The Anonymous Widower

UK Cleantech Consortium Awarded Funding For Energy Storage Technology Integrated With Floating Wind

The title of this post, is the same ass that of this page on the UK Government’s Catapult Offshore Renewable Energy Web Site.

This is the introductory paragraph.

STORE, a UK-based cleantech consortium led by RCAM Technologies Limited, has been awarded £150,000 of funding to develop an advanced subsea energy storage technology manufactured using 3D printed concrete that could help offshore wind farms produce a steady and predictable energy output to the electricity grid.

This paragraph talks of the concept of Marine Pumped Hydro.

STORE is assessing the feasibility of integrating Marine Pumped Hydro (MPH) technology, which stores energy using hollow concrete spheres fitted with a hydraulic turbine and pump, with floating offshore wind plants in UK waters. In addition, the project advances the design of MPH systems and plans a prototype demonstration in the UK.

Note.

  1. The hollow concrete spheres are 3D-printed in concrete using the technology of RCAM Technologies.
  2. Spheres are structurally very strong.
  3. 3D printing of concrete is now mainstream technology and has been extensively used on the Elizabeth Line as I wrote about in The Story Behind The Concrete Panels On The Elizabeth Line.
  4. There is a visualisation on the Catapult web page, which shows several floating turbines, a floating sub station and several concrete hemispheres sitting on the seabed.
  5. The energy storage medium is sea water and air, which must be environmentally-friendly.

The technology is described in detail on this page of the STORE consortium web site.

  • The spheres are fifteen metres across.
  • The spheres can be installed at depths between 150 and 2000 metres.
  • The system has a round-trip efficiency is up to 70%, which is similar to pumped storage hydro.
  • The design life is 50 to 80 years.

I think that this system has possibilities.

This last paragraph in the Catapult web page gives a look into the future.

As well as improving the reliability and predictability of energy to the electricity grid, the project will support the cross sector transfer of UK offshore expertise and port infrastructure for use in renewable energy and create high-value UK jobs in engineering, construction, and operations and maintenance. This energy storage solution is ideally suited to coupling with floating wind plants and for powering offshore oil and gas assets from renewable energy. The 3D printed concrete also facilitates localized manufacturing and enables low cost fabrication of new and complex shapes that were previously not practical.

I also feel that if the concrete sphere energy storage can be made to successfully work, then the technology can surely be fitted to any offshore wind farm, by just adding the right number of spheres and connecting them to the offshore sub station.

The STORE Consortium

The STORE consortium has a web site, which has a heading of Innovative Subsea Energy Storage.

It describes the technology in this paragraph.

STORE is advancing a subsea energy storage technology called Marine Pumped Hydro (MPH). MPH uses large hollow concrete spheres on the seafloor to store mechanical energy in the form of pressure. MPH charges when seawater is pumped out of the spheres and releases energy to the grid when high-pressure water flows back into the spheres through a turbine. MPH features a patent-pending multi-sphere pod to increase the amount of energy stored and uses efficient 3D concrete printing to reduce manufacturing costs.

It sounds like an engineer with children, has been playing with them and their plastic toys in a bath and has had an Archimedes moment.

The project and its funding is described in this paragraph.

STORE was awarded £150,000 from the Department for Business, Energy & Industrial Strategy Longer Duration Energy Storage Demonstration (LODES) competition. Phase 1 will deliver a Feasibility Study focused on the design and analyses for the UK. Phase 2, if awarded, will design, manufacture, and operate a prototype system at TRL 6.

Note that TRL 6 is Technology Readiness Level 6 and is fully defined on this NASA web page, as having a fully functional prototype or representational model.

There is also an interesting link to the ScotWind N3 wind farm. that I wrote about in ScotWind N3 Offshore Wind Farm.

  • This is an unusual floating wind farm with a floating substation.
  • Technip and Loch Kishorn port are involved in both the wind farm and STORE.
  • Loch Kishorn has a history of building immense concrete structures.

I wouldn’t be surprised if this wind farm would be the location of the prototype system.

Conclusion

This is a brilliant concept.

  • It is the ideal energy storage system for offshore wind, as it can turn a wind farm with a variable output into one with a much more constant output.
  • It can be retrofitted to existing offshore wind farms.
  • It will work with both fixed and floating wind farms.
  • The concrete storage spheres can be fully assembled with all their electrical gubbins on shore and towed out, before sinking in the required position.

It also looks like the Department for Business, Energy & Industrial Strategy have got involved and helped with the funding. Someone there seems to know a good idea, when they see it!

 

September 21, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , , , , | Leave a comment

RCAM Technologies

Wouldn’t it be a good idea to have a wind turbine with built-in energy storage?

This article on Power Engineering, is entitled Five Long-Duration Energy Storage Projects Get Funding In New York.

One of the projects, from RCAM Technologies is described like this.

To develop a 3D concrete-printed marine pumped hydroelectric storage system that integrates directly with offshore wind development in support of grid resiliency and reduced reliance on fossil fuel plants to meet periods of peak electric demand.

That sounds like an offshore wind turbine with built-in energy storage, that is 3D-printed in concrete.

The RCAM Technologies web site is all about 3D-printed concrete.

  • It looks like they can build taller wind farm towers, than you can make with steel.
  • It appears offshore wind turbine tower with integrated foundations  can be built on-site.
  • Material can be 100 % locally-sourced.
  • The next step could be to build some form of pumped storage into the tower.
  • They are experimenting with storing energy as pressure in 3D-printed concrete spheres. The New York grant will help fund this.
  • High Speed Two is using 3D-printing of concrete, as I wrote about in HS2 Utilising UK-First Pioneering 3D Concrete Printing On Project.

The company has offices in Colorado, California and Edinburgh.

Conclusion

This technology could be on the right track. Read their web site.

September 9, 2022 Posted by | Energy, Energy Storage | , , , , , | 1 Comment

The Story Behind The Concrete Panels On The Elizabeth Line

These are a selection of the pictures I took yesterday inside Elizabeth Line stations.

Note.

  1. The walls and ceilings appear to be covered in light grey panels with holes.
  2. The material appears to look like concrete.
  3. Every one is a totally different shape, so how were they manufactured?

This article on Ian Visits is entitled How Crossrail Is Using 3D-Printing To Build Its Stations.

This is the two opening paragraphs.

When you start to use the new Elizabeth line stations, among its many achievements will be the first large scale use of 3D-printing in concrete.

The use of 3D printing has made possible one of the more distinctive features of the future Elizabeth line stations — the curved concrete panels that will line the inside of the passenger tunnels and some stations, and sinuously glide around corners in a way never seen before in a tube station.

There will be a total of something like 36,000 of these panels and although printing each in concrete is possible, Crossrail would probably have been delivered in the 2040s or 2050s.

The contractors used an innovative process called FreeFAB, which had been invented by an Australian architect.

  • The process creates a wax mould for each panel using 3D printing.
  • This mould is then used to create the actual panel.
  • After each panel is cast, the wax is melted off and recycled.
  • The panels are made in a factory in Doncaster.

We will see a lot more of this technique used in the construction industry.

May 25, 2022 Posted by | Design, Transport/Travel | , , , , , , | 1 Comment

Skyrora Creates Europe’s Largest 3D Printer In ‘Game-Changer’ For Cutting Rocket Building Time

The title of this post, is the same as that of this article on CityAM.

The title is a good summary of a must-read article.

December 22, 2021 Posted by | Transport/Travel | , , , | Leave a comment

HS2 Utilising UK-First Pioneering 3D Concrete Printing On Project

The title of this post, is the same as that of this article on Rail Technology Magazine.

3D-Printing of concrete has been around for some time and it has been used extensively on Crossrail.

But High Speed Two are printing the heavy components on site, to avoid the problems of transport.

August 6, 2021 Posted by | Transport/Travel, World | , , , , , | 1 Comment