The 125 mph Bi-Mode Flirt
I am convinced that Stadler’s bi-mode Flirt of which Greater Anglia’s Class 755 trains are the first such fleet to go into service anywhere in the world, are trains that are capable of being developed into a train that can cruise at 125 mph.
Rumours Of 125 mph
When the Flirts were first introduced, I asked a driver, if a 125 mph version was possible and he said yes.
Not that Greater Anglia would have much use for a 125 mph bi-mode.
But it had been reported that several of the drivers had been on trips to Switzerland, as part of the design and training process to smooth the entry of the fleet into service.
And all drivers like to talk about their charges be they freight locomotives, high speed trains, heavy trucks, racing cars (I had a Stig in my kitchen!) or complicated dockside or tower cranes.
Norway’s 120 mph Flirts
Norway runs all-electric Flirts at 200 kph or 120 mph, as described here in Wikipedia.
The basic train design should be capable of running at 125 mph.
Could The PowerPack Run At 125 mph?
This picture shows the PowerPack on a Class 755 train.
It is only 6.69 metres long and it weighs 27.9 tonnes.
The weight is not out of line with the weight of the 20.81 metre long driver car, which weighs 27.2 tonnes and the 15.22 metre long pantograph car, which weighs 16 tonnes.
But Stadler have put large dampers between the cars.
The dampers are the long black cylinders connecting the two cars. There are two on this side of the train and I suspect there are two on the other side.
It looks to me, that Stadler have paid very detailed attention to the dynamics of these trains and seem to hae done the following.
- Carefully balanced the weights.
- Driven the train from the two bogies under the driving cabs.
- Used powerful dampers to calm everything down.
This is probably to enable good performance on both fast and not-so-straight routes.
I also suspect that Swiss railways are a much more challenging environment for running trains, than East Anglia and most of our 125 mph lines.
I wouldn’t be surprised to find out that a Class 755 train could run at or near 125 mph on a straight 125 mph line, whilst running on electric power.
Operating Speed On Diesel
I suspect the power requirements for 125 mph would be too much for the installed power in the PowerPack, but 100 mph would certainly be possible.
Ts There A Need For A 125 mph On Electric/100 mph On Diesel Flirt?
If you look at the UK, Hitachi have sold lots of Class 800 and 802 trains, which have a similar performance, but are a few mph faster on diesel.
It would appear that the market is there in the UK.
But the UK is only one of a large number of markets, where Flirts have been sold.
Greater Anglia will be running three services with a large proportion of electrified line.
- Norwich and Stansted Airport
- Lowestoft and Liverpool Street
- Colchester and Peterborough
How the Class 755 trains perform on these services could be crucial to the development and success of Stadler’s unique concept.
Will Future Hitachi AT-300 Trains Have MTU Hybrid PowerPacks?
I have mentioned this possibility in a couple of posts and I feel there are several reasons, why this might be more than a possibility!
What Do We Know About The Second Iteration Of An AT-300?
The first order for East Midlands Railway is for thirty-three five-car trains.
- Four engines instead of three.
- 125 mph on diesel power.
- A modified nose profile.
I find the nose profile significant, as I don’t believe that the current trains are aerodynamically much more efficient than British Rail’s legendary InterCity 125 trains.
On the other hand, Bombardier’s Aventras look as if the company’s aerospace division has been involved in the design. They certainly are very quiet, when they pass close by.
The second order for West Coast Rail is thin on detail, but they do mention that services from Euston could reach as far as Godowen.
I would also feel that 125 mph on diesel could be very helpful on the North Wales Coast Line to Holyhead.
Will 140 mph Running Be Commonplace?
Very much so!
For 140 mph running by the current trains, the following is needed.
- Tracks able to accommodate that speed.
- ERTMS signalling
- In-cab signalling
Wikipedia speaks of unspecified minor modifications to the trains.
To answer my question, I believe there will be running over 125 mph, if not 140 mph on substantial stretches of the following lines.
- East Coast Main Line
- Great Western Main Line
- Midland Main Line
- West Coast Main Line
I also believe other routes could see large increases in operating speed on certain sections.
- Basingstoke and Exeter
- Breckland Line
- Bristol and Exeter
- East and West Coastways
- Golden Valley Line
- Great Eastern Main Line
- Hitchin and Kings Lynn via Cambridge
- North Wales Coast Line
- Reading and Exeter via Newbury
If trains are capable of 125 mph and faster running without electrification, I can see Network Rail, doing what they have shown they can do well on the Midland Main Line, which is increasing line speed.
Note that on my list, I have included the second route to Norwich via the East Coast Main Line, Cambridge and Thetford and Kings Lynn services.
I can envisage hourly 125 mph services to and from Norwich and Kings Lynn joining and splitting at Cambridge and then running at high speed between Kings Cross and Cambridge.
It would be a massive boost for West Norfolk and Norwich, but it would not require extra high speed paths on the East Coast Main Line.
There must be other routes that by proven conventional track engineering can be turned from 80-100 mph lines into 125-140 mph high speed lines. No problem electrification to promote, design and erect. It just needs appropriate trains.
I can see the following routes without electrification being run at 125-140 by the new AT-300 trains.
- Euston and Holyhead
- Kings Cross and Cleethorpes via Lincoln
- Kings Cross and Hull
- Kings Cross and Kings Lynn/Norwich
- Liverpool and Edinburgh via Leeds
- Paddington and Exeter via Basingstoke and Yeovil
- Paddington and Gloucester/Cheltenham
- Waterloo and Exeter via Basingstoke and Yeovil
There are probably other routes.
Without doubt, the new AT-300 trains must be able to run at 140 mph on lines without electrification, once Network Rail have raised the operating speed.
Thoughts On AT-300 TrainsWith MTU PowerPacks
These are my thoughts on various topics.
Weight
The data sheet for the MTU PowerPack gives the mass at around five tonnes for a diesel engine of 700 kW.
Depending on the way you read the figures this appears to be less than that of a similar power diesel..
Fuel Economy
This is obviously better and MTU are quoting a forty percent saving.
Regenerative Braking
This comes as standard.
One PowerPack Per Car
I always like this concept, especially as many trains these days seem to have a lot of powered axles.
It also reduces the energy losses in the cables between cars.
The East Midlands Railway trains seem to have five cars and four engines, so is that four motor cars and one trailer.
Would trains be lengthened by adding extra trailer and/or motor cars as appropriate in the middle of the train?
Simpler Control System
MTU will have responsibility for the software of the PowerPack and all Hitachi’s control system for the train, will need to do with the PowerPacks is tell them how much power is required.
Hopefully, this will help in the debugging of the train, for which Bombardier had so much trouble with the Aventra.
Batteries
It appears that the design of the PowerPacks is very flexible with respect to size and number of battery packs.
Would it be an advantage for a train builder or an operator to tailor the battery capacity to the speed and length of a route.
Compatible AT-200 Local Trains
The AT-200 is Hitachi’s smaller and slower train of which the Class 385 train is an example.
If a version were to be produced with say three or four cars and one or more MTU PowerPacks, Hitachi would have a very nice bi-mode with a lot in common with the new AT-300, which would ease servicing for train operators, who were running both trains
Hitachi’s Relationship With MTU
MTU engines are used in the current Hitachi trains, so unless I am told otherwise,I am led to believe they have a good working relationship.
Conclusion
I wouldn’t be surprised to see the next generation of AT-300 use MTU PowerPacks.
Will We See A Phase Out Of Diesel-Mechanical And Diesel-Hydraulic Multiple Units?
After writing My First Ride In A Class 195 Train, I started to think about the future of diesel multiple units.
The Class 195 trains are powered by one MTU diesel engine, with a rating of 390 kW in each car, that drives the wheels through a ZF Ecolife transmission.
It is all very Twentieth Century!
- Power comes from one diesel engine per car.
- There is pollution and carbon-dioxide generated outside the train.
- Noise is generated outside and inside the train.
- Braking energy is not captured and used to power the train, or stored for reuse.
We can do so much better than this.
The MTU Hybrid PowerPack
MTU have now developed the MTU Hybrid PowerPack.
This page on the MTU web site, is a document, which describes the PowerPack.
It describes the PowerPack as the next generation of railcar drive.
It lists these benefits.
- Saving fuel through braking energy recovery
- Significantly reduced emissions through load point optimization
- Optimizing travel times with the Boost Mode
- Significant noise reduction
- Flexible vehicle deployment and simple retrofitting
In some ways the last point is the most significant.
This is said in the document about deployment and retrofitting.
Naturally, rail vehicles with hybrid drive can also be powered
exclusively by the diesel engine. This also means great flexibility
for the operator: The trains can be deployed on both electrified
and non-electrified rail routes. In addition, upgrading to a trimodal*
power system – with an additional pantograph – is easy because
the system is already equipped with an electric motor. This gives
the operator considerable freedom with regard to deployment of
the vehicles – it‘s a big plus when they can respond flexibly in the
future to every route requirement or tender invitation.
It sounds like MTU have really done their thinking.
If you want to read more, there is this document on the Rolls-Royce web-site, which is entitled Hybrid Train Trials.
Note that Rolls-Royce are MTU’s parent company.
A Simple Trimodal Example
I will give one simple example of where the trimodal technology pf the MTU Hybrid PowerPack, could be used, to great advantage.
Southern have two routes, where they have to use diesel Class 171 trains
- Eastbourne and Ashford International (42% electrified)
- London Bridge and Uckfield (45% electrified)
Porterbrook are planning to fit MTU Hybrid PowerPacks to Class 170 trains, as I wrote about in Rolls-Royce And Porterbrook Launch First Hybrid Rail Project In The UK With MTU Hybrid PowerPacks.
As the Class 171 train is very similar to the Class 170 train, I would suspect that Class 171 trains can be converted to diesel hybrids using MTU Hybrid PowerPacks.
It would be very useful, if they could be converted into tri-mode trains, by the addition of third-rail shoe gear.
This would mean, that the two routes run by the Class 171 trains, could be run on electricity for st least 40-45 percent of the route.
I would also think, that adding third-rail shoe gear to a diesel multiple unit, like a Class 171 train, could be easier than adding a pantograph.
When you consider that Southern have twenty Class 171 trains, with a total of fifty-six cars and conversion would therefore need fifty-six MTU Hybrid PowerPacks, this would not be a trivial order for MTU, that could bring substantial benefit to Southern.
I suspect new bi-mode or battery/electric trains would be less good value, than converting trains with MTU Hybrid PowerPacks, in many applications.
Other Technologies
Already other companies and research organisations are getting involved in developing affordable solutions to convert redundant diesel multiple units into more environmentally-friendly and energy efficient trains.
We have also seen train operating companies in a wider sense, buying trains that can easily be updated to zero-carbon trains.
Benefits Of Conversion To Diesel-Hybrid
I believe that conversion to diesel hybrid trains, using MTU Hybrid PowerPacks or similar technologies, could be advantageous in other ways, in addition to the obvious ones of less noise and pollution.
- Train operating companies would not need to greatly change their support infrastructure.
- Driver retraining would probably be a short conversion course.
- More partially-electrified routes would be possible with efficient modern trains.
I also feel, that if we can convert diesel-mechanical and diesel-hydraulic trains into trains with the ability to use either 25 KVAC overhead or 750 VDC third-rail electrification, this will open up possibilities to create new partially-electrified routes in places, where electrification is either too difficult, too expensive or is opposed by protests.
Trains That Could Be Converted
These trains are ones that can possibly be converted to diesel hybrid trains.
Turbostars
As I said earlier Porterbrook are already planning to convert some of their numerous Class 170 trains to diesel hybrid operation using MTU Hybrid PowerPacks.
Turbostars are a class of diesel trains.
The picture shows a Class 170 train in ScotRail livery, at Brough station, working a service for Northern.
- They have a 100 mph top speed.
- They come in two, three or four car sets.
- They were built between 1996 and 2011.
- They have a comfortable interior and passengers only complain, when say a Class 170 train is replaced by a Class 156 or even older train.
- There are a total of 196 Turbostars in various classes.
This description from Wikip[edia, details their drive system.
Much of the design is derived from the Networker Turbo Class 165 and Class 166 trains built by British Rail Engineering Limited’s Holgate Road carriage works. Notable features shared are the aluminium alloy frame and two-speed Voith T211r hydrodynamic transmission system. The diesel engine has changed to an MTU 6R 183TD. A cardan shaft links the output of the gearbox to ZF final drives on the inner bogie of each vehicle. The engine and transmission are situated under the body; one bogie per car is powered, the other bogie unpowered.
It is simple system and well suited to replacement with the MTU Hybrid PowerPack.
As I said earlier, some Turbostars run over partially-electrified routes.
I also said that two of Southern’s routes are partially-electrified with the 750 VDC third-rail system, so could we see some examples making use of this to create a trimodal version.
On the other hand fitting a pantograph for 25 KVAC overhead electrification could be difficult. Although, all British Rail designs and their derivatives were usually designed, so they could work with every type of K electrification.
Class 165 And Class 166 Trains
The Class 165 and Class 166 trains are the predecessors of the Turbostars, and the later trains share a lot of their features.
As with all British Rail train designs, they have Japanese Knotweed in their DNA and engineers continuously find profitable ways of not sending them to the scrapyard. So they’ll be around for a few years yet!
The owner of these trains; Angel Trains has started a development project to create the Class 165 Hydrive train, which I wrote about in Class 165 Trains To Go Hybrid.
Will we see another hundred or so diesel hydraulic trains in good condition converted to more environmentally-friendly diesel hybrid trains?
Class 195 And Class 196 Trains
The Class 195 and Class 196 trains are still in the process of being built and judging by my first experience of Northern’s Class 195 train, that I wrote about in My First Ride In A Class 195 Train, they would benefit from the fitting of a quieter hybrid drive, like an MTU Hybrid PowerPack.
I suspect that any follow on orders for CAF’s diesel trains could well be built as diesel hybrids.
- The MTU Hybrid PowerPack could be used to replace the MTU engine and ZF Ecolife transmission.
- A battery-electric transmission, perhaps even using bogies and traction motors from the Class 331 train, could be developed.
Consider.
- Building the train around a hybrid transmission, will be probably no more difficult, than building one with a mechanical transmission.
- The train would create less noise and pollution.
- Hybrid trains would probably be more marketable to prospective purchasers. See Hybrid Selling.
As CAF are the only manufacturer of new diesel trains in the UK, I don’t think, they will be bothered.
Class 175 Trains
Transport for Wales have a fleet of eleven two-car and sixteen three-car Class 175 trains and they are scheduled to be replaced by a series of new trains starting in 2021.
I suspect the conversion to diesel hybrid will be possible, but even with a full interior refurbishment, will anybody have need for them, as there are already a lot of new 100 mph diesel trains on order, many of which could be delivered as diesel hybrids.
Class 180 Trains
There are fourteen five-car Class 180 trains.
They are 125 mph trains.
- Ten trains are used by Grand Central, who seem to have no announced plan to replace them.
- Four trains are used by Hull Trains and they will be replaced this year by new Class 802 trains.
The fact that Hull Trains are replacing their Class 180 trains with new Class 802 trains, probably says a lot about the limitations of Class 180 trains.
Conclusion
We will be seeing a lot of hybrid trains, made by updating diesel-mechanichal and diesel-hydraulic trains.
Irish Rail And Porterbrook Order MTU Hybrid PowerPacks
The title of this post is the same as that of this this article on the International Rail Jotnal..
This is the first paragraph.
Irish Rail (IE) and British rolling stock leasing company Porterbrook have signed contracts with Rolls-Royce for the supply of 13 MTU Hybrid PowerPacks, the first firm orders for the hybrid rail drives.
Other points are made in the article.
- IE has ordered nine PowerPacks for Class 22000 trains. If the technology works they intend to convert all 63 trainsets, which will need 234 PowerPacks, as each car has a diesel engine.
- Porterbrook has ordered four for Class 168 and Class 170 trains.
- The PowerPacks will be delivered between mid-2020 and 2021.
- The MTU engines are built to EU Stage 5 emission regulations.
- The PowerPacks can switch to battery power in stations and sensitive areas.
- Under battery power, noise is reduced by 75 % and CO2 emissions by up to 25 %
- Operating costs are significantly reduced.
- The PowerPacks have regenerative braking, thus they reduce brake pad wear.
- Due to electric power, the trains have been acceleration, which may reduce journey times.
It seems that passengers, train operating companies, train leasing companies and those that live by the railway are all winners.
If the concept works reliably and meets its objectives, I can see MTU selling a lot of Hybrid PowerPacks.
Which Operators Will Be Used For Trials?
This is a valid question to ask and I’ll put my thoughts together.
Irish Rail Class 22000 Train
These trains only run in Ireland with one operator;Irish Rail, so they will be used for trials.
As each car has one MTU diesel engine and Irish rail are stated in Wikipedia as wanting to run three-car and six-car sets, could they be converting one train of each length?
British Rail Class 168 Train
All the nineteen Class 168 trains of various lengths are in Chiltern Railway’s fleet, they will be the trial operator.
Chiltern also have nine two-car trains, which could be ideal for trial purposes as they will need two Hybrid PowerPacks.
British Rail Class 170 Train
Porterbrook own upwards of thirty two-Car Class 170 trains with CrossCountry, Greater Anglia and West Midlands Trains.
As Greater Anglia and West Midlands Trains are replacing their Class 170 trains, this means that CrossCountry will soon be the only user of two-car units.
The four two-car trains from Greater Anglia, will be going to Trains for Wales (TfW).
TfW currently has thirty two-car Pacers in its fleet, which must be replaced by the end of 2019.
TfW is bringing in the following trains.
- Nine four-car Class 769 trains from Porterbrook.
- Eight three-car Class 17 trains from Greater Anglia
- Four two-car Class 17 trains from Greater Anglia
This is a total of sixty-eight cars.
So TfW are replacing a load of scrapyard specials with quality, more powerful trains, with approximately 13 % more capacity.
TfW are proposing to use the Class 170 trains on the following routes.
- Heart of Wales line (from 2022)
- Regional services between South and West Wales
- South Wales metro lines – Ebbw Vale/Maesteg (until 2022)
- Crewe-Shrewsbury local services (from 2022)
There is a mixture of routes here and it would be a good trial,
Other Trains
If the MTU PowerPack proves successful and leads to widespread conversion of the Class 168 and Class 170 fleets, will we see the twenty Class 171 trains and thirty-nine Class 172 trains converted to hybrid power?
Conclusion
It looks like a good solid project to me!
Hybrid Power On The Railways
In my opinion, one of the best hybrid transmissions is that of London’s New Routemaster bus. This description of the drive-train is from Wikipedia.
The bus is a hybrid diesel-electric driven by a battery-powered electric motor, charged by a diesel fuelled generator and recovering energy during braking by regenerative braking.
It is a classic serial hybrid vehicle.
- There is no mechanical connection between the engine and the driving wheels.
- The diesel engine only runs, when the battery charge is low.
- The electric motor is always powered directly from the battery.
- The control systems for the drive-train are very simple.
- It is very efficient, as the engine only runs when needed and regenerative braking is employed.
- The bus can run on battery power only, for short distances.
- The various components of the drive-train can be placed in convenient places and connected by power and control cables.
In the New Routemaster, the components are placed as follows.
- The diesel engine is half-way up the back stairs.
- The battery is under the front stairs.
- The electric motor is under the floor in front of the rear axle.
This flexibility is very useful in a large vehicle.
Hybrid transmissions are starting to be employed on the railways.
These are the applications in use or planned.
Alstom Coradia iLint
The Alstom Coradia iLint is a hydrogen-powered two-car multiple unit.
This video shows the operation of the train.
<span class=”embed-youtube”></span>
It would appear to be a serial hybrid, where the hydrogen fuel-cell charges the battery and this drives the train through an electric motor,
I suspect most hydrogen trains will work in a similar way.
Class 321 Hydrogen Train
Some Class 321 trains are being converted to run on hydrogen. Unlike the Coradia iLint, the trains will also be able to use electricity from electrification.
MTU Hybrid PowerPacks
MTU have produced a Hybrid PowerPack, which is being retrofitted into several trains, including Class 170 trains in the UK.
Class 93 Locomotive
The recently-announced Class 93 locomotive appears to be a hybrid locomotive with a large diesel engine and about 125 kWh of batteries, that can also use electrification.
High Speed Bi-Mode Aventra
I am sure that Bombardier’s proposed High Speed Bi-Mode Aventra, which features batteries and 125 mph running under both diesel and electric power is a hybrid train.
Conclusion
Just as hybrid cars are becoming more numerous, I suspect we’ll be seeing more hybrid trains in the future.
Flirt Akku Battery Multiple-Unit Unveiled
The title of this post is the same as that of this article in Railway Gazette International.
This is the first paragraph.
Stadler has officially unveiled the prototype Flirt Akku, a version of its Flirt family of electric multiple-units which is equipped with a battery to permit operation on non-electrified or partly-electrified routes.
So it looks like another train with batteries, that joins the following, that have been announced in recent months.
- Angel Trains’ Class 165 Hydrive, that I wrote about in Class 165 Trains To Go Hybrid.
- Bombardier Talent 3, that I wrote about in Bombardier Introduces Talent 3 Battery-Operated Train.
- Class 230 train, that I wrote about in Battery Class 230 Train Demonstration At Bo’ness And Kinneil Railway.
- Porterbrook Class 350/2 Battery/FLEX, that I wrote about in Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion.
There are also several projects using MTU Hybrid Power Packs.
What new projects will emerge in the next couple of years?
Class 165 Trains To Go Hybrid
There must be something in the DNA of British Rail’s rolling stock.
Mark 3-based trains like the InterCity 125, Class 319 and Class 321 trains seem to have had collectively more lives than a city full of feral cats.
It is also understandable, that MTU are looking at upgrading modern rolling stock built with their engines to be more efficient and environmentally-friendly. They have launched the MTU Hybrid PowerPack, which adds up to four 30 kWh batteries, electric drive and regenerative braking to a typical diesel multiple unit built in the last twenty years.
So now, upgrading the traction systems of the Class 165 trains is being undertaken.
The Wikipedia entry for Class 165 trains, says this under Future Development.
It was reported in September 2018 that Angel Trains were to convert class 165 units for Chiltern Railways to hybrid diesel and battery-powered trains, and that the first Class 165 HyDrive train should be ready by late 2019.
There is more in this article on Rotherham Business, which is entitled Magtec Changes Track To Convert Diesel Trains.
This is said.
Magtec, the UK’s largest supplier of electric vehicle drive systems, is working to deliver the rail industry’s first conversion of a diesel-powered train to hybrid drive.
Founded in 1992, MAGTEC designs and manufactures electric drive systems and components for a wide range of applications including trucks, buses and military vehicles.
This is also said about the modified trains performance.
In future, passengers using the Class 165 HyDrive could benefit from potentially reduced journey times, thanks to the improved acceleration offered by the hybrid technology compared to its diesel-only counterparts. Additionally, when the hybrid system detects proximity to stations or depots, it will turn the engines off and run on its battery, removing gaseous and noise emissions from populated areas.
That sounds very good to me.
There is also a serious article in the Financial Times, which is entitled Hybrid Battery Trains Set To Shorten Commuter Journey Times.
The headline sounds like hype, but then it is the FT, who usually tell it as it is. Read the article and there is a lot of philosophy and reasons behind this avalanche of retrofitting old trains with new innovative traction systems, in Germany, France and the UK.
It should be remembered that Chiltern have a record of doing the right things.
Further Development
MAGTEC look to be a very innovative company.
The Class 465 train is a third-rail electric train, that is closely-related to the Class 165 train.
It should be noted that sixteen miles of the London to Aylesbury Line is electrified using London Underground’s fourth-rail system.
So could we see the creator’s of the Class 165 HyDrive train, raid the Class 465 train’s parts bin, so the trains can use London Underground’s electrification?
Conclusion
If the project produces a successful outcome, there are seventy-five Class 165 trains running on Chiltern and Great Western Railway, which all seem to be in good condition.
Class 171 Trains And MTU Hybrid PowerPacks
The Class 170 trains and the Class 171 trains are identical, except that they use different coupling systems.
So as MTU Hybrid PowerPacks are being fitted to Class 170 trains, it would seem to be almost certain, that they could be fitted to the other closely-related class.
Southern runs the Class 171 trains on two routes, that are partially-electrified.
- Ashford to Brighton via Hastings and Eastbourne – 25 miles without electrification
- London Bridge to Uckfield via Oxted – 23 miles without electrification.
It seems to be environmentally-unfriendly to not run a hybrid train on these routes.
Could A Class 171 Train With An MTU Hybrid PowerPack Run On Third-Rail Lines?
It would appear that the Class 170 and 171 trains, use the same or similar bogies as the Class 377 trains.
These pictures show the bogies on a Class 377 train.
And these are pictures of the bogies on a Class 171 train.
Note.
- The pictures were taken at London Bridge station.
- The two bogies appear to be of a similar design, although they are for trains with different traction systems.
- The bogies in the Class 171 train seem to fit close to the third-rail.
- On the Class 377 train, the two end bogies have shoes.
As the Class 377 trains can be and nearly always are fitted with third-rail shoes, would it be possible to fit third-rail shoes to Class 171 trains, at the same time as the transmission is changed from hydraulic to electric, when the MTU Hybrid PowerPacks are installed?
If it is possible to install third-rail shoes, then this power could be used to charge the battery or power the train.
Searching the Internet, I have found this blurb for the MTU Hybrid PowerPack.
This is said
Naturally, rail vehicles with hybrid drive can also be powered exclusively by the diesel engine. This also means great flexibility for the operator: The trains can be deployed on both electrified
and non-electrified rail routes.In addition, upgrading to a trimodal power system – with an additional pantograph – is easy because the system is already equipped with an electric motor. This gives the operator considerable freedom with regard to deployment of the vehicles – it‘s a big plus when they can respond flexibly in the future to every route requirement or tender invitation.
A pantograph wouldn’t be much use in Southern territory, but the ability to connect to third-rail power certainly would be.
When clever electronics and a well-programmed control system are added, it should be possible to create an environmentally-friendly train, that could use third-rail, diesel or battery power as required.
Range On Battery Power
In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.
A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.
So how far would my proposed electric/diesel/battery hybrid train travel.
It would have a battery capacity of 61.2 kWh, if it had two one-battery MTU Hybrid PowerPack
Assume that the batteries are fully charged at Oxted, Asford and Ore, where they leave the existing electrification.
This would give the following ranges.
- 3 kWh per vehicle mile – 10 miles
- 4 kWh per vehicle mile – 7.5 miles
- 5 kWh per vehicle mile – 6 miles
Note.
- ,If the MTU Hybrid PowerPacks had two batteries range would be doubled.
- Both the unelectrified routes have sections in open countryside, where diesel power could be used without too much disturbance.
- The diesel engines could be used to top up the batteries at Uckfield.
Looking at the two routes, there would be a big cut in the running of trains on diesel.
Diesel Savings Between London Bridge And Uckfield
The distance between London Bridge and Uckfield stations is 46.1 miles, of which 23 miles are not electrified.
Going South, I would suspect because of the regenerative braking and the full batteries at Oxted, that perhaps ten miles of diesel running would be needed.
Going North, because the batteries wouldn’t be full, I suspect about fifteen miles of diesel-running would be needed.
Currently in a round trip, the trains run for 92.2 miles on diesel, but with MTU Hybrid PowerPacks and a third-rail capability, this could be reduced to around twenty-five miles, with no running in stations.
This would be a seventy-three percent reduction in diesel running.
Diesel Savings Between Ashford And Eastbourne
The distance between Ashford and Eastbourne stations is 43 miles, of which 25 miles are not electrified.
On the section without electrification, I suspect that perhaps ten miles of diesel running would be needed.
Currently in a round trip, the trains run for 86 miles on diesel, but with MTU Hybrid PowerPacks and a third-rail capability, this could be reduced to around thirty miles, with no running in stations.
This would be a sixty-five percent reduction in diesel running.
Conclusion
The rail industry has only just started to look at the application of MTU Hybrid PowerPacks.
I’m pretty certain, that they’ll be used in some surprising applications.