The Anonymous Widower

Two East Midland Power Cars In Kings Cross

I was surprised to see two East Midlands Class 43 locomotives in Kings Cross station yesterday.

I have noticed an East Midlands-branded set recently and it looks like they have been separated.

 

 

April 21, 2019 Posted by | Transport | , , | 2 Comments

Hydrogen Trains To Be Trialled On The Midland Main Line

This article on Railway Gazette is entitled Bimode And Hydrogen Trains As Abellio Wins Next East Midlands Franchise.

Abellio will be taking over the franchise in August this year and although bi-mode trains were certain to be introduced in a couple of years, the trialling of hydrogen-powered trains is a surprise to me and possibly others.

This is all that is said in the article.

Abellio will also trial hydrogen fuel cell trains on the Midland Main Line.

It also says, that the new fleet will not be announced until the orders are finalised.

In this post, I’m assuming that the hydrogen trial will be performed using the main line trains.

Trains for the Midland Main Line will need to have the following properties

  • 125 mph on electric power
  • 125 mph on diesel power
  • Ability to go at up to 140 mph, when idigital n-cab signalling is installed and the track is improved.
  • UK gauge
  • Ability to run on hydrogen at a future date.

I think there could be three types of train.

  • A traditional bi-mode multiple unit, with underfloor engines like the Hitachi Class 800 series, is obviously a possibility.
  • An electrical multiple unit, where one driving car is replaced by a bi-mode locomotive with appropriate power.
  • Stadler or another manufacturer might opt for a train with a power pack in the middle.

The second option would effectively be a modern InterCity 225.

  • South of Kettering, electricity would be used.
  • North of Kettering, diesel would be used
  • Hydrogen power could replace diesel power at some future date.
  • Design could probably make the two cabs and their driving desks identical.
  • The locomotive would be interchangeable with a driver car.

Bi-modes would work most services, with electric versions working to Corby at 125 mph.

Which manufacturer has a design for a 125 mph, hydrogen-powered train?

Alstom

Alstom have no 125 mph UK multiple unit and their Class 321 Hydogen train, is certainly not a 125 mph train and probably will still be under development.

Bombardier

In Mathematics Of A Bi-Mode Aventra With Batteries, I compared diesel and hydrogen-power on bi-mode Aventras and felt that hydrogen could be feasible.

In that post, I wrote a section called Diesel Or Hydrogen Power?, where I said this.

Could the better ambience be, because the train doesn’t use noisy and polluting diesel power, but clean hydrogen?

It’s a possibility, especially as Bombardier are Canadian, as are Ballard, who produce hydrogen fuel-cells with output between 100-200 kW.

Ballard’s fuel cells power some of London’s hydrogen buses.

The New Routemaster hybrid bus is powered by a 138 kW Cummins ISBe diesel engine and uses a 75 kWh lithium-ion battery, with the bus being driven by an electric motor.

If you sit in the back of one of these buses, you can sometimes hear the engine stop and start.

In the following calculations, I’m going to assume that the bi-mode |Aventra with batteries has a power source, that can provide up to 200 kW, in a fully-controlled manner

Ballard can do this power output with hydrogen and I’m sure that to do it with a diesel engine and alternator is not the most difficult problem in the world.

So are Bombardier designing the Bi-Mode Aventra With Batteries, so that at a later date it can be changed from diesel to hydrogen power?

All an Aventra needs to run is electricity and the train, the onboard staff and passengers don’t care whether it comes from overhead wires, third-rail, batteries, diesel or hydrogen.

Bombardier  also have the technology for my proposed locomotive-based solution, where one driver-car of an Aventra is replaced by what is effectively a locomotive.

If Bombardier have a problem, it is that they have no small diesel train to replace Abellio’s small diesel trains. Could the longer services use the bi-mode Aventras and the shorter ones Aventras with battery power?

CAF

CAF probably have the technology, but there would be a lot of development work to do.

Hitachi

Hitachi have the bi-mode trains in the Class 802 trains, but haven’t as yet disclosed a hydrogen train.

Siemens

They’ve made a few noises, but I can’t see them producing a bi-mode train for 2022.

Stadler

In a few weeks time, I will be having a ride in a Stadler-built Class 755 train, run by Abellio Greater Anglia.

The Class 755 train is a bi-mode 100 mph train, from Stadler’s Flirt family.

Could it be stretched to a 125 mph train?

  • Stadler have built 125 mph electric Flirts.
  • It is my view, that Stadler have the knowledge to make 125 mph trains work.
  • Flirts are available in any reasonable length.
  • I’ve read that bi-mode and electric Flirts are very similar for drivers and operators.

These could work the Midland Main Line.

If the mainline version is possible, then Abellio could replace all their smaller diesel trains with appropriate Class 755 trains, just as they will be doing in East Anglia.

Stadler with the launch of the Class 93 locomotive, certainly have the technology for a locomotive-based solution.

East Midlands Railway would be an all-Stadler Flirt fleet.

As to hydrogen, Stadler are supplying hydrogen-powered trains for the Zillertalbahn, as I wrote in Zillertalbahn Orders Stadler Hydrogen-Powered Trains.

Talgo

Talgo could be the joker in the pack. They have the technology to build 125 mph bi-mode trains and are building a factory in Scotland.

My Selection

I think it comes down to a straight choice between Bombardier and Stadler.

It should also be noted, that Abellio has bought large fleets from both manufacturers for their franchises in the UK.

Zero-Carbon Pilots At Six Stations

This promise is stated in the franchise.

Once the electrification reaches Market Harborough in a couple of years, with new bi-mode trains, running on electricity, the following stations will not see any passenger trains, running their diesel engines.

  • St. Pancras
  • Luton Airport Parkway
  • Luton
  • Bedford
  • Wellingborough
  • Kettering
  • Corby
  • Market Harborough

These are not pilots, as they have been planned to happen, since the go-ahead for the wires to Market Harborough.

Other main line stations include.

  • Beeston
  • Chesterfield
  • Derby
  • East Midlands Parkway
  • Leicester
  • Long Eaaton
  • Loughborough
  • Nottingham
  • Sheffield

Could these stations be ones, where East Midlands Railway will not be emitting any CO2?

For a bi-mode train to be compliant, it must be able to pass through the station using battery power alone.

  • As the train decelerates, it charges the onboard batteries, using regernerative braking.
  • Battery power is used whilst the train is in the station.
  • Battery power is used to take the train out of the station.

Diesel power would only be used well outside of stations.

How would the trains for the secondary routes be emission-friendly?

  • For the long Norwich to Derby and Nottingham to Liverpool routes, these would surely be run by shorter versions of the main line trains.
  • For Stadler, if secondary routes were to be run using Class 755 trains, the battery option would be added, so that there was no need to run the diesel engines in stations.
  • For Bombardier, they may offer battery Aventras or shortened bi-modes for the secondary routes, which could also be emission-free in stations.
  • There is also the joker of Porterbrook’s battery-enhaced Class 350 train or BatteryFLEX.

I think that with the right rolling-stock, East Midlands Railway, could be able to avoid running diesel engines in all the stations, where they call.

Why Are Abellio Running A Hydrogen Trial?

This is a question that some might will ask, so I’m adding a few reasons.

A Train Manufacturer Wants To Test A Planned Hydrogen Train

I think that it could be likely, that a train manufacturer wants to trial a hydrogen-powered variant of a high-speed train.

Consider.

  • The Midland Main Line is about 160 miles long.
  • A lot of the route is quadruple-track.
  • It is a 125 mph railway for a proportion of the route.
  • It has only a few stops.
  • It is reasonably straight with gentle curves.
  • Part of the route is electrified.
  • It is connected to London at one end.

In my view the Midland Main Line is an ideal test track for bi-mode high speed trains.

A Train Manufacturer Wants To Sell A Fleet Of High Speed Trains

If a train manufacturer said to Abellio, that the fleet of diesel bi-mode trains they are buying could be updated to zero-carbon hydrogen bi-modes in a few years, this could clinch the sale.

Helping with a trial, as Abellio did at Manningtree with Bombardier’s battery Class 379 train in 2015, is probably mutually-beneficial.

The Midland Main Line Will Never Be Fully Electrified

I believe that the Midland Main Line will never be fully-electrified.

  • The line North of Derby runs through the Derwent Valley Mills World Heritage Site. Would UNESCO allow electrification?
  • I have been told by drivers, that immediately South of Leicester station, there is a section, that would be very difficult to electrify.
  • Some secondary routes like Corby to Leicester via Oakham might be left without electrification.

But on the other hand some sections will almost certainly be electrified.

  • Around Toton, where High Speed Two crosses the Midland Main Line and the two routes will share East Midlands Hub station.
  • Between Clay Cross Junction and Sheffield, where the route will be shared with the Sheffield Spur of High Speed Two.
  • The Erewash Valley Line, if High Speed Two trains use that route to Sheffield.

The Midland Main Line will continue to need bi-mode trains and in 2040, when the Government has said, that diesel will not be used on UK railways,

It is my view, that to run after 2040, there are only two current methods of zero-carbon propulsion; on the sections without overhead electrification battery or hydrogen power.

So we should run trials for both!

Abellio Know About Hydrogen

Abellio is Dutch and after my trip to the Netherlands last week, I wrote The Dutch Plan For Hydrogen, which describes how the Dutch are developing a green hydrogen economy, where the hydrogen is produced by electricity generated from wind power.

So by helping with the trial of hydrogen bi-mode trains on the Midland Main Line, are Abellio increasing their knowledge of the strengths and weaknesses of hydrogen-powered trains.

In Thoughts On Eurostar To North Netherlands And North West Germany, I  proposed running bi-mode trains on the partially-electrified route between Amsterdam and Hamburg via Groningen and Bremen, which would be timed to connect to Eurostar’s services between London and Amsterdam. These could use diesel, hydrogen or battery power on the sections without electrification.

If hydrogen or battery power were to be used on the European bi-mode train, It would be possible to go between Sheffield and Hamburg on a zero-carbon basis, if all electric power to the route were to be provided from renewable sources.

Abellio Sees The PR Value In Running Zero-Carbon Trains

In My First Ride In An Alstom Coradia iLint, I talked about running hydrogen-powered trains on a hundred mile lines at 60 mph over the flat German countrside

The Midland Main Line is a real high speed railway, where trains go at up to 125 mph between two major cities, that are one-hundred-and-sixty miles apart.

Powered by hydrogen, this could be one of the world’s great railway journeys.

If hydrogen-power is successful, Abellio’s bottom line would benefit.

Conclusion

This franchise will be a big improvement in terms of  carbon emissions.

As I said the choice of trains probably lies between Bombardier and Stadler.

But be prepared for a surprise.

 

 

 

 

 

April 11, 2019 Posted by | Transport | , , , , , , , , , , , | 6 Comments

Routes For Bombardier’s 125 Mph Bi-Mode Aventra

This article in Rail Magazine, is entitled Bombardier Bi-Mode Aventra To Feature Battery Power.

A few points from the article.

  • Development has already started.
  • Battery power could be used for Last-Mile applications.
  • The bi-mode would have a maximum speed of 125 mph under both electric and diesel power.
  • The trains will be built at Derby.
  • Bombardier’s spokesman said that the ambience will be better, than other bi-modes.
  • Export of trains is a possibility.

Bombardier’s spokesman also said, that they have offered the train to three new franchises. East Midlands, West Coast Partnership and CrossCountry.

These are my thoughts on these franchises.

Bi-Mode And Pure Electric

I’m pretty certain that if you want to create a 125 mph bi-mode train, you start with a 125 mph electric train, if you want a high degree of commonality between the two trains.

Hitachi have a whole family of Class 800 trains, each of which has a different specification for the diesel power. Even the pure-electric Class 801 trains, has one diesel engine for emergencies.

An electric train with batteries could be very efficient, if the batteries were used to handle regenerative braking and boost the trains, where more power is required.

East Midlands

It is no surprise that Bombardier are talking to the groups, that are bidding to become the new franchise holder for the East Nidlands, when it is awarded in April 2019.

They wouldn’t want to see another company’s product roaring past the factory.

The proposed bi-mode Aventra will probably have been designed very much with the Midland Main Line in mind.

  • The Midland Main Line will be electrified from St. Pancras to Kettering and Corby.
  • Will the fast lines be electrified to Glendon Junction, where the Corby Branch joins the Midland Main Line?
  • The route between St. Pancras and Glendon Junction is being upgraded to four tracks, with as much 125 mph running as possible.
  • The non-stop nature of Midland Main Line services South of Kettering could be significant.
  • North of Kettering, there is currently no electrification.
  • The development of Toton station for HS2 is being accelerated and there could be an island of electrification here, by the mid-2020s.
  • If HS2 shares the Midland Main Line corridor between Toton and Sheffield, this section could be electrified by the late-2020s.

Over the next decade, there will be more electrification and a greater proportion of the route, where 125 mph running will be possible.

There has been a bit of controversy, that the number of stops the franchise will make at Bedford and Luton is being reduced after May this year.

The reason given is that it will enable faster services to Derby, Nottingham and Sheffield.

North To Derby, Nottingham and Sheffield

Consider a bi-mode train with batteries going North.

  • Between St. Pancras and Kettering, it will be at 125 mph for as long as possible.
  • The train will also ensure that at Kettering, it has the batteries brim full, sfter charging from the electrification.
  • After a stop at Kettering station, if the electrification reached to Glendon Junction, the acceleration would all be electrically-powered.
  • Whether it stopped at Kettering or not, the train would pass Glendon Junction at line speed with full batteries.

It’s almost as if the electrification is being used as a catapult to speed the train North.

South From Derby, Nottingham and Sheffield

Being as electrically efficient coming South would be a lot more difficult.

  • I suspect that train batteries will be charged at Derby, Nottingham and Sheffield, so they start their journey South with full batteries.
  • Using a full battery and assistance from the onboard generator, trains would be accelerated away from the terminii.
  • The trains computer would select automatically, whether to use battery or onboard generator power and would harvest all the power from regenerative braking.
  • At each stop on the journey, energy would be lost, as regenerative braking systems do not are only between seventy and ninety percent efficient.
  • Once at Glendon Junction, the train would raise the pantograph and switch to getting power from the overhead wires.

It’s all about a well-programmed computer on the train, which knows the route, the timetable and battery state so it can switch power sources appropriately.

Electrification

On the other hand, electrification around Toton could make everything easier and more efficient.

With electrification, every little helps.

  • Modern trains can raise and lower pantographs, quickly and automatically.
  • Faster journeys.
  • Lower carbon emissions.
  • Less noise and vibration from diesel generators.

Everyone’s a winner.

Oakham To Kettering

The Oakham-Kettering Line to Corby station is being electrified, double-tracked and I suspect speed limits will be raised.

Speed limits are also being raised and track improvements are being done, South of Glendon Junction.

Currently, services take seventy minutes. With the 125 mph Aventras on the route, they will not need to use the onboard generator, but surely the journey time could be reduced to under an hour, which would attract passengers and need less trains to run a two trains per hour (tph) service.

The Oakham Problem

Oakham station is in the middle of the town, as this Google Map shows.

The Department for transport would like to see more services to the town and the next station of Melton Mowbray.

But the line through the station is busy with freight trains and there is a level crossing in the middle of the town.

125 mph bi-mode trains, won’t help with the problem of Oakham.

Joining And Splitting Of Trains

There is also the possibility of joining and splitting trains.

Hitachi’s Class 800 trains can do this and I’m sure bi-mode Aventras will be able to do this automatically.

There is only four platforms available for trains on the Midland Main Line at St. Pancras and regularly two trains occupy one platform.

The ability to run a pair of bi-mode trains, that joined and split could be a great asset.

Liverpool To Norwich

This long route is an important one for those, who live near its stations. It is usually served by one or two Class 158 trains, which are often very crowded.

The route is partially electrified.

  • Liverpool to Hunts Cross
  • Manchester Oxford Road to Stockport
  • Grantham to Peterborough
  • Around Ely
  • Around Norwich

So there should be plenty of places to raise the pantograph and charge the batteries.

It is a typical long-distance route for the UK and I’m sure it would benefit from 125 mph bi-mode Aventras.

West Coast Partnership

Bids for the West Coast Partnership, which will run services on the West Coast Main Line and HS2, will be submitted by July 2018. The winning bidder will be announced in May 2019 and take over services two months later.

A modern 125 mph bi-mode would be an ideal replacement for the current twenty Class 221 trains, that work on the West Coast Main Line.

These Class 221 trains are.

  • Diesel powered.
  • Five-cars long.
  • Built in 2001-2002 by Bombardier.
  • 125 mph capable.
  • Some services are run by splitting and joining trains.

But most importantly, most services are run substantially under wires.

New 125 mph bi-mode trains would certainly improve services.

  • Several of the current services operated by Class 221 trains,  would become electric ones.
  • How much faster would they be able to run a service between London Euston and Holyhead?
  • They would also be able to run new services to places like Barrow. Blackburn and Huddersfield.
  • Five cars could be a convenient train size for the operator.

But above all, they would offer a better passenger experience, with less noise and vibration from the diesel engines.

The longest section of running using onboard power of a bi-mode Aventra will be along the North Wales Coast Line to Holyhead.

  • The line has an 90 mph operating speed.
  • The line is 85 miles long.
  • The gradients won’t be too challenging, as the line runs along the coast.
  • Services stop up to half-a-dozen times on the route.
  • From London to Crewe is electrified.
  • The section between Crewe and Chester may be electrified.

It looks to be an ideal route for a 125 mph bi-mode Aventra.

As the route appears to not be as challenging as the Midland Main Line, could this route, be the ideal test route for a hydrogen fuel-cell powered Aventra.

West Coast Partnership may well have plans to use 125 mph bi-mode trains as feeder services for HS2’s hubs at Birmingham and Crewe.

I could certainly see West Coast Partnership ordering a mixed fleet of 125 mph Aventras, some of which would be bi-modes and some pure electric.

CrossCountry

CrossCountry has a diverse portfolio of routes, which have every characteristic possible.

  • Some are lines with a 125 mph operating speed.
  • Some are electrified with 25 KVAC overhead wires.
  • Some are electrified with 750 VDC third-rail.
  • Some are not electrified.

A bi-mode train with these characteristics would fit well.

  • 125 mph capability on both electric and diesel power.
  • Battery power for short branch lines.
  • Modern passenger facilities.
  • Five-cars.
  • Ability to work in pairs.

They could actually go for a homogeneous fleet, if they felt so inclined.

That would be a substantial fleet of upwards of fifty five-car trains.

The new CrossCountry franchise will be awarded in August 2019 and start in December 2019.

Other Routes

If the 125 bi-mode Aventra with batteries is built, there could be other routes.

Borders Railway

Why would you run a 125 mph bi-mode Aventra on the 90 mph Borders Railway?

  • The Borders Railway will be extended to Carlisle, which will mean, that both ends will be electrified for a few miles.
  • This will mean that bi-mode trains with batteries could charge their batteries at both ends of the line.
  • If traffic increases, extra cars can be added.
  • The trains would be able to use the West Coast Main Line to link the Lake District to Edinburgh.
  • They could be given a tourism-friendly interior, to go with the large windows common to all Aventras.

The trains would help to develop tourism in the South of Scotland and the North of England.

East West Rail

The East West Rail between Oxford and Cambridge is going to built without electrification.

  • But that doesn’t mean that it should be built with an operating speed in the region of 90 mph!
  • The legendary InterCity 125s have been running on lines without electrification at 125 mph since the late 1970s, so it isn’t an unknown practice.

So if the line were to be built for high speed across some of the flattest parts of England, why not unleash the 125 mph bi-mode Aventras?

They could serve Ipswich, Norwich and Yarmouth in the East using their onboard generators.

They could serve Bournemouth, Bristol, Reading and Southampton, if the trains had a dual-voltage capability.

They could use electrification at Bedford, Bletchley, Cambridge and Reading to charge the batteries.

 

Settle-Carlisle Line

Surely, if the 125 mph bi-mode Aventras are suitable for the Borders Railway, then it should be able to work the Settle-Carlisle Line.

  • Both ends of the line are electrified, so batteries could be charged.
  • The line needs more and better services.

But the main reason, is that there will be a high-class scenic route between Edinburgh and Leeds.

I estimate that a London to Edinburgh service via Leeds, Settle, Carlisle and the Borders Railway would take six and a half hours, using a 125 mph bi-mode Aventra.

Some tourists love that sort of trip.

Waterloo To Exeter

The West of England Line has the following characteristics.

  • It runs between Basingstoke and Exeter.
  • It is a hundred and twenty miles long.
  • It has a 90 mph operating speed.
  • The line is not electrified.
  • It is connected to the electrified South Western Main Line to Waterloo.
  • The route is electrified between Waterloo and Basingstoke.
  • Direct trains take three hours twenty-three minutes between Waterloo and Exeter, with fourteen stops between Basingstoke and Exeter.
  • The trains used on the route are twenty-five year-old Class 159 trains.

Would a 125 mph bi-mode Aventra improve the passenger service between Waterloo and Exeter?

  • The Aventras are built for fast dwell times at stations, so there could be time saving with all those stops.
  • The Aventras could use the third-rail electrification between Waterloo and Basingstoke.
  • There may be places, where the operating speed can be increased and the faster Aventras would take advantage.
  • The trains could have a passenger-friendly interior and features designed for the route.

The real benefits for South Western Railway and their passengers would come, if the trains could do Waterloo to Exeter in three hours.

Routes For A Pure-Electric Version

There are several routes in the UK, where the following apply.

  • Some long-distance trains are run by 125 mph trains.
  • The route is fully- or substantially-electrified.
  • A proportion of the route allows 125 mph running.
  • Sections of the route is only double-track.

Routes satisfying the criteria include.

  • The West Coast Main Line
  • The East Coast Main Line
  • The Great Western Main Line
  • The Midland Main Line

On these routes, I believe it would be advantageous, if all passenger trains were capable of operating at 125 mph.

This is cause if all trains were running at 125 mph, they could be more closely spaced, thus increasing capacity.

Digital signalling would probably be needed.

There are several train services,, that use the electrified  125 mph sections of these routes.

Birmingham/Liverpool/Manchester To Edinburgh/Glasgow

TransPennine Express, are replacing their current Siemens 110 mph Class 350 trains on this service, with new CAF  125 mph Class 397 trains.

 

Euston To The West Midlands, Liverpool And Preston

West Midland Trains are replacing some of their current Siemens 110 mph Class 350 trains with new Aventras.

Information is scarce at the moment, but could some of these new Aventras be 125 mph units for working on the West Coast Main Line?

Leeds/York To Edinbugh

TransPennine Express run trains on this route.

St. Panvras To Corby

The Corby Branch is being upgraded.

  • Double-track
  • 125 mph running
  • Electrification

The section of the Midland Main Line between St. Pancras and Glendon Junction is also being upgraded to allow as much 125 mph running as possible.

If 125 mph bi-mode trains are to be used from St. Pancras to Derby, Nottingham and Sheffield, then surely, it would be logical to use a pure-electric version of the train between St. Pancras and Corby?

Various documents and web pages say, that the St. Pancras to Corby services are going to be worked by 110 mph Class 387 trains. Surely, faster 125 mph trains, which had been designed for the route would be better for passengers and the train operating company.

From my experience of scheduling, the section of the Midland Main Line between St. Pancras and Bedford, must be a nightmare to timetable successfully.

  • There are two train operating companies using the route, who go a hundred miles in different directions.
  • The Class 700 trains used by Thameslink are only 100 mph trains, so probably can’t use the fast lines too often, as if they do, they’ll delay the expresses..
  • Regular passengers object to any change in stopping patterns or journey times.
  • Passengers liked to get on express services at Bedford, but they now don’t stop.
  • Passengers don’t like the Class 700 trains.
  • Luton Airport wants more services.

My experience, says that something radical must be done.

Consider.

  • Plans are for two tph between St. Pancras and Corby.
  • How many passengers would complain if they ended up in the St. Pancras Thameslink platforms, rather than the high-level ones? They’re both equally badly connected to the Underground, buses and taxis.
  • There will be four tph between Bedford and London all day on Thameslink, with an extra four tph in the Peak.
  • Some or all of these services will call at both Luton and Gatwick Airports.
  • Looking at the two semi-fast services. which both run at tw trph, they seem to stop virtually everywhere.

I think it would be possible for the two tph St. Pancras to Corby services to become express services between Corby, Gatwick Airport and Brighton.

  • The services would only stop at Kettering, Bedford, Luton, Luton Airport Parkway, St. Albans, West Hampstead Thameslink, St. Pancras Thameslink, Farringdon, City Thameslink, Blackfriars, London Bridge and East Croydon.
  • The services would use the 125 mph fast lines North of St. Pancras, as much as possible.
  • Corby services would always call at St. Pancras Thameslink.
  • The trains would be designed for both Airport services and long-distance commuting.
  • The trains would be maximum length.

Obviously, this is my rough idea, but something like it might satisfy the stakeholders, more than what is proposed.

I think there are also other services, which are fully electrified, which could be upgraded, so that they would be suitable for or need 125 mph electric trains.

Kings Cross To King’s Lynn

I wrote about this route in Call For ETCS On King’s Lynn Route.

Portsmouth Direct Line

Under Topography Of The Line in the Wikipedia enter for the Portsmouth Direct Line, this is said.

The central part of the route, from Guildford to Havant, runs through relatively thinly populated country. The line was designed on the “undulating principle”; that is, successive relatively steep gradients were accepted to reduce construction cost. In the days of steam operation this made the route difficult for enginemen.

But with.

  • A second man in the cab, in the shape of the train’s computer, juggling the power.
  • Regenerative braking to the batteries saving energy for reuse when needed.
  • Bags of grunt from the traction motors.

The pure electric version of the 125 mph Aventra might just have the beating of the topography.

South Western Railway plan to introduce an older train from Litchurch Lane in Derby on this route, in the shape of the last of the Mark 3s, the Class 442 train or the Wessex Electrics, which were built in the 1980s.

It will be interesting to see how a 125 mph pure electric Aventra compares to something made in the same works, thirty years earlier.

Waterloo To Southampton, Bournemouth and Weymouth

The South Western Main Line goes to Southampton Central, Bournemouth and Weymouth.

  • It is a 100 mph line
  • It is fully-electrified.

Would a 125 mph pure-electric Aventra be able to put the hammer down?

I’m sure Network Rail can improve the line to a maximum safe line-speed.

Conclusion

If Bombardier build a 125 mph bi-mode Aventra with batteries, there is a large market. Especially, if there is a sibling, which is pure electric.

April 1, 2018 Posted by | Transport | , , , , , , , , , | 3 Comments

Bombardier Bi-Mode Aventra To Feature Battery Power

The title of this post is the same as this article in Rail Magazine.

A few points from the article.

  • Development has already started.
  • Battery power could be used for Last-Mile applications.
  • The bi-mode would have a maximum speed of 125 mph under both electric and diesel power.
  • The trains will be built at Derby.
  • Bombardier’s spokesman said that the ambience will be better, than other bi-modes.
  • Export of trains is a possibility.

Bombardier’s spokesman also said, that they have offered the train to three new franchises. East Midlands, West Coast Partnership and CrossCountry.

In some ways, I am not surprised about what is said in this article.

Another article on Christian Wolmar’s web site, is entitled Bombardier’s Survival Was The Right Kind Of Politics.

This is said.

Bombardier is not resting on its laurels. Interestingly, the company has been watching the problems over electrification and the fact that more of Hitachi’s new trains will now be bi-mode because the wires have not been put up in time. McKeon has a team looking at whether Bombardier will go into the bi-mode market: ‘The Hitachi bi-mode trains can only go 110 mph when using diesel. Based on Aventra designs, we could build one that went 125 mph. This would help Network Rail as it would not have to electrify everywhere.’ He cites East Midlands, CrossCountry and Wales as potential users of this technology.

The article was published in February 2017 and mentions, 125 mph on diesel and two of the companies in the recent article.

The Design Of The Trains

My thoughts are as follows.

The Starting Point

I’m pretty certain that if you wanmt to create a 125 mph bi-mode train, you start with a 125 mph electric train, if you want a high degree of commonality between the two trains.

Bombardier haven’t yet built any of their Aventras for West Midland Trains, but as they will use the West Coast Main Line extensively, will they be 125 mph trains and not 110 mph trains, as is said in Wikipedia?

Aventras And Battery Power

I will believe until Bombardier say I’m wrong, that Crossrail’s Class 345 trains, which are Aventras, use batteries for the following purposes.

  • To handle regenerative braking.
  • To limp the train out of the tunnel or to the next station or safe exit point, if there should be a catastrophic power failure.
  • To lessen the amount of electricity fed to the trains in the tunnels.
  • To allow features like remote wake-up, which need a train to have some form of power at all times.
  • To move trains in sidings and depots without having live electrification.
  • To run passenger features, when the power fails.

Effectively, the Class 345 trains have electricity as a main power source and batteries for energy storage and a secondary or emergency power source.

I talked to one of their staff, who was training drivers on Crossrail’s Aventras. The conversation went something like this.

  • Me: “What happens, when the Russians hack the power supply?”
  • Driver-Trainer: “We switch the train to emergency power!”
  • Me: “You mean batteries?”
  • Driver-Trainer: (Pause, then something like) “Might be!”

Can anybody think of another way to have emergency power on the train?

Electric Traction, Regenerative Braking and Batteries

Bi-mode trains and Alstom’s hydrogen-powered Coradia iLint are electrically powered at all times.

This means that under electric, diesel or hydrogen power, the traction motors can generate electricity to brake the train.

On an electric train, this electricity is returned through the overhead wire or third rail to power other nearby trains. This electricity could also be stored in an onboard battery, just as it is in a hybrid or battery-electric vehicle.

Driving A Bi-Mode Train With Batteries

The bi-mode Aventra could have electricity from one of four power sources.

  • 25 KVAC overhead electrification.
  • 750 VDC third-rail electrification.
  • An onboard electricity generator powered by diesel fuel or hydrogen.
  • Batteries

So will the driver need to keep switching power sources?

I am a Control Engineer by training and optimising the best power to use is a typical problem for someone with my training and experience.

The train’s computer would take all the information about the route, timetable, signal settings, battery charge level, train loading, weather and other factors and drive the train automatically, with the driver monitoring everything thoroughly.

Aircraft have been flown in a similar fashion for decades.

I look in detail, at the mathematics of a bi-mode Aventra with batteries in Mathematics Of A Bi-Mode Aventra With Batteries.

I came to the following conclusions.

I am rapidly coming to the conclusion, that a 125 mph bi-mode train is a practical proposition.

  • It would need a controllable hydrogen or diesel power-pack, that could deliver up to 200 kW
  • Only one power-pack would be needed for a five-car train.
  • For a five-car train a battery capacity of 300 kWh would probably be sufficent.

From my past professional experience, I know that a computer model can be built, that would show the best onboard generator and battery sizes, and possibly a better operating strategy, for both individual routes and train operating companies.

Obviously, Bombardier have better data and more sophisticated calculations than I do.

Note, that everything I proposed, is well within the scope of modern engineering, so other companies like CAF and Stadler, who are actively involved in rail application of battery technology, could join the party.

This picture is a visualisation of a Stadler Class 755 train, which they are building for Greater Anglia.

Note the smaller third car, which contains the diesel engine of this hybrid train. Is there room for batteries as well?

I can’t find any information on the web about the power train of the Class 755 train, but this article in the Railway Gazette, describes another Stadler bi-mode Flirt, that Stadler are building for Italy.

This is said.

The units will be rated at 2 600 kW with a maximum speed of 160 km/h when operating from 3 kV DC electrification, and 700 kW with a maximum speed of 140 km/h when powered by the two Stage IIIB compliant Deutz TCD 16.0 V8 diesel engines.

There is provision to add up to two more cars if required to meet an increase in ridership. Two more engines could be added, or the diesel module removed if only electric operation is needed.

Note.

  • The Deutz diesel engines are rated at 520 kW.
  • As 700 kW is the power of the train, I suspect each engine generator creates 350 kW of power.
  • 160 km/h would be ideal for the Great Eastern Main Line
  • 140 km/h would be more than adequate for roaming around East Anglia

I suspect that if batteries were used on this train, that the engines would be smaller.

We will see in May 2019, when the trains enter service.

Diesel Or Hydrogen Generator

Electricity generation using a diesel generator and electricity generator from a hydrogen fuel cell, each have their own advantages.

  • Diesel fuel has a higher energy density than hydrogen
  • Diesel engines create a lot of noise and vibration and emit carbon dioxide, noxious gases and particulates.
  • Hydrogen fuel cells can be silent and only emit water and steam.
  • Ballard who are a Canadian company and a leading manufacturer of hydrogen fuel-cells,  manufacture one for use in rail applications which has an output of 100 kW, that weighs 385 Kg.
  • MTU make the diesel engine for a Class 800 train, which has an output of over 600 kW, that weighs 5000 Kg.
  • Hydrogen storage is probably heavier and more complicated than diesel storage.
  • Both generators can be fitted into convenient rectangular power packs.

I would envisage that in the future,  hydrogen electricity generators will get more efficient, lighter in weight and smaller in size for a given power output.

I don’t think it is unreasonable to believe, that within a reasonable number of years, hydrogen generators and their hydrogen storage tank, will be comparable in weight and size to current diesel generators and fuel tanks.

Accelerating A Bi-Mode Train With Batteries

The major use of electricity on a 125 mph train, will be in accelerating the train up to line speed. The energy needed will be.

  • Proportional to the mass of the train. This is why your car accelerates better, when it’s just you in the car  and you don’t have your overweight mother-in-law in the back.
  • Proportional to the square of the velocity.

I have calculated that a five-car bi-mode Aventra, carrying 430 passengers and travelling at 125 mph, will have a kinetic energy of 91.9 kWh.

Obviously, using electricity from electrification is the best way to accelerate a train.

  • Electricity from electrification is probably cheaper and more convenient, than that from an onboard electricity generator.
  • If diesel is not used to power the train, there is no noise and vibration from an onboard diesel generator.
  • A route with a lot of running on onboard fuel, means more fuel has to be carried.

Using electricity stored in batteries on the train, is also a good way to accelerate a train, but the batteries must have enough charge.

The onboard electricity generator will be used, when there is no electrification and the power stored in the batteries is approaching a low level.

|When Bombardier’s spokesman says, that the ambience will be good, control of the train’s power sources has a lot to do with it.

Could he have been hinting at hydrogen, as hydrogen fuel cells do not have high noise and vibration levels?

Cruising A Bi-Mode Train With Batteries

Newton’s First Law states.

Every body continues in its state of rest or uniform motion in a straight line, unless impressed forces act on it.

If you have a train on a railway track moving at a constant speed, the following forces are acting to slow the train.

  • Aerodynamic forces, particularly on the front of the train.
  • Rolling friction of the steel wheel on a steel rail.
  • Bends and gradients in the track.
  • Speed limits and signals.

So the driver and his control system will have to feed in power to maintain the vrequired spreed.

I have sat on the platform at Stratford, whilst an Aventra has gone past at speed. I wrote about it in Class 345 Trains Really Are Quiet!

This was my conclusion.

Bombardier have applied world class aviation aerodynamics to these trains. Particularly in the areas of body shape, door design, car-to-car interfaces, bogies and pantographs.

Remember too, that low noise means less wasted energy and greater energy efficiency.

In addition steel wheel on steel rails is a very efficient way of moving heavy weights. Bombardier have a reputation for good running gear.

Once a train has reached its cruising speed, appropriate amounts of power will be fed to the train to maintain speed.

But compared to the power needed to accelerate the train, they could be quite small.

For small amounts of power away from electrification, the control system will use battery power if it is available and can be used.

The onboard electricity generator would only be switched in, when larger amounts of power are needed or the battery power is low.

Slowing A Bi-Mode Train With Batteries

The regenerative braking will always be used, with the energy being stored in the batteries, if there is free capacity.

Imagine the following.

  • A bi-mode making a stop at Leicester station on the Midland Main Line.
  • It is doing 100 mph before the stop on the main line.
  • It will be doing 100 mph after the stop on the main line.

The energy of the train after Leicester will be roughly the same as before, unless the mass of the train has changed, by perhaps a large number of passengers leaving or joining the train.

Let’s assume that the energy at 100 mph in the train is X kWh

  • When the train brakes for Leicester this energy will be transferred to the train’s batteries, if there is capacity.
  • On accelerating the train, it will need to acquire X kWh. It couldn’t get all of this from the batteries, as for various reasons the overall efficiency of this sort of system is about seventy to ninety percent.
  • The onboard electricity generator will have to supply a proportion of the energy to get the train back up to 100 mph.

But in a diesel train it will have to supply all the energy to get back to 100 mph.

Where Would I Put The Batteries?

Aventras seem to have a lot of powered-bogies, so to keep cable runs short to minimise losses and maximise the efficiency of the regenerative braking, I would put a battery in each car of the train.

This would also distribute the weight evenly.

Where Would I Put The Electricity Generators?

Diesel engines always seem to be noisy, when they are installed under the floor of a train. I’ve travelled a lot in Bombardier’s Turbostars and although they are better than the previous generation, they are still not perfect.

I’ve also travelled in the cab of a Class 43 locomotive, with a 2,250 hp diesel engine close behind me. It was very well insulated and not very noisy.

As I said earlier, the most intensive use of the onboard generators will come in accelerating a train to operating speed, where no electrification or battery power is available. There is only so much you can do with insulation!

Stadler, who are building the Class 755 train for Greater Anglia, have opted to put a short diesel generator car in the middle of the train.

This was an earlier train, where Stadler used the technique.

There are reports in Wikipedia, that the ride wasn’t good, but I’m sure Stadler has cracked it for their new 100 mph bi-mode trains.

Creating a bi-mode by adding an extra motor car into the middle of an electric train could be a serious way to go.

  • The dynamics are probably better understood now
  • A powerful diesel engine could be fitted.
  • Batteries could be added.
  • Insulating passengers and staff from the noise and vibration would surely be easier.
  • There could be a passage through the car, to allow passengers and staff to circulate.

In an ideal world, a four-car electric train could be changed into a five-car bi-mode train, by adding the motor car and updating the train software.

In Mathematics Of A Bi-Mode Aventra With Batteries, I came to the conclusion, that if the batteries are used in conjunction with the power-pack, that a single power-pack of about 200 kW could be sufficient to power the train. This would be smaller and lighter in weight, which would probably mean it could be tucked away under the floor and well-insulated to keep noise and vibration from passengers and staff.

In this article in Global Rail News from 2011, which is entitled Bombardier’s AVENTRA – A new era in train performance, gives some details of the Aventra’s electrical systems. This is said.

AVENTRA can run on both 25kV AC and 750V DC power – the high-efficiency transformers being another area where a heavier component was chosen because, in the long term, it’s cheaper to run. Pairs of cars will run off a common power bus with a converter on one car powering both. The other car can be fitted with power storage devices such as super-capacitors or Lithium-ion batteries if required.

This was published six years ago, so I suspect Bombardier have refined the concept.

So could it be that Bombardier have designed a secondary power car, that can be fitted with a battery and a diesel engine of appropriate size?

  • Using a diesel engine with batteries means that a smaller engine can be used.
  • The diesel engine could also be replaced with a 200 kW hydrogen fuel cell.

I won’t speculate, but Bombardier have a very serious idea. And it’s all down to the mathematics.

What Would Be The Length Of A 125 Mph Bi-Mode Aventra?

Long distance Aventras, like those for Greater Anglia and West Midlands Trains, seem to be five and ten car trains.

This would fit well with the offerngs from other companies, so I suspect five- and ten-cars will be the standard lengths.

Could There Be A Bi-Mode Aventra for Commuter Routes?

The London Overground has ordered a fleet of four-car Class 710 trains.

The Gospel Oak to Barking Line is being extended to a new Barking Riverside station.

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which probably has a terrain not much different to the lines to London.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

The new extension is about a mile, so this would need 20 kWh each way.

This could easily be done with a battery, but supposing a small diesel engine was also fitted under the floor. Would anybody notice the same 138 kW Cummins ISBe diesel engine that is used in a New Routemaster hybrid bus?

I doubt it.

It is a revealing to calculate the kinetic energy of a fully-loaded Class 710 train. I estimate that it under 50 kWh, if it was travelling at 90 mph, which would rarely be achieved on the Gospel Oak to Barking Line.

Could Bombardier Be Serious About Exporting Bi-Mode Aventras?

In my opinion, the Aventra is a good train an it seems to sell well in its electric form to train operating companies in the UK.

But would it sell well in overseas markets like the United States and Canada, India and Australia?

They obviously know better than I do, so we should take their statements at face value.

The Prospective Customers

The Rail Magazine article mentions three prospective customers.

I deal with them and other possiblilities in Routes For Bombardier’s 125 Mph Bi-Mode Aventra.

This was my conclusion.

If Bombardier build a 125 mph bi-mode Aventra with batteries, there is a large market.

It looks like the company has done a lot of research.

Conclusion

Bombardier are designing a serious train.

 

March 31, 2018 Posted by | Transport | , , , , , , , , , | 14 Comments

The Future Of London To Oakham And Melton Mowbray Rail Services

The bids for the future East Midlands Franchise are expected in April 2018, with the new franchise starting in April 2019.

A Statement From The Department for Transport

In the consultation about the Future of the East Midlands Franchise, this is said in a paragraph entitled Oakham and Melton Mowbray.

A consequence of operating electric trains between London and
Corby could be the loss of direct services between London and
Oakham and Melton Mowbray as there are no plans to electrify
beyond Corby on this route.

Can the Department for Transport really believe that this is a viable idea?

Efficient Train Operation

As I understand it, one of the reasons for the Oakham and Melton Mowbray service to London at six in the morning from Derby, is so they can get their trains positioned for an efficient service to London.

A Useful Diversion Route

The route from London to Derby via Oakham and Melton Mowbray also gives a useful diversion route, if there is engineering works at Leicester. These will happen, at some time in the next few years, as plans to work on the station and possible electrification could happen.

Track Improvements Between London And Kettering And Corby

  • The London to Kettering section is being upgraded.
  • Double-track to Corby.
  • Four-track between London and Kettering.
  • As much 125 mph operating speed as possible.

There may also be other track improvements to come.

Bi-Mode Trains

The new franchise will be using 125 mph bi-mode trains, to decrease the times between London and the Midlands and Yorkshire, without the need for more electrification.

Class 800 trains must be in the pole position, but Bombardier wouldn’t want another company’s products to be speeding past their factory gate, so I suspect we can expect them to offer a 125 mph bi-mode Aventra. In Is A Bi-Mode Aventra A Silly Idea?, I linked to  this article on Christian Wolmar’s web site which is entitled Bombardier’s Survival Was The Right Kind Of Politics, where this is said in the article.

Bombardier is not resting on its laurels. Interestingly, the company has been watching the problems over electrification and the fact that more of Hitachi’s new trains will now be bi-mode because the wires have not been put up in time. McKeon has a team looking at whether Bombardier will go into the bi-mode market: ‘The Hitachi bi-mode trains can only go 110 mph when using diesel. Based on Aventra designs, we could build one that went 125 mph. This would help Network Rail as it would not have to electrify everywhere.’ He cites East Midlands, CrossCountry and Wales as potential users of this technology.

Note the statement that Bombardier could build an Aventra that could do 125 mph running on diesel.

Could Class 387 Or Class 379 Trains Run Between London And Corby?

Once the route between Corby and London is fully electrified could the route be run by high-end Electrostars like Class 387 or Class 379 trains?

In theory, the answer is yes, but there is one major problem!

The Class 387 trains are 110 mph trains, but the Class 379 trains are only 100 mph trains.

They are just too slow.

Currently, London to Corby takes seventy minutes with a 125 mph Class 222 train.

These trains run on diesel, but after the track improvements between Corby and London, that will allow more 125 mph running, I would expect that the new franchise holder will be able to run these trains on the route in under an hour.

The trains may even be able to do a London to Corby round trip in under two hours, which would mean that the route would need less trains for the current level of service.

In addition to being too slow for the Corby route, the Electrostars would cause timetabling problems between Kettering and London, where they would be sharing the 125 mph Midland Main Line with a succession to 125 mph trains going between London and the North.

A Possible Solution

In my view the solution is obvious.

The current 125 mph diesel fleet, must be replaced by a 125 mph bi-mode fleet.

This would give the following advantages.

  • Faster or at least no slower journey times between London and the North, without any electrification North of Kettering and Corby.
  • 125 mph electric running between London and Kettering/Corby.
  • Efficient 125 mph running between London and Bedford, where possible.
  • The ability to use the route from Corby to Derby via Oakham and Melton Mowbray for passenger services or diversions.
  • Surely, the maintenance of a unified fleet is more affordable.

But that is not everything, as modern trains have other advantages.

Take for instance, Hitachi’s Class 800 trains, which have the ability to split and join in less than a couple of minutes at a station.

Some Corby services start or finish at Derby and stop North of Corby at Oakham, Melton Mowbray and East Midlands Parkway.

One possibility could be that some services could start in London as two five-car trains, running as a ten-car train.

  • The combined train would run fast to Corby.
  • At Corby the trains would split.
  • The front train would continue to Derby with stops at Oakham, Melton Mowbray and East Midlands Parkway.
  • The rear train would return to London.
  • Some trains would join up with a train from Derby before returning to London.

The London to Corby service would be two trains per hour, with an hourly train going on to Derby.

Looking at timings, I reckon that the round trip between Corby and Derby could be done in three hours, so it would fit neatly with a half-hourly service between London and Corby that took two hours for the round trip.

This is just speculation, but Class 395 trains have been doing the splitting and joining at Ashford for years.

Conclusion

If the new franchise holder goes for the conservative solution of Class 800 trains, I believe that it would be possible to run an hourly service from Derby to London with stops at Corby, Oakham, Melton Mowbray and East Midlands Parkway.

 

 

 

If

 

January 8, 2018 Posted by | Transport | , , , , , | Leave a comment