The Anonymous Widower

Oxygen Supplies In Disaster Management

The title of this post is the same as this peer-reviewed paper on PubMed.

This is the Abstract.

Mass casualty events and disasters, both natural and human-generated, occur frequently around the world and can generate scores of injured or ill victims in need of resources. Of the available medical supplies, oxygen remains the critical consumable resource in disaster management. Strategic management of oxygen supplies in disaster scenarios remains a priority. Hospitals have large supplies of liquid oxygen and a supply of compressed gas oxygen cylinders that allow several days of reserve, but a large influx of patients from a disaster can strain these resources. Most backup liquid oxygen supplies are attached to the main liquid system and supply line. In the event of damage to the main system, the reserve supply is rendered useless. The Strategic National Stockpile supplies medications, medical supplies, and equipment to disaster areas, but it does not supply oxygen. Contracted vendors can deliver oxygen to alternate care facilities in disaster areas, in the form of concentrators, compressed gas cylinders, and liquid oxygen. Planning for oxygen needs following a disaster still presents a substantial challenge, but alternate care facilities have proven to be valuable in relieving pressure from the mass influx of patients into hospitals, especially for those on home oxygen who require only an electrical source to power their oxygen concentrator.

The Covid-19 situation in India, may be a total different type of disaster, but what is happening in the country is having the same outcome – A serious lack of medical oxygen!

It should not be forgotten, that we nearly had serious oxygen problems last year in the UK.

A Possible Solution

I feel we need to develop a reliable oxygen system that can supply large amounts of medical grade oxygen, which can be delivered quickly and easily to site.

Could The System Be Electrolyser-Based?

I feel that this could be an a possibility.

  • Electrolysers need just a water and electricity supply.
  • They produce both hydrogen and oxygen.
  • If the hydrogen isn’t wanted it can be added to the gas main.

Electrolysers may offer size, safety, weight and other advantages in difficult environments.

The System Must Be Air-Transportable

This would be absolutely essential amd as the equipment might be flying into a serious disaster, surely it would be preferable if it could be fitted into a Hercules.

Conclusion

As I write this post, this article on the BBC has just been published, which is entitled UK Sends Supplies To India Amid Record Virus Surge.

This is an extract.

The assistance package includes 495 oxygen concentrators – which extract oxygen from the air to give to patients – as well as ventilators.

India is seeing thousands of deaths a day amid oxygen shortages.

Will that be enough?

We certainly must be as well-prepared as we can.

April 25, 2021 Posted by | Health | , , , | 1 Comment

Uniper To Make Wilhelmshaven German Hub For Green Hydrogen; Green Ammonia Import Terminal

The title of this post, is the same as that of this article on Green Car Congress.

This is the first two paragraphs.

Under the name “Green Wilhelmshaven,” Germany-based international energy company Uniper plans to establish a German national hub for hydrogen in Wilhelmshaven and is working on a corresponding feasibility study.

Plans include an import terminal for green ammonia. The terminal will be equipped with an ammonia cracker for producing green hydrogen and will also be connected to the planned hydrogen network. A 410-megawatt electrolysis plant is also planned, which—in combination with the import terminal—would be capable of supplying around 295,000 metric tons or 10% of the demand expected for the whole of Germany in 2030.

I can’t help feeling that there is some bad thinking here.

The Wikipedia entry for ammonia, says this about green ammonia.

Even though ammonia production currently creates 1.8% of global CO2 emissions, a 2020 Royal Society report claims that “green” ammonia can be produced by using low-carbon hydrogen (blue hydrogen and green hydrogen). Total decarbonization of ammonia production and the accomplishment of net-zero targets are possible by 2050.

So why is green ammonia imported rather than green hydrogen, which may have been used to manufacture the ammonia?

Green ammonia would appear to have two main uses in its own right.

  • As a feedstock to make fertiliser and other chemicals.
  • As a possible fuel for large ships, which could also be powered by hydrogen.

The only thing, I can think of, is that as liquid hydrogen boils at -253 ° C and liquid ammonia at -33 ° C, ammonia may be easier to transport by ship.

It may make a better fuel for large ships for the same reason.

This policy briefing from The Royal Society is entitled Ammonia: Zero-Carbon Fertiliser, Fuel And Energy Store.

This is the introductory paragraph.

This policy briefing considers the opportunities and challenges associated with the manufacture and future use of zero-carbon or green ammonia.

It is an excellent explanation of green ammonia and a must read.

Hydrogen for Wilhelmshaven

On the other hand, Wilhelmshaven, which is situated on Germany’s North West Coast would be in a good position to be a terminal for a hydrogen pipeline or electrical interconnector from the Dogger Bank, where both the Netherlands and the UK have plans for some of the largest windfarms in the world.

The UK’s Dogger Bank Wind Farm, which is being developed by SSE, looks to have an initial capacity of 4.8 MW, whereas the North Sea Wind Power Hub, being developed by the Danes, Dutch and Germans on their side of the Dogger Bank could be rated at up to 110 GW.

Wikipedia says this about how the two huge projects could be connected.

The power hub would interconnect the three national power grids with each other and with the Dogger Bank Wind Farm.

We could be seeing a 200 GW power station in an area of the sea, generally only known to those who listen to the shipping forecasts and fans like Marti Caine.

Under a section in the Wikipedia entry for the North Sea Wind Power Hub, which is entitled the North Sea Wind Power Hub Consortium, these points are made.

  • It is hoped that Norway, the United Kingdom, and Belgium will join the consortium.
  • Dutch gas-grid operator Gasunie has joined the consortium, suggesting converting wind power to gas and using near offshore gas infrastructure for storage and transport.
  • The Port of Rotterdam became the fifth member of the consortium.

This looks like a party, where some of our North Sea gas fields and infrastructure, lying in the triangle of the Humber, Teesside and the Dogger Bank could add a lot of value.

We could even see hydrogen generated in the European Eastern part of the Dogger Bank, stored in a worked-out gas field in the UK sector of the North Sea and then when needed, it could be pumped to Germany.

A 410 Megawatt Electrolyser

Ryze Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

This would produce just 5.6 percent of the hydrogen of the Wilhelmshaven electrolyser

In H2 Green Steel Plans 800 MW Hydrogen Plant In Sweden, I wrote about a 800 MW electrolyser, that would produce 380 tonnes of hydrogen per day.

It looks like the Wilhelmshaven  electrolyser is very much a middle-sized one and would produce around 65,000 tonnes per year.

Conclusion

It looks like the Germans will be importing lots of green ammonia and green hydrogen from the North Sea.

April 18, 2021 Posted by | Energy, Hydrogen | , , , , , , , , , , , | 8 Comments

Plans For £45m Scottish Green Hydrogen Production Plant Revealed

The title of this post, is the same as that of this article on H2 View.

This is the opening paragraph.

UK-built hydrogen buses powered by Scottish-made green hydrogen, transporting COP26 delegates around Glasgow in 2021: that’s the vision of a new £45m project unveiled today (3rd Nov).

Some details of the plant are also given.

  • It will be built at Lesmahagow.
  • It will be co-located with wind turbines and solar panels.
  • It will have an initial capacity of 9 MW, with a possible increase to 20 MW.
  • It will produce 800 tonnes of hydrogen per annum.
  • The company behind it, is called Hy2Go

It sounds like the electrolyser is the one mentioned in Green Hydrogen For Scotland, which was announced in a press release from ITM Power.

Although, that electrolyser may be situated at Whitelee Wind Farm, which is a few miles closer to the coast.

Will Scotland Have Two Electrolysers To the South Of Glasgow?

Consider.

  • Whitelee is the UK’s largest onshore wind farm with a capacity of 539 MW.
  • It is planned to install a large battery at Whitelee. See Super Battery Plan To Boost UK’s Biggest Onshore Windfarm on this page on the Scottish Power web site.
  • Lesmahagow’s turbines and solar panels have not been installed yet.
  • Much of the wind power in the South of Scotland and the North of England is mainly onshore, rather than onshore.
  • The location of the Lesmahagow electrolyser will be close to the M74.
  • The location of the Whitelee electrolyser will be close to the M77.
  • There is a good motorway network linking the electrolysers’ to the major cities in the South of Scotland and the North of England.
  • Newcastle might be a bit difficult to supply, but that may receive hydrogen from Teesside or the Humber.

Perhaps, the economics of onshore wind, with electrolysers nearby, makes for an affordable source of plentiful green hydrogen.

I would expect that if Scotland built two large electrolysers South of Glasgow, they wouldn’t have too much trouble using the hydrogen to reduce the country’s and the North of England’s carbon footprint.

Have These Two Projects Merged?

Consider.

  • The Lesmahagow site is stated in the article to possibly have two electrolysers with a total capacity of 20 MW.
  • The Lesmahagow site is in an excellent position close to a junction to the M74 motorway, with easy access to Edinburgh, Glasgow and England.
  • The Lesmahagow site could probably have a pipeline to a hydrogen filling station for trucks and other vehicles on the M74.
  • The Whitelee wind farm is huge.
  • Lesmahagow and Whitelee are about twenty miles apart.
  • More wind turbines might be possible between the two sites.
  • There must also be a high-capacity grid connection at Whitelee.

Combining the two projects could have advantages.

  • There could be cost savings on the infrastructure.
  • It might be easier to add more wind turbines.

There may be time savings to be made, so that hydrogen is available for COP26.

Conclusion

Scotland is making a bold green statement for COP26.

A network of very large hydrogen electrolysers is stating to emerge.

  • Glasgow – Lesmahagow.
  • Herne Bay for London and the South East – Planning permission has been obtained.
  • Humber – In planning
  • Runcorn for North West England – Existing supply
  • Teesside – Existing supply

Joe Bamford’s dream of thousands of hydrogen-powered buses, is beginning to become a reality.

November 4, 2020 Posted by | Energy, Energy Storage, Hydrogen, Transport/Travel | , , , , , , , , , , | 3 Comments

A Trading Update From ITM Power

ITM Power issued a Press Release entitled Trading Update, this morning.

It is a document, that is a must-read about the future of hydrogen.

There are some interesting statements on various topics.

The Future Of Hydrogen Production

The Press Release says this.

Alongside the predicted growth trajectory for electrolysis, the cost outlook for green hydrogen is also positive. The Hydrogen Council expects green hydrogen to become cost competitive with grey hydrogen by 2025 assuming a €50 per ton CO2 price.  An 80GW electrolyser target for Europe by 2030 has been proposed, where electrolysers feed into a hydrogen transmission network that interconnects the renewable energy resources of the North Sea, Morocco and Ukraine with the demand centres of Europe.  Further afield, Australia is actively pursuing opportunities to export green hydrogen and has estimated that 69 per cent of the 2025 global market for hydrogen will lie in its four target markets of China, Japan, Korea and Singapore.

Note.

  1. Green hydrogen is produced by a zero-carbon process like electrolysis using renewable electricity.
  2. Grey hydrogen is produced by a process that releases carbon-dioxide like steam reforming of methane.

It looks like green hydrogen will be the future.

Governments And Green Hydrogen

The Press Release says this.

Governments are increasingly recognising the role of green hydrogen as a decarbonisation tool.  The U.K. government has introduced an overarching net zero target and placed an early focus on decarbonising industrial clusters that will lead to progressively larger deployments of electrolysers. In the Netherlands, the Dutch government has recently presented its green hydrogen vision for achieving a sustainable energy system that is reliable, clean and affordable.  A total of three European governments have now stated explicit electrolyser targets for 2030: Germany 5GW, Holland 3-4GW and Portugal 2GW.

It looks like a lot of electrolysers will be built.

The Germans And Hydrogen

The Press Release says this.

The German government announced in its stimulus package of 3 June 2020 that it will present a national hydrogen strategy in the short term. Accordingly, a programme for the development of hydrogen production plants will be developed to demonstrate industrial-scale production of up to 5GW total output in Germany, operational by 2030. For the period up to 2035, but until 2040 at the latest, an additional 5 GW will be added if possible. To implement all these measures, the German government will invest €7bn.

Not only is hydrogen zero-carbon, it also means they will buy less of Putin’s gas.

Conclusion

Hydrogen has a very long term future.

June 8, 2020 Posted by | World | , , , , , | 1 Comment

Joint Venture With Linde AG And £38M Strategic Investment

The title of this post, is the same as that as this Press Release from ITM Power.

This is the first paragraph.

ITM Power plc  is pleased to announce its intention to raise at least £52.0 million (before expenses) through (i) a strategic investment of £38.0 million at 40 pence per share by Linde UK Holdings No. 2 Limited, a member of the Linde AG group (Linde) (the Share Subscription); and (ii) a conditional placing of £14.0 million at 40 pence per share (the Firm Placed Shares) with certain existing and new institutional investors (the Firm Placing).   The Group has also entered into a 50/50 joint venture with Linde (the Joint Venture) which will focus on delivering green hydrogen to large scale industrial projects, principally those with an installed electrolyser capacity of 10 Megawatts (“MW”) and above.

There is all the usual financial stuff and these sentences.

The net proceeds of the fundraising will be used principally to enhance the manufacturing capabilities of the Group, particularly for the development and production of large scale 5MW electrolysers, to facilitate product standardisation and manufacturing cost reduction.

The Joint Venture will focus on delivering green hydrogen to large scale industrial projects (generally being opportunities with installed electrolyser capacities of 10 Megawatts and above)

As ITM Power are constructing the largest electrolyser factory in the world, at Bessemer park in Sheffield, it appears to me that ITM Power are going for the larger scale hydrogen market.

Recently, I wrote these three posts.

News stories generated about the company or the production of hydrogen seem to require large electrolysers in excess of 5 MW.

It looks like ITM Power are setting themselves up to tap this market substantially.

How Much Hydrogen Would A 5 MW Electrolyser Create In A Day?

I found the key to the answer to this question on this page of the Clean Energy Partnership web site.

To produce hydrogen by electrolysis directly at the filling station, the CEP currently requires about 55 kWh/kg H2 of electricity at an assumed rate of efficiency of > 60 percent.

To produce 1 kg of hydrogen, nine times the amount of water is necessary, i.e. nine litres.

I will use that figure in the calculation.

  • A 5MW electrolyser will consume 120 MWh in twenty-four hours.
  • This amount of electricity will produce 2,182 Kg or 2.182 tonnes of hydrogen.
  • It will also consume 19.64 tonnes of water.

In Surplus Electricity From Wind Farms To Make Hydrogen For Cars And Buses, I described how Jo Bamford and his company; Ryze Hydrogen, have applied for planning permission to build the UK’s largest electrolyser at Herne Bay in Kent.

  • It will produce ten tonnes of hydrogen a day.
  • The hydrogen will be sent by road to London to power buses.

So could the electrolyser be a 25 MW unit built of five 5 MW modular electrolysers?

Linde and their UK subsidiary; BOC, must have a lot of knowledge in transporting tonnes of hydrogen by road. I can remember seeing BOC’s trucks behind ICI’s Castner-Kellner works in the 1970s, where they collected hydrogen to see to other companies.

 

May 29, 2020 Posted by | Transport/Travel, World | , , , , , , , | 3 Comments

Big London Hospital Was Close To Running Out Of Oxygen

The title of this post is the same as this article on  The Times.

With COVID-19 and all those ventilators and CPAP devices, this sounds like a tragedy about to unfold.

I also remembered a story told to me by a friend, who used to be the Chief Pharmacist at a London hospital.

Oxygen was one of their problems, as the tanks were in a small yard with gates opening on to a busy street, about two hundred metres, away from the hospital.

The problem was that illegal parkers would block the gates, so that delivery couldn’t be made.

Knowing my physics and the reliability of deliveries in parts of London, I thought on-site electrolysis might be a better idea. So I consulted my bible.

There on page 760, it is all described how water can be split into two molecules of hydrogen and one of oxygen by electrolysis.

ITM Power are the experts on electrolysis, so I sent them an e-mail and asked if they could make an electrolyser, that produced oxygen instead of hydrogen.

The reply came swiftly and confirmed, that they could make an electrolyser that supplied oxygen. They also said, that the oxygen was of a high purity.

Just Connect Electricity And Tap Water

All these electrolysers would need is supplies of electricity and tap water to create hydrogen and/or oxygen.

No trucks would be needed to deliver tonnes of liquid gases, which can be rather dangerous to move around city streets.

ITM Power’s hydrogen electrolysers are starting to appear in filling stations, so they can refuel hydrogen-powered vehicles.

One could be installed in a hospital to provide a continuous stream of pure oxygen, which could be piped into the current oxygen delivery system.

What To Do With The Hydrogen

The hydrogen electrolysers produce oxygen as a by-product, which I suspect is just vented to the atmosphere!

But you can’t vent large amounts of hydrogen to the atmosphere, as it is an inflammable gas!

However, you could do either of the following options.

  1. Connect it to a hydrogen fuel pump to refuel hydrogen vehicles.
  2. Inject the hydrogen into the gas main, as is regularly done with hydrogen produced by surplus renewable electricity.

I prefer the first option, as it could mean that health-care could start to use hydrogen-powered ambulances, that are zero carbon and pollution-free.

Perhaps not an appropriate saying for the industry, but it would genuinely kill two birds with one stone.

 

 

 

April 3, 2020 Posted by | Health, Transport/Travel | , , , , , , | 4 Comments