The Anonymous Widower

Ryse Hydrogen Is Now Ryze Hydrogen

Jo Bamford’s company Ryse Hydrogen is now called Ryze Hydrogen.

I have changed this blog to use the new spelling as I suspect Ryse clashed with the name of a computer game.

December 7, 2021 Posted by | Hydrogen | , | Leave a comment

Will JCB Dig The Whole World Out Of A Hole?

JCB and the Bamford family in general have form, where hydrogen is concerned.

  • JCB have developed internal combustion engines, that will run on hydrogen.
  • Jo Bamford owns Wrightbus and they are building hydrogen-fuelled buses in Northern Ireland.
  • JCB were an early investor in hydrogen electrolyser company; ITM Power.
  • JCB have signed a large contract for the delivery of hydrogen with Fortescue Future Industries.

I have just watched this amazing video, where Lord Bamford explains his philosophy on hydrogen.

November 13, 2021 Posted by | Hydrogen, World | , , , , , , , | 2 Comments

JCB Signs Green Hydrogen Deal Worth Billions

The title of this post, is the same as that of this article on the BBC.

This is the first two paragraphs.

Construction equipment maker JCB has signed a deal to buy billions of pounds of green hydrogen, defined as hydrogen produced using renewable energy.

The deal means JCB will take 10% of the green hydrogen made by the Australian firm Fortescue Future Industries (FFI).

JCB are certainly going into hydrogen in a big way.

  • They have demonstrated hydrogen-powered construction equipment.
  • They have developed technology, so that internal combustion engines can run on hydrogen.
  • Lord Bamford’s son; Jo bought Wrightbus and company supplied London’s hydrogen buses.
  • Ryze, which is mentioned in the article was founded by Jo Bamford.
  • JCB have made a strategic investment in electrolyser company; ITM Power.

I can see JCB making more investments in hydrogen.

In terms of green hydrogen production from renewable energy, I can see three areas providing substantial amounts of green hydrogen.

  • Australia from solar and electrolysers. Australia has space and sun.
  • Africa from solar and electrolysers. Africa has space and sun.
  • Waters around the UK from wind and electrolysers.

As ITM Power have the world’s largest electrolyser factory in Sheffield and have recently raised money to build a second one, they could be the big winner in green hydrogen production.

But I can see JCB making hydrogen-powered equipment all over the world and supplying the hydrogen to run it.l

It should also be born in mind, that JCB know how to dominate a market.

October 31, 2021 Posted by | Hydrogen, Transport/Travel | , , , , , , , | 2 Comments

Wrightbus Presents Electric & Fuel Cell Single-Decker Buses

The title of this post, is the same as that as this article on Electrive.

This is the first paragraph.

The Northern Irish bus manufacturer Wrightbus is introducing a new single-deck bus with battery and fuel cell propulsion. The new models of the GB Kite series in the Hydroliner FCEV and Electroliner BEV variants can each accommodate up to 90 passengers and are scheduled to go into series production in 2022.

This means that Wrightbus now have single and double-deck zero emission buses with both battery and fuel cell propulsion.

These are my thoughts.

High Commonality

There may be four different buses, but they have a surprising amount in common.

In this press release on the Wrightbus web site, which is entitled Wrightbus To Showcase Two New Zero-Emission Buses, there is this paragraph.

Both buses share an 86% parts commonality with their Double Deck sisters which delivers significant benefits to operators in terms of reducing complexity and costs for fleet maintenance.

Vehicle manufacturers have been looking for high commonality for many decades and it is amazing that Wrightbus have achieved such a figure.

We mustn’t forget the advantages, Wrightbus will get from such commonality in terms of production, product support and the supply of parts and sub assemblies.

Passenger Capacity

The passenger capacity of the four buses are as follows.

  • Double-decker – Hydrogen  – 86
  • Double-decker – Battery – 95
  • Single-decker – Hydrogen  – 90
  • Single-decker – Battery – 90

Note.

  1. These figures come from the Wrightbus web site.
  2. The site says that the figures for the single-decker buses depend on bus length and specification.

Does the similar capacity of all the buses give operators more flexibility?

Range

The range of the four buses are as follows.

  • Double-decker – Hydrogen  – 350 miles
  • Double-decker – Battery – 200 miles
  • Single-decker – Hydrogen  – 640 miles
  • Single-decker – Battery – 300 miles

Note.

  1. These figures come from the Wrightbus web site or the press release for the new single-deck buses.
  2. These ranges are claimed by Wrightbus as best-in-class.
  3. But surely the range of 640 miles for a single-deck zero-carbon hydrogen bus opens up some interesting and unusual routes.
  4. Single-deck buses appear to have a longer range than their double-deck sisters.

There is also a degree of battery size flexibility in the battery-electric buses to suit an operator’s routes.

Single-deck battery-electric buses are available with these battery sizes and charging times.

  • 340kWh – 2 ½ hours @ 150kW
  • 454kWh – 3 hours @ 150kW
  • 567kWh – 3 ½ hours @ 150kW

And these are the figures for the double-deck battery-electric buses.

  • 340kWh – 2 ½ hours @ 150kW
  • 454kWh – 3 hours @ 150kW

Note.

  1. Both single- and double-deck buses can use the two smaller batteries.
  2. I would assume that they are similar and it’s all part of the commonality.
  3. Both buses can also be fitted with a pantograph to charge the batteries, when the routes present an opportunity.

Could the largest battery be fitted to the double-deck bus? Perhaps at some point, but I suspect, that currently, a weight limitation applies.

The Fuel Cell

This sentence from the Electrive article, describes the fuel cell system of the hydrogen bus.

The fuel cell solo bus model is very similar in design. Instead of the pure BEV drive, the GB Kite Hydroliner FCEV has a Ballard FCmove fuel cell with 70 kW or 100 kW and a small supplementary battery with 30 or 45 kWh on board.

It appears, there is flexibility in the power.

Forsee Batteries From France

This paragraph from the Electrive article, talks about the batteries.

Incidentally, Forsee Power is acting as the supplier of the batteries for the BEV buses. The Bamford Group, new parent of Wrightbus, had extended the partnership with the French battery manufacturer in October 2020 with a new contract for several hundred battery systems per year. Forsee Power announced the introduction of extra-thin battery modules earlier this year and directly named Wrightbus as the launch customer for the modules of the new Slim series. Whether these batteries are now already being installed in the two Electroliners is not specified. However, the high storage capacity of the 567-kWh top battery leads us to assume this, at least for the solo bus model.

Forsee’s slimline batteries seem a major advance in the powering of vehicles like buses.

It certainly looks like extra-thin is beautiful, where batteries are concerned.

Conclusion

This is a formidable line-up of four zero-carbon buses, that can be tailored to an operator’s needs.

When linked tom Jo Bamford’s company; FUZE, which I wrote about in New Company Established To Help Transition Bus Fleets To Hydrogen, Bamford’s deck of cards look even stronger.

Will Jo Bamford do for the bus industry, what his grandfather did for diggers? I wouldn’t bet against it!

 

 

September 24, 2021 Posted by | Hydrogen | , , , , | Leave a comment

New Company Established To Help Transition Bus Fleets To Hydrogen

The title of this post, is the same as that of this article on H2 View.

These first two paragraphs describe the company.

A new asset financed company has been launched to help design, deliver, and finance the seamless transition to a zero-emissions bus fleet with hydrogen included.

Launched by Wrightbus owner Jo Bamford today (August 9), FUZE will support the energy transition to cleaner variants by offering packages that enable the transition to hydrogen or electric fleets of buses.

If Jo Bamford gets this right, it could certainly smooth the transition to hydrogen and electric buses, where bus companies will be introducing new technology.

The words asset-based make me think, that buses, fuelling systems and chargers could all be hired on a bus-by-the-hour basis in much the same way train manufacturing companies like Hitachi and Stadler supply trains to the train operating companies.

The manufacturers are contracted to supply so many trains each day and if there are reliability or availability problems, then they must compensate the operators. That model would surely work with buses.

  • I also suspect the model would allow flexibility, as to the choice of either an electric or hydrogen bus.
  • I also think, that the model would be able to provide short-term deals for large events and Rail Replacement services.
  • Buses no longer needed could also be returned, repainted and hired by another operator.
  • FUZE could also have a standby fleet, so any bus operator wanting to try hydrogen buses for a month, could enter into a short-term deal.

I also think that this new generation of buses can open up innovative ideas for bus use. In Three Hydrogen Double Decker Buses Set For Dublin, I describe how Dublin will use just three hydrogen buses to create a fast commuter route.

Conclusion

I like it!

Short Term Hire Of Buses

I have a feeling that if say you wanted to hire a small fleet of buses for say a festival like Glastonbury, that hydrogen buses could be the better bet.

Suppose you wanted to run a fleet of five buses to and from the car park at the nearest rail station.

  • Feeding the chargers for five buses will need a substantial electricity feed.
  • Hydrogen buses can be refuelled from a mobile fuelling station.
  • Hydrogen buses can probably run all day on one refuelling.

The ease of refuelling would appear to favour the hydrogen bus.

 

August 10, 2021 Posted by | Finance, Hydrogen, Transport/Travel | , , , , | 4 Comments

Ryze Hydrogen’s Suffolk Freeport Hydrogen Vision Takes Shape

The title of this post, is the same as that of this article on S & P Global.

This is the introductory paragraph.

Ryze Hydrogen plans to install a 6 MW electrolyzer at the Sizewell nuclear site in Suffolk as a launchpad for mass production of low carbon hydrogen in and around the future freeport of Felixstowe, company founder Jo Bamford told S&P Global.

Ryze Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

This would mean that Sizewell’s 6 MW electrolyser could be producing around a thousand tonnes of hydrogen per year or 2.6 tonnes per day.

Note that the port and the power station are only about thirty miles apart.

Suffolk is thinking big again!

The last part of the article is where Jo Bamford discusses the cost of hydrogen and hydrogen buses and how he intends to sell them to the UK and ultimately the world.

Suffolk and Jo Bamford appear to be made for each other, with complementary ambitions.

March 4, 2021 Posted by | Hydrogen | , , , , , , , | Leave a comment

All Aboard The Bamford Hydrogen Bus Revolution

The title of this post, is the same as that of this article on Air Quality News.

This is the introductory paragraph.

Air Quality News editor Jamie Hailstone talks to JCB heir and hydrogen advocate, Jo Bamford, about why it is the fuel of the future for buses.

It is a good read, as Jo Bamford details his vision to change public transport with thousands of hydrogen-powered buses.

He talks in a common-sense manner, about the economics and practicalities of zero emission buses, of which this paragraph is typical.

‘I have a bus manufacturing business,’ he adds. ‘We make a diesel bus, a battery double-decker and a hydrogen double-decker. A battery double-decker will do 60% of the distance of a diesel bus and take 4.5 hours to charge. A hydrogen bus will do the same distance as a diesel bus and take seven minutes to fill up. If you are running a bus for 22 hours a day, you can’t afford to charge them up for 4.5 hours a day.

Jo Bamford finishes with.

I think hydrogen is a sexy, cool thing to be looking at.

I agree with him and we should get started on lots of hydrogen buses and their hydrogen supply network.

As I wrote in Daimler Trucks Presents Technology Strategy For Electrification – World Premiere Of Mercedes-Benz Fuel-Cell Concept Truck, Mercedes are going the hydrogen route with big trucks and these trucks will need a hydrogen supply network to be built in the UK.

So surely, we should look at decarbonisation of buses and heavy trucks in an holistic way, by creating that hydrogen supply network in the UK.

Ryze have now obtained planning permission for their first big electrolyser at Herne Bay and it now has its own web site, which includes this video, explaining Ryze Hydrogen’s philosophy.

Let’s hope that this first electrolyser, grows into the network the country needs.

 

October 3, 2020 Posted by | Hydrogen, Transport/Travel | , , , , , , | Leave a comment

Green Bus Maker Reveals Plan For Scottish Hydrogen Fuel Production Facility

\the title of this post, is the same as that of this article on the Herald.

Thwaw are the introductory paragraphs.

Jo Bamford, chief of Ryze Hydrogen, has revealed plans to create a hydrogen production facility in Scotland.

He said the production unit will be sited outside Glasgow and it is expected to be operational by November next year when the rescheduled COP26 climate event is due to take place in the city.

Mr Bamford earlier said Glasgow could run 300 hydrogen-powered buses, while Aberdeen is set put a fleet of hydrogen powered double deckers on the road.

You can’t fault Jo Bamford’s ambitions.

August 19, 2020 Posted by | Hydrogen, Transport/Travel | , , , , , , | Leave a comment

Joint Venture With Linde AG And £38M Strategic Investment

The title of this post, is the same as that as this Press Release from ITM Power.

This is the first paragraph.

ITM Power plc  is pleased to announce its intention to raise at least £52.0 million (before expenses) through (i) a strategic investment of £38.0 million at 40 pence per share by Linde UK Holdings No. 2 Limited, a member of the Linde AG group (Linde) (the Share Subscription); and (ii) a conditional placing of £14.0 million at 40 pence per share (the Firm Placed Shares) with certain existing and new institutional investors (the Firm Placing).   The Group has also entered into a 50/50 joint venture with Linde (the Joint Venture) which will focus on delivering green hydrogen to large scale industrial projects, principally those with an installed electrolyser capacity of 10 Megawatts (“MW”) and above.

There is all the usual financial stuff and these sentences.

The net proceeds of the fundraising will be used principally to enhance the manufacturing capabilities of the Group, particularly for the development and production of large scale 5MW electrolysers, to facilitate product standardisation and manufacturing cost reduction.

The Joint Venture will focus on delivering green hydrogen to large scale industrial projects (generally being opportunities with installed electrolyser capacities of 10 Megawatts and above)

As ITM Power are constructing the largest electrolyser factory in the world, at Bessemer park in Sheffield, it appears to me that ITM Power are going for the larger scale hydrogen market.

Recently, I wrote these three posts.

News stories generated about the company or the production of hydrogen seem to require large electrolysers in excess of 5 MW.

It looks like ITM Power are setting themselves up to tap this market substantially.

How Much Hydrogen Would A 5 MW Electrolyser Create In A Day?

I found the key to the answer to this question on this page of the Clean Energy Partnership web site.

To produce hydrogen by electrolysis directly at the filling station, the CEP currently requires about 55 kWh/kg H2 of electricity at an assumed rate of efficiency of > 60 percent.

To produce 1 kg of hydrogen, nine times the amount of water is necessary, i.e. nine litres.

I will use that figure in the calculation.

  • A 5MW electrolyser will consume 120 MWh in twenty-four hours.
  • This amount of electricity will produce 2,182 Kg or 2.182 tonnes of hydrogen.
  • It will also consume 19.64 tonnes of water.

In Surplus Electricity From Wind Farms To Make Hydrogen For Cars And Buses, I described how Jo Bamford and his company; Ryze Hydrogen, have applied for planning permission to build the UK’s largest electrolyser at Herne Bay in Kent.

  • It will produce ten tonnes of hydrogen a day.
  • The hydrogen will be sent by road to London to power buses.

So could the electrolyser be a 25 MW unit built of five 5 MW modular electrolysers?

Linde and their UK subsidiary; BOC, must have a lot of knowledge in transporting tonnes of hydrogen by road. I can remember seeing BOC’s trucks behind ICI’s Castner-Kellner works in the 1970s, where they collected hydrogen to see to other companies.

 

May 29, 2020 Posted by | Transport/Travel, World | , , , , , , , | 3 Comments

Surplus Electricity From Wind Farms To Make Hydrogen For Cars And Buses

The title of this post, is the same as that as this article in The Times.

This is the introductory paragraph.

Surplus power from wind farms will be used to run a network of giant electrolysers to make hydrogen for vehicles, under plans drawn up by a green energy company.

The following are points from the article.

  • The electrolysers will be installed by Ryze Hydrogen.
  • Ryze have submitted plans to build the UK’s largest electrolyser at Herne Bay in Kent.
  • It will produce ten tonnes of hydrogen a day.
  • The hydrogen will be sent by road to London to power buses.
  • More electrolysers could be built in Aberdeen, Northern Ireland, Runcorn, South Wales and other places.
  • It looks like the electrolysers will be built by ITM Power in the world’s largest electrolyser factory in Rotherham.
  • Keele University is replacing 20% of the natural gas in its gas network with hydrogen to heat buildings. I wrote about this in HyDeploy.

Note.

  1. The owner of Ryze is Jo Bamford, who also owns Wrightbus. I wrote about his plans in JCB Heir And Wrightbus Owner Jo Bamford: ‘We Can Sell Our Hydrogen Bus Around The World’.
  2. Jo Bamford also has a plan for Ireland, which I wrote about in Wrightbus Boss Eyes All-Island Green Transport Plan. He could build the Northern Ireland electrolyser conveniently for the border.
  3. Jo Bamford is the son of Lord Bamford; the chairman of JCB.
  4. According to Wikipedia, JCB made a £4.9m strategic investment in ITM Power in 2015. The early bird catches the worm?
  5. ITM Power recently had an order for an 8MW electrolyser, which I wrote about in Funding Award to Supply An 8MW Electrolyser.

It all seems to fit together like a large zero-carbon jigsaw.

I do have some questions.

How Much Electricity Is Needed To Produce Ten Tonnes Of Hydrogen?

I found an answer to this question on this page of the Clean Energy Partnership web site.

To produce hydrogen by electrolysis directly at the filling station, the CEP currently requires about 55 kWh/kg H2 of electricity at an assumed rate of efficiency of > 60 percent.

To produce 1 kg of hydrogen, nine times the amount of water is necessary, i.e. nine litres.

Scaling up means that to produce ten tonnes of hydrogen will require 550 MWh and ninety tonnes of water. For comparison an Olympic swimming pool holds 2,500 tonnes of water, based on the fact that a cubic metre of water weighs a tonne and contains a thousand litres.

Is It Safe To Move Hydrogen In Trucks Around The UK?

I used to work as an instrument engineer in ICI’s hydrogen factory at Runcorn around 1970.

That plant electrolysed brine using the Castner-Kellner process to produce sodium hydroxide, chlorine and hydrogen. The first two products were used as feedstock to make various chemical products and the hydrogen was taken away by Air Products and BOC, in specially-designed trucks.

It can be said, that we have been moving hydrogen safely on the roads of the UK for at least fifty years and probably longer.

As an aside, I think, ICI found the hydrogen a bit of a problem, as in those days it didn’t have that many uses.

Are Ryze Building A Network Of Electrolysers To Serve The Whole Of The UK?

The five electrolysers named in The Times article, are in Ireland, North-West England, Scotland, South-East England and South Wales.

  • All electrolysers would be sited near to large offshore wind farms, except for Northern Ireland, where the wind power is onshore.
  • All areas of the British Isles would be close to an electrolyser for hydrogen delivery, except the South West and the North East of England and the Midlands.
  • The Midlands is to be served by a planned ITM Power electrolyser at Tyldesley.
  • The North East of England has a hydrogen supply from INEOS on Teesside.
  • The South West of England could probably support another electrolyser. But there is not the same amount of nearby wind power.

Ryze with a little help from their friends, could make sure that every bus depot in the UK has a reliable source of green hydrogen.

The Electrolyser At Herne Bay

This Google Map shows the Herne Bay and the surrounding area on the North Kent coast.

What is not shown is all the wind farms to the North of the town in the Thames Estuary. These include.

That is a total of 1241 MW, so working for twenty-four hours with a capacity factor of 30% would create almost 9 GWh of electricity.

  • A small fraction of this 9 GWh of renewable electricity would provide enough to run the electrolyser at full power.
  • The smallest wind farm; Kentish Flats will produce 139 x 24 x 0.3 = 1000 MWh on an average day.
  • Just 23 MWh of electricity per hour is needed to create the ten tonnes of hydrogen.

Where are these wind farms connected to the National Grid?

  • If just one connection is close to Herne Bay, then co-location must be desirable.
  • If there is no connection, only 23 MW would be needed from the National Grid.

Reading the Wikipedia entry for Herne Bay, it appears to be an improving town.

  • It has both a fast rail and a High Speed One connection to and from London.
  • There is a dual-carriageway road connection to the motorway network.
  • The town would probably welcome the jobs, that the development would create.

Herne Bay seems to be a good place to build the first electrolyser.

The Electrolyser At Aberdeen

I don’t know the Aberdeen area well, although the oil industry in the area has been good for my financial well-being.

There must be a good reason for building an electrolyser in the area.

  • Aberdeen have experience of hydrogen buses.
  • There are some large wind farms; both onshore and offshore close by.
  • Is there a convenient site, that once had a coal-fired power station, but still has good electrical connections?

According to the Wikipedia entry for Wind Power In Scotland, the country had 8423 MW of installed wind power in December 2018 and has the aim of using only renewable energy by 2020.

Searching the Internet, I found the Peterhead power station.

The power station is gas-fired.

The power station has changed technology over the years.

There was a plan to fuel the power station with hydrogen produced from methane, where the carbon dioxide would have been captured and stored in the Miller field.

This Google Map shows the power station, to the South of Peterhead.

Note, that the power station is close to the A90 road, which forms the Aberdeen Western Peripheral Route, that goes past Aberdeen to the South of Scotland.

Could this power station be the site of the Aberdeen electrolyser?

  • It looks to have good road connections.
  • It obviously has good electrical connections.
  • Peterhead would probably welcome the employment.

As you can see from the map, the power station is owned by SSE plc, who generate about a third  of their energy from renewables.

And then there is Hywind Scotland, which is the world’s first commercial floating wind farm.

  • This is a 30 MW wind farm.
  • It comprises five 6MW floating wind turbines.
  • It is situated eighteen miles off Peterhead.
  • In the first two years of operation it had a capacity factor of 50 %, according to Wikipedia.

On an average day, Hywind Scotland will generate 360 MWh. This is 65 % of the 550 MWh of energy needed to produce ten tonnes of hydrogen.

Are there undisclosed plans to create a fleet of floating wind turbines, out to sea from Peterhead, which would be ideal for both Scotland’s electricity and hydrogen supplies?

It should also be noted, that in the UK and I suspect other developed countries, if someone needs a large amount of electricity for a commercial purpose, like an aluminium smelter or a steelworks, electricity companies, whether state or privately-owned, have always been keen to oblige.

I suspect that everything could be coming together in Peterhead.

The Electrolyser In Northern Ireland

The Wrightbus factory, owned by Jo Bamford builds its buses at Ballymena.

  • Ballymena is 28 miles North of Belfast.
  • Dublin is 130 miles to the South.

I can see the mother of all arguments happening, as to whether the electrolyser is North or South of the border.

If you look at the Wikipedia entry entitled Electricity Sector In Ireland, this is the opening paragraph.

The electricity sectors of the Republic of Ireland and Northern Ireland are integrated and supply 2.5 million customers from a combination of coal, peat, natural gas, wind and hydropower.

The grid runs as a synchronous electrical grid and in terms of interconnections has undersea DC-only connection to the UK National Grid, alongside plans in the advanced stage for a higher power, planned Celtic Interconnector to France.

It looks like Jo Bamford will only have to deal with one entity, no matter, which side of the border, the electrolyser is situated.

This would surely make it easier for his All-Ireland Green transport plan, which  I wrote about in Wrightbus Boss Eyes All-Island Green Transport Plan.

My feeling is that he’ll get less grief, if the electrolyser was just on the North side of the border with a good road connection to the South. As there is a dual carriage-way road, all the way between Belfast and Dublin, this could probably be arranged.

This Google Map shows where the main dual-carriageway crosses the border.

Note.

  1. The border is shown as a white line to the North of the Centrepoint Business Park.
  2. The railway line between Dublin and Belfast can be seen to the West of the main cross-border road.

I certainly think, that a solution can be found to fuel all those Irish hydrogen buses, that Jo Bamford has proposed.

The Electrolyser At Runcorn

If Runcorn already has a good source of hydrogen at the former ICI factory, that is now owned by INEOS, why build an electrolyser at Runcorn?

There are several reasons.

  • Runcorn is involved in the hydrogen plans for North-West England, that I wrote about in A Hydrogen Mobility Roadmap For North-West England.
  • Runcorn can connect into the North West’s proposed hydrogen network.
  • Runcorn is close to the zero-carbon wind energy of Liverpool Bay.
  • INEOS can pool their zero-carbon hydrogen into that produced by Ryze.
  • Will INEOS with all their hydrogen experience in the area, host the electrolyser?
  • Runcorn is convenient for the large cities of Liverpool and Manchester.
  • Runcorn has good access to the motorway network for the Midland of England and North Wales.
  • There must be the possibility of building a rail terminal to deliver hydrogen.

Runcorn would also connect the interests of Jim Ratcliffe and the Bamfords.

The Electrolyser In South Wales

South Wales has an extensive public transport network.

  • The South Wales Main Line runs between the Severn Tunnel and Swansea and the West via Newport and Cardiff.
  • The Cardiff Valley Lines are being transformed into a modern South Wales Metro, which will make use of electric and battery technology.
  • There are a lot of buses, running around in South Wales.

The buses and possibly some of the trains must be candidates for hydrogen power.

Transport for Wales Rail Services have ordered 77 Class 197 diesel trains from CAF, who have a factory at Newport.

Given CAF’s record on innovation and the Welsh Government’s stance on the environment, I wouldn’t be surprised to find out that these trains could be converted to zero-carbon trains. I’m sure Ryze would be pleased to provide green hydrogen for Welsh trains.

I think there are two possible sites for a large electrolyser in South Wales.

The first is the site of the former Aberthaw power stations, which are shown in this Google Map.

Note.

  1. Aberthaw power stations were South of Gileston.
  2. The complex stopped generating power at the end of March this year.
  3. The site has rail access.
  4. Road access would need to be improved.
  5. The power station must have had a good very connection to the National Grid.
  6. The site is near to Cardiff Airport, who might want to go zero-carbon for all their ground vehicles.

The second possible site, is on the site of the former Llanwern steel works, which is shown in this Google Map.

Note.

  1. It is a very large site, which probably has a very good connection to the National Grid.
  2. The CAF rolling stock factory is marked by a red arrow.
  3. CAF could start building and/or selling hydrogen-powered trains in the UK, at some date in the future.
  4. The site has rail and road access.
  5. The site is fifteen miles to the East of Cardiff.
  6. The site is thirty miles to the West of Bristol.

If it was my decision, I’d put the electrolyser on the Llanwern site.

Will The Electrolysers Need A Battery To Cover On Days Without Wind?

I can envisage a system, where several trailer-tankers are filled at once in a continuous process. Once filled, they would be disconnected and replaced by an empty one. It would act like a automatic bottling plant for beer, but with much bigger bottles.

The filled trailer-tankers would be energy stores, whilst they awaited being taken to the customers.

What Infrastructure Will Be Needed At Bus Depots?

The infrastructure is minimal and would be a tank and the means of filling the buses.

I also wonder, if trucks with a proven design of hydrogen trailer-tanker were to be used, these could be filled up at the electrolyser and the trailer-tankers would then be taken to the bus depots, where they would be plugged into the hydrogen delivery system for the buses.

  • Each delivery would be a drop-off and connection of a full trailer-tanker of hydrogen and a return with the empty trailer-tanker to the electrolyser.
  • The trailer-tankers could be fitted with a hydrogen vehicle-filling connection, so that bus operators could trial a small fleet of hydrogen buses or other vehicles, without putting in any infrastructure, other than safe parking for the trailer-tankers. But then most bus depots have lots of secure parking for large buses.
  • This would surely be faster and more efficient, as the delivery driver wouldn’t have to wait, whilst the hydrogen is transferred.
  • Deliveries could be arranged during the night.

I would also use a fleet of quiet, emission-free zero-carbon hydrogen-powered trucks. Do what I say and do what I do!

Why Not Generate The Hydrogen At The Depot?

At Pau, ITM Power have installed a hydrogen generator for the hydrogen-powered buses.

So why not do this all over the UK?

  • A large bus depot could need a very large amount of electricity in a congested part of a city, where the electricity supply may be dodgy.
  • It could also be safer, as venting the oxygen produced as a by-product of electrolysis, in an uncontrolled environment can be dangerous. But generated in a large electrolyser, it could be captured and used for another purpose or safely vented to the atmosphere. This section in Wikipedia, gives a brief outline of the applications of oxygen.
  • I truck-based delivery system, is ideal for trials of hydrogen-powered buses, taxis, delivery vans, trucks and local authority vehicles, as no infrastructure is needed.

I suspect that, it might be more affordable and convenient to use centralised production of the hydrogen.

Conclusion

Jo Bamford has developed a well-thought out plan.

May 17, 2020 Posted by | Transport/Travel, World | , , , , , , , | 3 Comments