The Anonymous Widower

More Trains To Carmarthen

The last time, I looked at the number of GWR trains to Carmarthen its Wikipedia entry, it was just a couple.

Today, one train per hour (tph) is shown between London Paddington and Swansea, with this supplementary information.

  • 7 trains per day continue to Carmarthen, calling at Gowerton (limited), Llanelli, Pembrey & Burry Port, Kidwelly (limited) and Ferryside (limited)
  • On Summer Saturdays, 2 trains per day run to Pembroke Dock, calling at all stations between Carmarthen and Pembroke Dock

In Regulator Approves New Grand Union Train Service From Carmarthen To London Paddington, I talked about the plans of Grand Union Trains to run five trains per day (tpd) between London Paddington and Carmarthen.

This would appear to give a total of twelve tpd between London Paddington and Carmarthen.

This page on the Crown Estate web site is entitled Celtic Sea Floating Offshore Wind, where this is said.

The Government has set an ambition to deliver up to 5GW of floating wind by 2030, with rapid expansion anticipated thereafter.

At The Crown Estate, we are committed to helping the UK achieve its net zero ambitions. To support this, we are excited to deliver a new leasing opportunity in the Celtic Sea for the first generation of commercial-scale floating offshore windfarms – unlocking up to 4GW of new clean energy capacity by 2035, kick-starting industry in the region, and providing power to almost four million homes.

We will be inviting full commercial scale projects up to 1GW, which may be developed in a phased or ‘stepping stone’ approach. Recognising the need to develop the UK supply chain and supporting infrastructure for this nascent technology, this approach is deliberately intended to provide opportunities for growth and investment. This will also facilitate the co-ordination of the necessary infrastructure, such as ports and grid connections, all of which are key to the sustainable development of the UK floating wind sector over the long term.

This leasing opportunity will provide the foundation for greater capacity in the future and help establish an exciting new industrial sector for the UK, creating opportunities for significant new investment in jobs, skills and infrastructure for the communities onshore.

It appears to me, that Great Western Railway and Grand Union Trains both believe that there will be large increase in demand for rail travel between London Paddington and Carmarthen and also along the South Wales Coast.

Grand Union Trains are also proposing the building of a new parkway station at Parc Felindre North of Swansea.

But then this area of South Wales and the Celtic Sea, has the four things needed for the development of up to 5 GW of offshore wind; a lot of wind, a large area of empty sea, steel and deep water ports to assemble all the floating wind turbines.

A Zero-Carbon High Speed Railway Between London Paddington And Carmarthen

Consider.

  • The Great Western Railway between London Paddington and Carmarthen is 222.5 miles and trains take around three hours and fifty minutes, which is an average speed of 58 mph.
  • Between Bristol Parkway and Reading stations, the operating speed is 125 mph.
  • In South Wales, the operating speed is generally between 70 and 100 mph.
  • Only the 77.4 miles between Cardiff Central and Carmarthen via Swansea is not electrified.

There is probably scope to increase the operating speed using digital signalling and by improving the track.

I would suspect that a time between London Paddington and Carmarthen of under three-and-a-half hours is possible.

The Range Of Battery-Electric Trains

Hitachi have not been specific about the zero-carbon range of their Intercity Tri-Mode Battery Train, which is described in this Hitachi infographic.

In Stadler FLIRT Akku Battery Train Demonstrates 185km Range, I talk about Stadler’s record-braking Battery-electric; Akku, which covered 185 km or 115 miles.

I suspect that Hitachi’s engineers  and those at their battery suppliers; Turntide Technology will be ultra-competitive, so I wouldn’t be surprised that the zero-carbon range of the Hitachi train is very competitive to the Stadler FLIRT Akku.

A hundred mile range would allow electric services to be run on these routes.

  • Cardiff and Carmarthen – 77.4 miles
  • Chippenham and Bristol Temple Meads and return – 48.8 miles
  • Chippenham and Bristol Western-super-Mare and return – 86.9 miles
  • Swindon and Cheltenham Spa and return – 86.5 miles
  • East Coast Main Line and Hull and return – 72.2 miles
  • Plymouth and Penzance – 79.5 miles
  • Taunton and Newbury – 89.6 miles
  • York and Scarborough and return – 84.1 miles

I am fairly sure that Hitachi will aim for at least a hundred mile battery range for their Intercity Tri-Mode Battery Train.

  1. This would be competitive with other train manufacturers like Stadler and Siemens.
  2. They would handle a lot of important routes.
  3. With development they could probably handle Edinburgh and Inverness.

I can’t wait to have a ride.

June 8, 2023 Posted by | Transport/Travel | , , , , , , , , , , , , , | 2 Comments

Are These Two Stories Related?

These are two stories recently published in Railway Gazette.

Deutsche Bahn Sells Arriva Businesses To Private Equity Holding Company, which starts with this paragraph.

Deutsche Bahn has reached agreement to sell its Arriva local transport activities in Denmark, Poland and Serbia to München-based private equity holding company Mutares SE & Co KGaA.

That is fairly clear and is probably related with the German government’s desire for DB to concentrate on its core business.seren

This article on Railway Gazette is entitled RENFE Looks At Entering UK Rail Market Through Open Access Partnership, which starts with this paragraph.

Open access passenger service developer Grand Union Trains is working with Spain’s national operator RENFE and private equity firm Serena Industrial Partners on a proposed service between London and Wales.

That also is fairly clear and would bring competition to services to and from South Wales.

It would also help in the financing of Grand Union Trains.

The article also says the following.

  • RENFE seem to be expanding into partnerships to run services outside Spain.
  • A parkway station at Felindre will be build to avoid the reverse at Swansea, that would save 20 mins.
  • It will be a high quality service with new electro-diesel trains.
  • Four trains will be needed.
  • A 2025 start is envisaged.

Will this partnership with Grand Union Trains proceed with the development of Grand Union Trains’ London and Stirling service?

I have some thoughts and questions.

Will Deutsche Bahn Sell Other Arriva Businesses?

I think this is a reasonable question to ask, especially, as Deutsche Bahn owns two Open Access Operators in the UK; Chiltern Railways and Grand Central Trains.

  • Both operators have a good reputation.
  • Both operators need to decarbonise, either by updating their current stock or buying new trains.
  • Both operators have solid niche markets, where they are often responsible for the stations.
  • Both operators have expansion plans.

Would RENFE and Serena Industrial Partners be interested in taking over Arriva UK and developing the business?

The Talgo Factory At Longannet

I believe that there is reason to believe that one of Talgo’s reasons for a factory in Scotland, is that it could have been used to build Russian and dual-gauge trains for Eastern Europe. The trains would have been delivered by ferry from Rosyth.

There is also the not-small matter of the fleet for Rail Baltica, for which Talgo will surely be a bidder.

But Russia’s attack on Ukraine has scuppered that plan, or at least delayed it for a few years. But now, there could be a much larger market for trains in Eastern Europe and especially Ukraine.

If RENFE Acquire Open Access Operators In The UK, They Will Need New Trains

They will certainly need new trains for the South Wales operations, if they go ahead, but if they were to decarbonise Chiltern and Grand Central, the order could be substantial.

With one Spanish train factory in the UK and another a possibility, I would suspect any train order would go to a Spanish train-builder.

If the orders fell right, could we see Talgo’s factory at Longannet built after all?

October 1, 2022 Posted by | Transport/Travel | , , , , , , , , , , , , , , | 4 Comments

Will It Be Third-Time Lucky For Grand Union Trains In Wales?

It is three years since I wrote Grand Union Seeks ’91s’ To Cardiff and their proposal has not been accepted and the third iteration has been announced.

This article on Wales Online is entitled Independent Rail Firm Bids To Launch As Rival To Great Western On The Mainline From South Wales To London.

These are the introductory paragraphs.

An independent rail firm is hoping to launch a rival train service in Wales which they say will slash journey times between Carmarthen and London. Grand Union Trains is making a fresh bid to introduce an initial service in both directions between Cardiff and London on the existing Great Western line.

The company believes the move will “create passenger choice” and increase the number of trains available, with the hope that the service can be extended west in South Wales towards Carmarthen.

Other points in the article include.

  • Swansea will be by-passed, which will speed up services to and from Llanelli and Carmarthen.
  • A new Park-and-Ride station will be built by Grand Union at Felindre, which is to the North of Swansea.
  • Services will stop at Llanelli, Cardiff Central, Newport, Severn Tunnel Junction and Bristol Parkway.
  • When Cardiff Parkway opens, this will be an extra stop.

An article in the June 2022 Edition of Modern Railways, which is entitled Grand Union Bids For London To Carmarthen, gives extra details.

  • Three classes.
  • 2023 start for the service.
  • Five return trains per day.
  • Cycle provision.
  • Vanload freight will be carried.
  • Electric trains could start between London and Cardiff by 2023.
  • In 2025, trains could be nine-car bi-modes.
  • South Wales-based operation and maintenance.
  • 125 full-time jobs created.

It certainly seems to be a comprehensive and well-thought out plan.

These are my thoughts and observations.

Felindre Station

Felindre station is named in Wikipedia as the West Wales Parkway station, where it is introduced like this.

West Wales Parkway is a proposed railway station north of Swansea, near to the boundaries of the neighbouring principal area of Carmarthenshire, and the villages of Felindre and Llangyfelach. The station is proposed to be situated at the former Felindre steelworks, near Junction 46 of the M4 and A48, and near Felindre Business Park and Penllergaer Business Park. The project is in the planning stages, as part of a wider Department for Transport proposal to re-open the Swansea District line to passenger traffic.

This Google Map shows where, it appears the Felindre station will be built.

Note.

  1. The Felindre Business Park in the North-West corner of the map, with a Park-and-Ride.
  2. The M4 running across the bottom of the map.
  3. The Swansea District Line runs East-West between the motorway and the Business Park.

It looks that the new station could be located on the South side of the Business Park.

According to Wikipedia, the station would cost £20 million to build.

  • It would need a comprehensive rethinking of transport improvements in the Swansea area.
  • But it could result in time savings on services between Carmarthen and Cardiff.

The Modern Railways article says this.

GU proposes to build the Felindre station near Swansea and invest in Severn Tunnel Junction station, where it says it will increase parking, provide direct access from the M4 motorway and improve passenger and staff facilities, backing up plans being evaluated by the Welsh Government for the station.

Grand Union is not a charity and does this indicate that a bank or infrastructure company is prepared to fund parking and the extra passengers pay the charges.

Rolling Stock

Wikipedia says that the rolling stock could be nine-car InterCity 225s hauled by Class 91 or Class 93 locomotives.

As the Class 93 locomotives are bi-modes, these would handle the Carmarthen and Cardiff leg.

The Modern Railways article says this.

Trains could start between Cardiff and London Paddington as early as May 2023 if electric only, with services extended west around two years later with new bi-mode trains in up to nine-car formations.

Would a new Class 93 locomotive count as a new bi-mode train?

I suspect the new locomotive would be more affordable, than a new bi-mode train.

Vanload Freight

This is an interesting idea and it follows similar thinking to Royal Mail’s latest ideas, that I wrote about in Royal Mail Rolling Back The Years To Put More Post On Trains.

One coach could be a nice little earner, if it were modified to carry roller cages, that were loaded and unloaded at the end of the route.

One advantage of the InterCity 225s is that they are 125 mph trains, so that this will be high speed freight.

Timings

Consider.

  • A GWR Carmarthen and London service takes three hours and 47 minutes.
  • This includes a nine-minute reverse at Swansea.
  • GWR makes seven more stops than Grand Union will.
  • GWR does seven diesel stops, whereas Grand Union will only do two.

I would estimate that Grand Union will be under three hours and thirty minutes.

Carmarthen Station

This Google Map shows Carmarthen station.

Note.

  1. The station has two platforms.
  2. There are certainly pictures of the station with an InterCity 125 in the station.

These pictures show the station.

I suspect that the station will be upgraded to accommodate Grand Union.

Rrenewable Energy Developments In South West Wales

In Enter The Dragon, I talked about renewable energy developments in South West Wales.

I used information from this article on the Engineer, which is entitled Unlocking The Renewables Potential Of The Celtic Sea.

The article on the Engineer finishes with this conclusion.

For now, Wales may be lagging slightly behind its Celtic cousin to the north, but if the true potential of the Celtic Sea can be unleashed – FLOW, tidal stream, lagoon and wave – it looks set to play an even more prominent role in the net zero pursuit.

The Red Dragon is entering the battle to replace Vlad the Mad’s tainted energy.

South West Wales could see a massive renewable energy boom.

The Railways To The West Of Carmarthen

This map from OpenRailwayMap shows the rail lines to the West of Carmarthen.

There are three main branches to Fishguard, Milford Haven and Pembroke Dock.

I can see the railways becoming increasingly important in supporting the growing renewable energy in the area.

  • There would be more frequent services.
  • Services would tie in with London and Cardiff trains at Carmarthen.
  • Closed stations could be reopened and new ones built.

It may also be possible to bring in large components needed by the renewable energy industry.

Conclusion

I feel that Grand Union have seen the opportunities presented to a frequent Carmarthen and London service and have grabbed them with both hands.

May 29, 2022 Posted by | Transport/Travel | , , , , , , , , , , , , , , , | 3 Comments

Solving The Electrification Conundrum

The title of this post, is the same as an article in the July 2021 Edition of Modern Railways.

This is the introductory sub-heading.

Regional and rural railways poses a huge problem for the railway to decarbonise.

Lorna McDonald of Hitachi Rail and Jay Mehta of Hitachi ABB Power Grids tell Andy Roden why they believe they have the answer.

These are my thoughts on what is said.

Battery-Electric Trains

The article starts by giving a review of battery-electric trains and their use on routes of moderate but important length.

  • Some short routes can be handled with just a charge on an electrified main line.
  • Some will need a recharge at the termini.
  • Other routes might need a recharge at some intermediate stations, with a possible increase in dwell times.

It was in February 2015, that I wrote Is The Battery Electric Multiple Unit (BEMU) A Big Innovation In Train Design?, after a ride in public service on Bombardier’s test battery-electric train based on a Class 379 train.

I also wrote this in the related post.

Returning from Harwich, I travelled with the train’s on-board test engineer, who was monitoring the train performance in battery mode on a laptop. He told me that acceleration in this mode was the same as a standard train, that the range was up to sixty miles and that only minimal instruction was needed to convert a driver familiar to the Class 379 to this battery variant.

It was an impressive demonstration, of how a full-size train could be run in normal service without connection to a power supply. I also suspect that the partners in the project must be very confident about the train and its technology to allow paying passengers to travel on their only test train.

A couple of years later, I met a lady on another train, who’d used the test train virtually every day during the trial and she and her fellow travellers felt that it was as good if not better than the normal service from a Class 360 train or a Class 321 train.

So why if the engineering, customer acceptance and reliability were proven six years ago, do we not have several battery electric trains in service?

  • There is a proven need for battery-electric trains on the Marshlink Line and the Uckfield Branch in Sussex.
  • The current Class 171 trains are needed elsewhere, so why are no plans in place for replacement trains?
  • The government is pushing electric cars and buses, but why is there such little political support for battery-electric trains?

It’s almost as if, an important civil servant in the decision process has the naive belief that battery-electric trains won’t work and if they do, they will be phenomenally expensive. So the answer is an inevitable no!

Only in the South Wales Metro, are battery-electric trains considered to be part of the solution to create a more efficient and affordable electric railway.

But as I have constantly pointed out since February 2015 in this blog, battery-electric trains should be one of the innovations we use to build a better railway.

Hydrogen Powered Trains

The article says this about hydrogen powered trains.

Hybrid hydrogen fuel cells can potentially solve the range problem, but at the cost of the fuel eating up internal capacity that would ideally be used for passengers. (and as Industry and Technology Editor Roger Ford points out, at present hydrogen is a rather dirty fuel). By contrast, there is no loss of seating or capacity in a Hitachi battery train.

I suspect the article is referring to the Alstom train, which is based on the technology of the Alstom Coradia iLint.

I have ridden this train.

  • It works reliably.
  • It runs on a 100 km route.
  • The route is partially electrified, but the train doesn’t have a pantograph.
  • It has a very noisy mechanical transmission.

Having spoken to passengers at length, no-one seemed bothered by the Hindenburg possibilities.

It is certainly doing some things right, as nearly fifty trains have been ordered for train operating companies in Germany.

Alstom’s train for the UK is the Class 600 train, which will be converted from a four-car Class 321 train.

Note.

  1. Half of both driver cars is taken up by a hydrogen tank.
  2. Trains will be three-cars.
  3. Trains will be able to carry as many passengers as a two-car Class 156 train.

It is an inefficient design that can be improved upon.

Porterbrook and Birmingham University appear to have done that with their Class 799 train.

  • It can use 25 KVAC overhead or 750 VDC third-rail electrification.
  • The hydrogen tanks, fuel cell and other hydrogen gubbins are under the floor.

This picture from Network Rail shows how the train will appear at COP26 in Glasgow in November.

Now that’s what I call a train! Let alone a hydrogen train!

Without doubt, Porterbrook and their academic friends in Birmingham will be laying down a strong marker for hydrogen at COP26!

I know my hydrogen, as my first job on leaving Liverpool University with my Control Engineering degree in 1968 was for ICI at Runcorn, where I worked in a plant that electrolysed brine into hydrogen, sodium hydroxide and chlorine.

My life went full circle last week, when I rode this hydrogen powered bus in London.

The hydrogen is currently supplied from the same chemical works in Runcorn, where I worked. But plans have been made at Runcorn, to produce the hydrogen from renewable energy, which would make the hydrogen as green hydrogen of the highest standard. So sorry Roger, but totally carbon-free hydrogen is available.

The bus is a Wightbus Hydroliner FCEV and this page on the Wrightbus web site gives the specification. The specification also gives a series of cutaway drawings, which show how they fit 86 passengers, all the hydrogen gubbins and a driver into a standard size double-deck bus.

I believe that Alstom’s current proposal is not a viable design, but I wouldn’t say that about the Porterbrook/Birmingham University design.

Any Alternative To Full Electrification Must Meet Operator And Customer Expectations

This is a paragraph from the article.

It’s essential that an alternative traction solution offers the same levels of performance and frequency, while providing an increase in capacity and being economically viable.

In performance, I would include reliability. As the on-board engineer indicated on the Bombardier  test train on the Harwich branch, overhead electrification is not totally reliable, when there are winds and/or criminals about.

Easy Wins

Hitachi’s five-car Class 800 trains and Class 802 trains each have three diesel engines and run the following short routes.

  • Kings Cross and Middlesbrough- 21 miles not electrified – Changeover in Northallerton station
  • Kings Cross and Lincoln – 16.6 miles not electrified – Changeover in Newark Northgate station
  • Paddington and Bedwyn – 13.3 miles not electrified – Changeover in Newbury station
  • Paddington and Oxford – 10.3 miles not electrified – Changeover in Didcot Parkway station

Some of these routes could surely be run with a train, where one diesel engine was replaced by a battery-pack.

As I’m someone, who was designing, building and testing plug-compatible transistorised electronics in the 1960s to replace  older valve-based equipment in a heavy engineering factory, I suspect that creating a plug-compatible battery-pack that does what a diesel engine does in terms of power and performance is not impossible.

What would be the reaction to passengers, once they had been told, they had run all the way to or from London without using any diesel?

Hopefully, they’d come again and tell their friends, which is what a train operator wants and needs.

Solving The Electrification Conundrum

This section is from the article.

Where electrification isn’t likely to be a viable proposition, this presents a real conundrum to train operators and rolling stock leasing companies.

This is why Hitachi Rail and Hitachi ABB Power Grids are joining together to present a combined battery train and charging solution to solve this conundrum. In 2020, Hitachi and ABB’s Power Grids business, came together in a joint venture, and an early outcome of this is confidence that bringing together their expertise in rail, power and grid management, they can work together to make electrification simpler cheaper and quicker.

I agree strongly with the second paragraph, as several times, I’ve been the mathematician and simulation expert in a large multi-disciplinary engineering project, that went on to be very successful.

The Heart Of The Proposition

This is a paragraph from the article.

The proposition is conceptually simple. Rather than have extended dwell times at stations for battery-powered trains, why not have a short stretch of 25 KVAC overhead catenary (the exact length will depend on the types of train and the route) which can charge trains at linespeed on the move via a conventional pantograph?

The article also mentions ABB’s related expertise.

  • Charging buses all over Europe.
  • Creating the power grid for the Great Western Electrification to Cardiff.

I like the concept, but then it’s very similar to what I wrote in The Concept Of Electrification Islands in April 2020.

But as they are electrical power engineers and I’m not, they’d know how to create the system.

Collaboration With Hyperdrive Innovation

The article has nothing negative to say about the the collaboration with Hyperdrive Innovation to produce the battery-packs.

Route Modelling

Hitachi appear to have developed a sophisticated route modelling system, so that routes and charging positions can be planned.

I would be very surprised if they hadn’t developed such a system.

Modular And Scalable

This is a paragraph from the article.

In the heart of the system is a containerised modular solution containing everything needed to power a stretch of overhead catenary to charge trains. A three-car battery train might need one of these, but the great advantage is that it is scalable to capacity and speed requirements.

This all sounds very sensible and can surely cope with a variety of lines and traffic levels.

It also has the great advantage , that if a line is eventually electrified, the equipment can be moved on to another line.

Financing Trains And Chargers

The article talks about the flexibility of the system from an operator’s point of view with respect to finance.

I’ve had some good mentors in the area of finance and I know innovative finance contributed to the success of Metier Management Systems, the project management company I started with three others in 1977.

After selling Metier, I formed an innovative finance company, which would certainly have liked the proposition put forward in the article.

No Compromise, Little Risk

I would agree with this heading of the penultimate section of the article.

In February 2015, when I rode that Class 379 train between Manningtree and Harwich, no compromise had been made by Bombardier and it charged in the electrified bay platform at Manningtree.

But why was that train not put through an extensive route-proving exercise in the UK after the successful trial at Manningtree?

  • Was it the financial state of Bombardier?
  • Was it a lack of belief on the part of politicians, who were too preoccupied with Brexit?
  • Was it that an unnamed civil servant didn’t like the concept and stopped the project?

Whatever the reason, we have wasted several years in getting electric trains accepted on UK railways.

If no compromise needs to be made to create a battery-electric train, that is equivalent to the best-in-class diesel or electric multiple units, then what about the risk?

The beauty of Hitachi’s battery-electric train project is that it can be done in phases designed to minimise risk.

Phase 1 – Initial Battery Testing 

Obviously, there will be a lot of bench testing in a laboratory.

But I also believe that if the Class 803 trains are fitted with a similar battery from Hyperdrive Innovation, then this small fleet of five trains can be used to test a lot of the functionality of the batteries initially in a test environment and later in a real service environment.

The picture shows a Class 803 train under test through Oakleigh Park station.

This phase would be very low risk, especially where passengers are concerned.

Phase 2 – Battery Traction Testing And Route Proving

I am a devious bastard, when it comes to software development. The next set of features would always be available for me to test earlier, than anybody else knew.

I doubt that the engineers at Hyperdrive Innovation will be any different.

So I wouldn’t be surprised to find out that the batteries in the Class 803 trains can also be used for traction, if you have the right authority.

We might even see Class 803 trains turning up in some unusual places to test the traction abilities of the batteries.

As East Coast Trains, Great Western Railway and Hull Trains are all First Group companies, I can’t see any problems.

I’m also sure that Hitachi could convert some Class 800 or Class 802 trains and add these to the test fleet, if East Coast Trains need their Class 803 trains to start service.

This phase would be very low risk, especially where passengers are concerned.

Possibly, the worse thing, that could happen would be a battery failure, which would need the train to be rescued.

Phase 3 – Service Testing On Short Routes

As I indicated earlier, there are some easy routes between London and places like Bedwyn, Lincoln, Middlesbrough and Oxford, that should be possible with a Class 800 or Class 802 train fitted with the appropriate number of batteries.

Once the trains have shown, the required level of performance and reliability, I can see converted Class 800, 801 and Class 802 trains entering services on these and other routes.

Another low risk phase, although passengers are involved, but they are probably subject to the same risks, as on an unmodified train.

Various combinations of diesel generators and batteries could be used to find out, what is the optimum combination for the typical diagrams that train operators use.

Hitachi didn’t commit to any dates, but I can see battery-electric trains running on the Great Western Railway earlier than anybody thinks.

Phase 4 – Service Testing On Medium Routes With A Terminal Charger System

It is my view that the ideal test route for battery-electric trains with a terminal charger system would be the Hull Trains service between London Kings Cross and Hull and Beverley.

The route is effectively in three sections.

  • London Kings Cross and Temple Hirst junction – 169.2 miles – Full Electrification
  • Temple Hirst junction and Hull station – 36.1 miles – No Electrification
  • Hull station and Beverley station – 8.3 miles – No Electrification

Two things would be needed to run zero-carbon electric trains on this route.

  • Sufficient battery capacity in Hull Trains’s Class 802 trains to reliably handle the 36.1 miles between Temple Hirst junction and Hull station.
  • A charging system in Hull station.

As Hull station also handles other Class 800 and Class 802 trains, there will probably be a need to put a charging system in more than one platform.

Note.

  1. Hull station has plenty of space.
  2. No other infrastructure work would be needed.
  3. There is a large bus interchange next door, so I suspect the power supply to Hull station is good.

Hull would be a very good first destination for a battery-electric InterCity train.

Others would include Bristol, Cheltenham, Chester, Scarborough, Sunderland and Swansea.

The risk would be very low, if the trains still had some diesel generator capacity.

Phase 5 – Service Testing On Long Routes With Multiple Charger Systems

Once the performance and reliability of the charger systems have been proven in single installations like perhaps Hull and Swansea stations, longer routes can be prepared for electric trains.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

The press release talks about Penzance and London, so would that be a suitable route for discontinuous electrification using multiple chargers?

These are the distances between major points on the route between Penzance and London Paddington.

  • Penzance and Truro – 35.8 miles
  • Truro and Bodmin Parkway – 26.8 miles
  • Bodmin Parkway and Plymouth – 26.9 miles
  • Plymouth and Newton Abbot – 31,9 miles
  • Newton Abbot and Exeter – 20.2 miles
  • Exeter and Taunton – 30.8 miles
  • Taunton and Westbury – 47.2 miles
  • Westbury and Newbury – 42.5 miles
  • Newbury and Paddington – 53 miles

Note.

  1. Only Newbury and Paddington is electrified.
  2. Trains generally stop at Plymouth, Newton Abbott, Exeter and Taunton.
  3. Services between Paddington and Exeter, Okehampton, Paignton, Penzance, Plymouth and Torquay wouldn’t use diesel.
  4. Okehampton would be served by a reverse at Exeter.
  5. As Paignton is just 8.1 miles from Newton Abbot, it probably wouldn’t need a charger.
  6. Bodmin is another possible destination, as Great Western Railway have helped to finance a new platform at Bodmin General station.

It would certainly be good marketing to run zero-carbon electric trains to Devon and Cornwall.

I would class this route as medium risk, but with a high reward for the operator.

In this brief analysis, it does look that Hitachi’s proposed system is of a lower risk.

A Few Questions

I do have a few questions.

Are The Class 803 Trains Fitted With Hyperdrive Innovation Batteries?

East Coast Trains‘s new Class 803 trains are undergoing testing between London Kings Cross and Edinburgh and they can be picked up on Real Time Trains.

Wikipedia says this about the traction system for the trains.

While sharing a bodyshell with the previous UK A-train variants, the Class 803 differs in that it has no diesel engines fitted. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies have failed.

Will these emergency batteries be made by Hyperdrive Innovation?

My experience of similar systems in other industries, points me to the conclusion, that all Class 80x trains can be fitted with similar, if not identical batteries.

This would give the big advantage of allowing battery testing to be performed on Class 803 trains under test, up and down the East Coast Main Line.

Nothing finds faults in the design and manufacture of something used in transport, than to run it up and down in real conditions.

Failure of the catenary can be simulated to check out emergency modes.

Can A Class 801 Train Be Converted Into A Class 803 Train?

If I’d designed the trains, this conversion would be possible.

Currently, the electric Class 801 trains have a single diesel generator. This is said in the Wikipedia entry for the Class 800 train about the Class 801 train.

These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails.

So it looks like the difference between the powertrain of a Class 801 train and a Class 803 train, is that the Class 801 train has a diesel generator and the Class 803 train has batteries. But the diesel generator and batteries, would appear to serve the same purpose.

Surely removing diesel from a Class 801 train would ease the maintenance of the train!

Will The System Work With Third-Rail Electrification?

There are three routes that if they were electrified would probably be electrified with 750 DC third-rail electrification, as they have this electrification at one or both ends.

  • Basingstoke and Exeter
  • Marshlink Line
  • Uckfield branch

Note.

  1. Basingstoke and Exeter would need a couple of charging systems.
  2. The Marshlink line would need a charging system at Rye station.
  3. The Uckfield branch would need a charging system at Uckfield station.

I am fairly certain as an Electrical Engineer, that the third-rails would only need to be switched on, when a train is connected and needs a charge.

I also feel that on some scenic and other routes, 750 VDC third-rail electrification may be more acceptable , than 25 KVAC  overhead electrification. For example, would the heritage lobby accept overhead wires through a World Heritage Site or on top of a Grade I Listed viaduct?

I do feel that the ability to use third-rail 750 VDC third-rail electrification strategically could be a useful tool in the system.

Will The System Work With Lightweight Catenary?

I like the design of this 25 KVAC overhead electrification, that uses lightweight gantries, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

Isuspect that both systems could work together.

 

Would Less Bridges Need To Be Rebuilt For Electrification?

This is always a contentious issue with electrification, as rebuilding bridges causes disruption to both rail and road.

I do wonder though by the use of careful design, that it might be possible to arrange that the sections of electrification and the contentious bridges were kept apart, with the bridges arranged to be in sections, where the trains ran on batteries.

I suspect that over the years as surveyors and engineers get more experienced, better techniques will evolve to satisfy all parties.

Get this right and it could reduce the cost of electrification on some lines, that will be difficult to electrify.

How Secure Are The Containerised Systems?

Consider.

  • I was delayed in East Anglia two years ago, because someone stole the overhead wires at two in the morning.
  • Apparently, overhead wire stealing is getting increasingly common in France and other parts of Europe.

I suspect the containerised systems will need to be more secure than those used for buses, which are not in isolated locations.

Will The Containerised Charging Systems Use Energy Storage?

Consider.

  • I’ve lived in rural locations and the power grids are not as good as in urban areas.
  • Increasingly, batteries of one sort or another are being installed in rural locations to beef up local power supplies.
  • A new generation of small-footprint eco-friendly energy storage systems are being developed.

In some locations, it might be prudent for a containerised charging system to share a battery with the local area.

Will The Containerised Charging Systems Accept Electricity From Local Sources Like Solar Farms?

I ask the question, as I know at least one place on the UK network, where a line without electrification runs through a succession of solar farms.

I also know of an area, where a locally-owned co-operative is planning a solar farm, which they propose would be used to power the local main line.

Will The System Work With Class 385 Trains?

Hitachi’s Class 385 trains are closely related to the Class 80x trains, as they are all members of Hitachi’s A-Train family.

Will the Charging Systems Charge Other Manufacturers Trains?

CAF and Stadler are both proposing to introduce battery-electric trains in the UK.

I also suspect that the new breed of electric parcel trains will include a battery electric variant.

As these trains will be able to use 25 KVAC overhead electrification, I would expect, that they would be able to charge their batteries on the Hitachi ABB  charging systems.

Will The System Work With Freight Trains?

I believe that freight services will split into two.

Heavy freight will probably use powerful hydrogen-electric locomotives.

In Freightliner Secures Government Funding For Dual-Fuel Project, which is based on a Freightliner press release, I detail Freightliner’s decarbonisation strategy, which indicates that in the future they will use hydrogen-powered locomotives.

But not all freight is long and extremely heavy and I believe that a battery-electric freight locomotive will emerge for lighter duties.

There is no reason it could not be designed to be compatible with Hitachi’s charging system.

In Is This The Shape Of Freight To Come?, I talked about the plans for 100 mph parcel services based on redundant electric multiple units. Eversholt Rail Group have said they want a Last-Mile capability for their version of these trains.

Perhaps they need a battery-electric capability, so they can deliver parcels and shop supplies to the remoter parts of these islands?

Where Could Hitachi’s System Be Deployed?

This is the final paragraph from the article.

Hitachi is not committing to any routes yet, but a glance at the railway map shows clear potential for the battery/OLE-technology to be deployed on relatively lightly used rural and regional routes where it will be hard to make a case for electrification. The Cambrian Coast and Central Wales Lines would appear to be worthy candidates, and in Scotland, the West Highland Line and Far North routes are also logical areas for the system to be deployed.

In England, while shorter branch lines could simply be operated by battery trains, longer routes need an alternative. Network Rail’s Traction Decarbonisation Network Strategy interim business case recommends hydrogen trains for branch lines in Norfolk, as well as Par to Newquay and Exeter to Barnstaple. However, it is also entirely feasible to use the system on routes likely to be electrified much later in the programme, such as the Great Western main line West of Exeter, Swansea to Fishguard and parts of the Cumbrian Coast Line.

Everyone is entitled to their own opinion and mine would be driven by high collateral benefits and practicality.

These are my thoughts.

Long Rural Lines

The Cambrian, Central Wales (Heart Of Wales), Far North and West Highland Lines may not be connected to each other, but they form a group of rail routes with a lot of shared characteristics.

  • All are rural routes of between 100 and 200 miles.
  • All are mainly single track.
  • They carry occasional freight trains.
  • They carry quite a few tourists, who are there to sample, view or explore the countryside.
  • All trains are diesel.
  • Scotrail have been experimenting with attaching Class 153 trains to the trains on the West Highland Line to act as lounge cars and cycle storage.

Perhaps we need a long-distance rural train with the following characteristics.

  • Four or possibly five cars
  • Battery-electric power
  • Space for a dozen cycles
  • A lounge car
  • Space for a snack trolley
  • Space to provide a parcels service to remote locations.

I should also say, that I’ve used trains on routes in countries like Germany, Poland and Slovenia, where a similar train requirement exists.

Norfolk Branch Lines

Consider.

  • North of the Cambridge and Ipswich, the passenger services on the branch lines and the important commuter routes between Cambridge and Norwich and Ipswich are run by Stadler Class 755 trains, which are designed to be converted to battery-electric trains.
  • Using Hitachi chargers at Beccles, Bury St. Edmunds, Lowestoft, Thetford and Yarmouth and the existing electrification, battery-electric Class 755 trains could provide a zero-carbon train service for Norfolk and Suffolk.
  • With chargers at Dereham and March, two important new branch lines could be added and the Ipswich and Peterborough service could go hourly and zero carbon.
  • Greater Anglia have plans to use the Class 755 trains to run a London and Lowestoft service.
  • Could they be planning a London and Norwich service via Cambridge?
  • Would battery-electric trains running services over Norfolk bring in more visitors by train?

Hitachi may sell a few chargers to Greater Anglia, but I feel they have enough battery-electric trains.

Par And Newquay

The Par and Newquay Line or the Atlantic Coast Line, has been put forward as a Beeching Reversal project, which I wrote about in Beeching Reversal – Transforming The Newquay Line.

In that related post, I said the line needed the following.

  • An improved track layout.
  • An hourly service.
  • An improved Par station.
  • A rebuilt Newquay station with a second platform, so that more through trains can be run.

I do wonder, if after the line were to be improved, that a new three-car battery-electric train shuttling between Par and Newquay stations could be the icing on the cake.

Exeter And Barnstaple

The Tarka Line between Exeter and Barnstaple is one of several local and main lines radiating from Exeter St. David’s station.

  • The Avocet Line to Exmouth
  • The Great Western Main Line to Taunton, Bristol and London
  • The Great Western Main Line to Newton Abbott, Plymouth and Penzance
  • The Riviera Line to Paignton
  • The West of England Line to Salisbury, Basingstoke and London.

Note.

  1. The Dartmoor Line to Okehampton is under development.
  2. Several new stations are planned on the routes.
  3. I have already stated that Exeter could host a charging station between London and Penzance, but it could also be an electrified hub for battery-electric trains running hither and thither.

Exeter could be a city with a battery-electric metro.

Exeter And Penzance

Earlier, I said that I’d trial multiple chargers between Paddington and Penzance to prove the concept worked.

I said this.

I would class this route as medium risk, but with a high reward for the operator.

But it is also an enabling route, as it would enable the following battery-electric services.

  • London and Bodmin
  • London and Okehampton
  • London and Paignton and Torquay

It would also enable the Exeter battery-electric metro.

For these reasons, this route should be electrified using Hitachi’s discontinuous electrification.

Swansea And Fishguard

I mentioned Swansea earlier, as a station, that could be fitted with a charging system, as this would allow battery-electric trains between Paddington and Swansea via Cardiff.

Just as with Exeter, there must be scope at Swansea to add a small number of charging systems to develop a battery-electric metro based on Swansea.

Cumbrian Coast Line

This is a line that needs improvement, mainly for the tourists and employment it could and probably will bring.

These are a few distances.

  • West Coast Main Line (Carnforth) and Barrow-in-Furness – 28.1 miles
  • Barrow-in-Furness and Sellafield – 25 miles
  • Sellafield and Workington – 18 miles
  • Workington and West Coast Main Line (Carlisle) – 33 miles

Note.

  1. The West Coast Main Line is fully-electrified.
  2. I suspect that Barrow-in-Furness, Sellafield and Workington have good enough electricity supplies to support charging systems  for the Cumbrian Coast Line.
  3. The more scenic parts of the line would be left without wires.

It certainly is a line, where a good case for running battery-electric trains can be made.

Crewe And Holyhead

In High-Speed Low-Carbon Transport Between Great Britain And Ireland, I looked at zero-carbon travel between the Great Britain and Ireland.

One of the fastest routes would be a Class 805 train between Euston and Holyhead and then a fast catamaran to either Dublin or a suitable rail-connected port in the North.

  • The Class 805 trains could be made battery-electric.
  • The trains could run between Euston and Crewe at speeds of up to 140 mph under digital signalling.
  • Charging systems would probably be needed at Chester, Llandudno Junction and Holyhead.
  • The North Wales Coast Line looks to my untrained eyes, that it could support at least some 100 mph running.

I believe that a time of under three hours could be regularly achieved between London Euston and Holyhead.

Battery-electric trains on this route, would deliver the following benefits.

  • A fast low-carbon route from Birmingham, London and Manchester to the island of Ireland. if coupled with the latest fast catamarans at Holyhead.
  • Substantial reductions in journey times to and from Anglesey and the North-West corner of Wales.
  • Chester could become a hub for battery-electric trains to and from Birmingham, Crewe, Liverpool, Manchester and Shrewsbury.
  • Battery-electric trains could be used on the Conwy Valley Line.
  • It might even be possible to connect the various railways, heritage railways and tourist attractions in the area with zero-carbon shuttle buses.
  • Opening up of the disused railway across Anglesey.

The economics of this corner of Wales could be transformed.

My Priority Routes

To finish this section, I will list my preferred routes for this method of discontinuous electrification.

  • Exeter and Penzance
  • Swansea and Fishguard
  • Crewe and Holyhead

Note.

  1. Some of the trains needed for these routes have been delivered or are on order.
  2. Local battery-electric services could be developed at Chester, Exeter and Swansea by building on the initial systems.
  3. The collateral benefits could be high for Anglesey, West Wales and Devon and Cornwall.

I suspect too, that very little construction work not concerned with the installation of the charging systems will be needed.

Conclusion

Hitachi have come up with a feasible way to electrify Great Britain’s railways.

I would love to see detailed costings for the following.

  • Adding a battery pack to a Class 800 train.
  • Installing five miles of electrification supported by a containerised charging system.

They could be on the right side for the Treasury.

But whatever the costs, it does appear that the Japanese have gone native, with their version of the Great British Compromise.

 

 

 

 

 

 

 

 

 

 

 

July 9, 2021 Posted by | Design, Energy, Hydrogen, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 14 Comments

Electrifying Wales

I would not be surprised to learn that Wales wants to decarbonise their railways.

At present, Wales only has the following electrified railways either in operation or under construction.

  • The South Wales Main Line between the Severn Tunnel and Cardiff.
  • The South Wales Metro based on local railways around Cardiff and Newport is being created and will be run by electric trains.

There is no more electrification planned in the future.

Hitachi’s Specification For Battery Electric Trains

Recently, Hitachi have released this infographic for their Regional Battery Train.

This gives all the information about the train and a definitive range of 90 km or 56 miles.

The Welsh Rail Network

If you look at the network of services that are run by Transport for Wales Rail Services, they connect a series of hub stations.

Major hubs include the following stations.

  • Cardiff Central – Electrified
  • Chester
  • Hereford
  • Shrewsbury
  • Swansea

Smaller hubs and termini include the following stations.

  • Aberystwyth
  • Birmingham International – Electrified
  • Birmingham New Street – Electrified
  • Blaenau Ffestiniog
  • Carmarthen
  • Crewe – Electrified
  • Fishguard Harbour
  • Hereford
  • Holyhead
  • Llandudno Junction
  • Manchester Airport – Electrified
  • Manchester Piccadilly – Electrified
  • Machynlleth
  • Milford Haven
  • Newport – Electrified
  • Pembroke Dock

Running Welsh Routes With Electric Trains

These routes make up the Welsh rail network.

Chester And Crewe

Consider.

  • The route between Chester and Crewe is without electrification.
  • Crewe and Chester are 21 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Crewe with full batteries, that it will be possible to run between Chester and Crewe stations.

Chester And Holyhead via Llandudno Junction

Consider.

  • All services between Llandudno Junction and England call at Chester.
  • All services running to and from Holyhead call at Llandudno Junction.
  • The route between Chester and Holyhead is without electrification.
  • Chester and Llandudno Junction are 54 miles apart.
  • Llandudno Junction and Holyhead are 40 miles apart.

I believe that if a battery-electric train with a range of 56 miles can leave Chester, Llandudno Junction and Holyhead with full batteries, that it will be possible to run between Chester and Holyhead stations.

Chester And Liverpool Lime Street

Consider.

  • The route between Runcorn and Liverpool Lime Street is electrified.
  • The route between Chester and Runcorn is without electrification.
  • Chester and Runcorn are 14 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Runcorn with full batteries, that it will be possible to run between Chester and Liverpool Lime Street stations.

Chester And Manchester Airport

Consider.

  • The route between Warrington Bank Quay and Manchester Airport is electrified.
  • The route between Chester and Warrington Bank Quay is without electrification.
  • Chester and Warrington Bank Quay are 18 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Warrington Bank Quay with full batteries, that it will be possible to run between Chester and Manchester Airport stations.

Chester And Shrewsbury

Consider.

  • The route between Chester and Shrewsbury is without electrification.
  • Chester and Shrewsbury are 42 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Shrewsbury and Chester with full batteries, that it will be possible to run between Chester and Shrewsbury stations.

Llandudno And Blaenau Ffestiniog

Consider.

  • The route between Llandudno and Blaenau Ffestiniog is without electrification.
  • Llandudno and Blaenau Ffestiniog are 31 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Llandudno and Blaenau Ffestiniog with full batteries, that it will be possible to run between Llandudno and Blaenau Ffestiniog stations.

Machynlleth And Aberystwyth

Consider.

  • The route between Machynlleth and Aberystwyth is without electrification.
  • Machynlleth and Aberystwyth are 21 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Machynlleth and Aberystwyth with full batteries, that it will be possible to run between Machynlleth and Aberystwyth stations.

Machynlleth And Pwllheli

Consider.

  • The route between Machynlleth and Pwllheli is without electrification.
  • Machynlleth and Pwllheli are 58 miles apart.

I believe that if a battery-electric train with a range of upwards of 58 miles, can leave Machynlleth and Pwllheli with full batteries, that it will be possible to run between Machynlleth and Pwllheli stations.

Machynlleth And Shrewsbury

Consider.

  • The route between Machynlleth and Shrewsbury is without electrification.
  • Machynlleth and Shrewsbury are 61 miles apart.

I believe that if a battery-electric train with a range of upwards of 61 miles, can leave Machynlleth and Shrewsbury with full batteries, that it will be possible to run between Machynlleth and Shrewsbury stations.

Shrewsbury and Birmingham International

Consider.

  • The route between Birmingham International and Wolverhampton is electrified.
  • The route between Shrewsbury and Wolverhampton is without electrification.
  • Shrewsbury and Wolverhampton are 30 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury and Wolverhampton with full batteries, that it will be possible to run between Shrewsbury and Birmingham International stations.

 Shrewsbury And Cardiff Central via Hereford

Consider.

  • All services between Cardiff Central and Shrewsbury call at Hereford.
  • The route between Cardiff Central and Newport is electrified.
  • The route between Newport and Shrewsbury is without electrification.
  • Shrewsbury and Hereford are 51 miles apart.
  • Hereford and Newport are 44 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury, Hereford and Newport with full batteries, that it will be possible to run between Shrewsbury and Cardiff Central stations.

Shrewsbury And Crewe

  • The route between Shrewsbury and Crewe is without electrification.
  • Shrewsbury and Crewe are 33 miles apart.

I believe that if a battery-electric train with a range of upwards of 61 miles, can leave Shrewsbury and Crewe with full batteries, that it will be possible to run between Shrewsbury and Crewe stations.

Shrewsbury and Swansea

Consider.

  • The Heart of Wales Line between Shrewsbury and Swansea is without electrification.
  • Shrewsbury and Swansea are 122 miles apart.
  • Trains cross at Llandrindod and wait for up to eleven minutes, so there could be time for a charge.
  • Shrewsbury and Llandrindod are 52 miles apart.
  • Swansea and Llandrindod are 70 miles apart.

It appears that another charging station between Swansea and Llandrindod is needed

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury, Swansea and the other charging station, with full batteries, that it will be possible to run between Shrewsbury and Swansea stations.

Swansea And Cardiff Central

Consider.

  • The route between Swansea and Cardiff Central is without electrification.
  • Swansea and Cardiff Central are 46 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea and Cardiff Central with full batteries, that it will be possible to run between Swansea and Cardiff Central stations.

Swansea And Carmarthen

Consider.

  • The route between Swansea and Carmarthen is without electrification.
  • Swansea and Carmarthen are 31 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea and Carmarthen with full batteries, that it will be possible to run between Swansea and Carmarthen stations.

Swansea And Fishguard Harbour

Consider.

  • The route between Swansea and Fishguard Harbour is without electrification.
  • Swansea and Fishguard Harbour are 73 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Fishguard Harbour are 42 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Fishguard Harbour with full batteries, that it will be possible to run between Swansea and Fishguard Harbour stations.

Swansea And Milford Haven

Consider.

  • The route between Swansea and Milford Haven is without electrification.
  • Swansea and Milford Haven are 72 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Milford Haven are 41 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Milford Haven with full batteries, that it will be possible to run between Swansea and Milford Haven stations.

Swansea And Pembroke Dock

Consider.

  • The route between Swansea and Pembroke Dock is without electrification.
  • Swansea and Pembroke Dock are 73 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Pembroke Dock are 42 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Pembroke Dock with full batteries, that it will be possible to run between Swansea and Pembroke Dock stations.

Other Routes

I have not covered these routes.

  • Borderlands Line
  • Cardiff Valley Lines, that will be part of the South Wales Metro
  • Routes on the electrified South Wales Main Line, that are to the East of Cardiff.

The first will run between Chester and the electrified Merseyrail system and the others will be electrified, except for short stretches.

Stations Where Trains Would Be Charged

These stations will need charging facilities.

Aberystwyth

Aberystwyth station only has a single terminal platform.

I’ve not been to the station, but looking at pictures on the Internet, I suspect that fitting a charging facility into the station, wouldn’t be the most difficult of engineering problems.

Birmingham International

Birmingham International station is fully-electrified and ready for battery-electric trains.

Blaenau Fflestiniog

Blaenau Ffestiniog station has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Cardiff

Cardiff station is fully-electrified and ready for battery-electric trains.

Chester

Chester station has two through platforms and one bay platform, that are used by Trains for Wales.

  • The through platforms are bi-directional.
  • The bay platform is used by services from Liverpool Lime Street and Manchester Airport and Piccadilly.
  • The station is a terminus for Merseyrail’s electric trains, which use 750 VDC third-rail electrification.
  • Some through services stop for up to seven minutes in the station.

This Google Map shows the station.

There is plenty of space.

The simplest way to charge trains at Chester would be to electrify the two through platforms 3 and 4 and the bay platform 1.

I would use 750 VDC third-rail, rather than 25 KVAC overhead electrification.

  • I’m an engineer, who deals in scientifically-correct solutions, not politically-correct ones, devised by jobsworths.
  • Maintenance staff at the station will be familiar with the technology.
  • Station staff and passengers will know about the dangers of third-rail electrification.
  • Trains connect and disconnect automatically to third-rail electrification.
  • Trains don’t have to stop to connect and disconnect, so passing trains can be topped-up.
  • Hitachi with the Class 395 train and Alstom with the Class 373 train, have shown even trains capable of 140 mph can be fitted with third-rail shoes to work safely at slower speeds on lines electrified using third-rail.
  • Modern control systems can control the electricity to the third-rail, so it is only switched on, when the train completes the circuit.

I have a vague recollection, that there is an avoiding line at Chester station, so trains can go straight through. Perhaps that should be electrified too.

Carmarthen

Carmarthen station is a two platform station, with a rather unusual layout, that I wrote about in Changing Trains At Carmarthen Station.

I took these pictures when I passed through in 2016.

Note the unusual step-free crossing of the tracks.

This Google Map shows the layout at the station.

I believe it is another station, where third-rail electrification could be the solution.

  • Most trains seem to reverse at the station, which gives time for a full charge.
  • Others terminate here.

but would they still allow passengers to cross the line as they do now, whilst trains are being charged?

Crewe

Crewe station is fully-electrified.

  • Trains for Wales seem to use Platform 6 for through trains and the bay Platform 9 for terminating trains.
  • Both platforms appear to be electrified.
  • Terminating trains appear to wait at least 9-11 minutes before leaving.

It does appear that Crewe station is ready for battery-electric trains.

Fishguard Harbour

Fishguard Harbour station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Hereford

Hereford station has four through platforms.

This Google Map shows the station.

There is plenty of space.

As with Chester, I would electrify this station with 750 VDC third-rail equipment.

But the electrification wouldn’t be just for train services in Wales.

  • West Midlands Trains, run an hourly service to Birmingham New Street and there is only a forty-one mile gap in the electrification between Hereford and Bromsgrove.
  • Great Western Railway’s service to London, has a massive ninety-six mile run to the electrification at Didcot Junction, which could be bridged by installing charging facilities at Worcestershire Parkway and/or Honeybourne stations.

Both services have generous turnround times at Hereford, so would be able to leave fully-charged.

Distances from Hereford station are as follows.

  • Abergavenny – 24 miles
  • Bromsgrove – 41 miles
  • Great Malvern – 21 miles
  • Honeybourne – 48 miles
  • Ludlow – 13 miles
  • Newport – 44 miles
  • Shrewsbury – 51 miles
  • Worcester Parkway – 33 miles

Hereford station could be a serious battery-electric train hub.

Holyhead

Holyhead station has three terminals platforms.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Liverpool Lime Street

Liverpool Lime Street station is fully-electrified and ready for battery-electric trains.

Llandrindod

Llandrindod station has two through platforms.

I took these pictures at the station as I passed through in 2016.

The Heart of Wales Line is certainly a route, that would benefit from larger trains. Zero-carbon battery-electric trains would surely fit well in the area.

This Google Map shows the station.

It would appear that, it is another station, that could be fitted with third-rail electrification to charge the trains.

Distances from Llandrindod station are as follows.

  • Shrewsbury – 52 miles
  • Llandovery – 27 miles
  • Llanelli – 59 miles
  • Swansea – 70 miles

It would appear that a second station with charging facilities or bigger batteries are needed.

Llandudno Junction

Llandudno Junction station has four platforms.

This Google Map shows the station.

There is plenty of space.

As at Chester, the simple solution would be to electrify the platforms used by trains, that will need charging.

Butb there may also be a wider plan.

Llandudno Junction station is at the Western end of a string of five closely-spaced stations with Prestatyn station in the East.

  • Llandudno Junction and Prestatyn are eight miles apart.
  • Trains take twenty-three minutes to pass through this section.
  • Some trains do a detour to Llandudno station before continuing.
  • For part of the route, the railway lies between the dual-carriageway A55 road and the sea.

So why not electrify this section of railway between Llandudno Junction and Prestatyn stations?

  • Either 750 VDC this-rail or 25 KVAC overhead electrification could be used.
  • Prestatyn and Chester are 46 miles apart.
  • Llandudno Junction and Holyhead are 40 miles apart.

If third-rail electrification were to be used, it might be advantageous to electrify to Llandudno station.

  • It would be less intrusive.
  • It would be quieter in an urban area.
  • It would give the trains to Blaenau Ffestiniog trains a good charge.

But above all third-rail electrification might cost a bit less and cause less disruption to install.

Machynlleth

Machynlleth station is where the Aberystwyth and Pwllheli services split and join.

This Google Map shows the station.

Consider.

  • There is a train depot by the station.
  • Will there be a good power supply at the station to charge the trains?
  • Machnylleth and Pwllhelli are 58 miles apart.
  • Machynlleth and Shrewsbury are 61 miles apart.

I think that Machynlleth might be pushing things too far, without extra stations with charging facilities.

One solution might be to develop the Riding Sunbeams concept and electrify the route between Newtown and Dovey Junction via Machynlleth, using third-rail technology powered-by solar or wind power.

Another solution would be batteries with a larger capacity.

Manchester Airport

Manchester Airport station is fully-electrified and ready for battery-electric trains.

Manchester Piccadilly

Manchester Piccadilly station is fully-electrified and ready for battery-electric trains.

Milford Haven

Milford Haven station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Pembroke Dock

Pembroke Dock station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Pwllheli

Pwhelli station is a only has a single terminal platform.

This Google Map shows the location of the station.

The stsation is at the North West corner of the bay.

My first reaction, when I saw this was that I have to go.

So I took a closer look at the station instead.

I suspect that fitting a charging facility into the station, wouldn’t be the most difficult of engineering problems. Although, there might be a problem getting a good enough connection to the National Grid.

Shewsbury

Shrewsbury station is a five-platform station.

This Google Map shows the station’s unusual location over the River Severn.

It must be one of few stations in the world, where trains enter the station from three different directions.

  • From Crewe and Chester to the North.
  • From Hereford and Wales to the South.
  • From Birmingham and Wolverhampton in the East.

Adding electrification to all or selected platforms should allow trains to recharge and be on their way.

  • Under current timetables, dwell times in Shrewsbury are up to eight minutes.
  • I would suspect the train times could be adjusted, so that trains left the station with full batteries.

With battery-electric services to Aberystwyth, Birmingham International, Birmingham New Street, Cardiff Central, Chester, Crewe, Hereford, Holyhead, London Euston, Manchester, Pwllheli and Swansea, it will be a very important station.

Swansea

Swansea station has four terminal platforms.

A charging facility could be added to an appropriate number of platforms.

Or perhaps, the last few miles of track into the station should be electrified, so trains could charge on the way in, charge in the station and charge on the way out.

Third Rail Electrification

I have suggested in this post, that 750 VDC third-rail electrification could be used in several places.

I will repeat what I said earlier, when discussing Chester station.

  • I’m an engineer, who deals in scientifically-correct solutions, not politically-correct ones, devised by jobsworths.
  • Maintenance staff at the station will be familiar with the technology.
  • Station staff and passengers will know about the dangers of third-rail electrification.
  • Trains connect and disconnect automatically to third-rail electrification.
  • Trains don’t have to stop to connect and disconnect, so passing trains can be topped-up.
  • Hitachi with the Class 395 train and Alstom with the Class 373 train, have shown even trains capable of 140 mph can be fitted with third-rail shoes to work safely at slower speeds on lines electrified using third-rail.
  • Modern control systems can control the electricity to the third-rail, so it is only switched on, when the train completes the circuit.

Third-rail electrification should be seriously considered.

A Standardised Terminal Solution

In this post, I mentioned that the following stations could be powered by a scandalised solution, as they are all one platform, terminal stations.

  • Aberystwyth
  • Blaenau Ffestiniog
  • Fishguard Harbour
  • Holyhead
  • Milford Haven
  • Pembroke Dock
  • Pwllheli

The system might also be applicable at Carmarthen and Swansea.

My view is that Vivarail’s Fast Track charging based on third-rail technology would be ideal. I discussed this technology in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

Conclusion

With a bit of ingenuity, all train services run by Transport for Wales, can be run with battery-electric trains.

 

July 9, 2020 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , | 5 Comments