to put enough power under the floor of a ten-car train.

  • The train is 240 metres long.
  • It will probably be two half trains, so it could be easy to fit two engines in each half train.
  • One engine could be under the driving cab and the other in the best place for balance.

I’m sure Rolls-Royce MTU could oblige.

They have a 12V1600R80LP PowerPack, described in this datasheet on the MTU web site.

  • It has a 700 kW output.
  • It is built for diesel-electric operation.
  • It is slightly larger than the engine in the Class 195 train.

Could one of these engines be put under each driving car?

Calculating backwards would mean that the train would need an energy use of 1.55 kWh per vehicle mile.

I believe that by good design, this is a very attainable figure.

As in London’s New Routemaster bus, the engines would top up the batteries on the train, which would then power the traction motors and the other train systems.

The TCMS would control everything.

  • Use an appropriate number of engines in every phase of the trip.
  • Raise and lower the pantograph without driver action.
  • Use battery power if required to boost diesel power.
  • Even out engine use, so that wear was equalised.

I’m led to the conclusion, that with power of about 1,400 kW from two modern underfloor diesel engines, a high-speed bi-mode Aventra with batteries can cruise at 125 mph.

Kinetic Energy Implications

If I modify the kinetic energy calculation to add ten tonnes for the diesel engines, the kinetic energy goes up to 259 kWh.

This may seem surprising, but the kinetic energy calculation is dominated by the square of the speed of the train.

If the engines at ten tonnes each, that only increases the train’s kinetic energy to 264 kWh.

One of the arguments against bi-mode trains, is that they are carrying heavy diesel engines around, that are doing nothing most of the time.

Whe  the train is accelerating to operating speed, some extra kWhs will be expended, but once in the cruise, they enjoy a free ride.

Stopping At A Station

As I said earlier, when the train is running at 125 mph, it has an energy of 255 kWh.

With the two added diesel engines, this could be a bit higher and perhaps up to 264 kWh.

This energy would be used to recharge the onboard storage at a station stop.

The TCMS would probably ensure that, when the train came to a full stop, the onboard storage was as full as possible.

In a five-minute stop, running the two diesel engines could add 116 kWh to the batteries, but I suspect an automatic charging system could be better.

Accelerating From A Station

Diesel power would probably not be enough working alone, but the energy in the onboard storage would also be used to accelerate the train to the 125 mph cruise.

Optimal Station Stops

The Class 720 trains on Greater Anglia will be sharing tracks and platforms on the Great Eastern Main Line with Class 745 and Class 755 trains from Stadler.  It has been stated by Greater Anglia, that the Stadler trains will provide level access between platform and train and will use gap fillers to improve the operation.

I wouldn’t be surprised to see the Class 720 trains providing level access on Greater Anglia, where most of the platforms seem to be fairly straight.

Level access is important, as it speeds up station calls by easing entry to and exit from the train.

Most of the stations on the Midland Main Line appear to be fairly straight. The exception was Market Harborough station, which has now been rebuilt with step-free access and straighter platforms.

I would think it extremely likely, that whatever bi-mode trains run the Midland Main Line in the future, they will save time on the current service, by executing very fast station stops.

I would expect that maximum stop time at the stations will be of the order of two minutes.

This time may not be long enough for a train to connect to a charger and take on more power for the batteries.

Conclusion

The TCMS and the way it manages all the energy on the train, is key to creating a successful 125 mph bi-mode Aventra with batteries.

It would appear that the diesel engines can be used as required to charge the batteries.

So it perhaps might be best to consider the train to be a battery one, with diesel engines.

As a Control Engineer, I’m proud of what Bombardier are doing.

But the aviation industry was doing this thirty years ago, so it has probably been a long time coming.

 

 

 

 

 

 

 

 

 

 

July 9, 2019 Posted by | Transport | , , , , | 1 Comment

Irish Rail And Porterbrook Order MTU Hybrid PowerPacks

The title of this post is the same as that of this this article on the International Rail Jotnal..

This is the first paragraph.

Irish Rail (IE) and British rolling stock leasing company Porterbrook have signed contracts with Rolls-Royce for the supply of 13 MTU Hybrid PowerPacks, the first firm orders for the hybrid rail drives.

Other points are made in the article.

  • IE has ordered nine PowerPacks for Class 22000 trains. If the technology works they intend to convert all 63 trainsets, which will need 234 PowerPacks, as each car has a diesel engine.
  • Porterbrook has ordered four for Class 168 and Class 170 trains.
  • The PowerPacks will be delivered between mid-2020 and 2021.
  • The MTU engines are built to EU Stage 5 emission regulations.
  • The PowerPacks can switch to battery power in stations and sensitive areas.
  • Under battery power, noise is reduced by 75 % and CO2 emissions by up to 25 %
  • Operating costs are significantly reduced.
  • The PowerPacks have regenerative braking, thus they reduce brake pad wear.
  • Due to electric power, the trains have been acceleration, which may reduce journey times.

It seems that passengers, train operating companies, train leasing companies and those that live by the railway are all winners.

If the concept works reliably and meets its objectives, I can see MTU selling a lot of Hybrid PowerPacks.

Which Operators Will Be Used For Trials?

This is a valid question to ask and I’ll put my thoughts together.

Irish Rail Class 22000 Train

These trains only run in Ireland with one operator;Irish Rail, so they will be used for trials.

As each car has one MTU diesel engine and Irish rail are stated in Wikipedia as wanting to run three-car and six-car sets, could they be converting one train of each length?

British Rail Class 168 Train

All the nineteen Class 168 trains of various lengths are in Chiltern Railway’s fleet, they will be the trial operator.

Chiltern also have nine two-car trains, which could be ideal for trial purposes as they will need two Hybrid PowerPacks.

British Rail Class 170 Train

Porterbrook own upwards of thirty two-Car Class 170 trains with CrossCountry, Greater Anglia and West Midlands Trains.

As Greater Anglia and West Midlands Trains are replacing their Class 170 trains, this means that CrossCountry will soon be the only user of two-car units.

The four two-car trains from Greater Anglia, will be going to Trains for Wales (TfW).

TfW currently has thirty two-car Pacers in its fleet, which must be replaced by the end of 2019.

TfW is bringing in the following trains.

  • Nine four-car Class 769 trains from Porterbrook.
  • Eight three-car Class 17 trains from Greater Anglia
  • Four two-car Class 17 trains from Greater Anglia

This is a total of sixty-eight cars.

So TfW are replacing a load of scrapyard specials with quality, more powerful trains, with approximately 13 % more capacity.

TfW are proposing to use the Class 170 trains on the following routes.

  • Heart of Wales line (from 2022)
  • Regional services between South and West Wales
  • South Wales metro lines – Ebbw Vale/Maesteg (until 2022)
  • Crewe-Shrewsbury local services (from 2022)

There is a mixture of routes here and it would be a good trial,

Other Trains

If the MTU PowerPack proves successful and leads to widespread conversion of the Class 168 and Class 170 fleets, will we see the twenty Class 171 trains and thirty-nine Class 172 trains converted to hybrid power?

Conclusion

It looks like a good solid project to me!

April 20, 2019 Posted by | Transport | , , , , , , , , , | 1 Comment