The Anonymous Widower

Would Electrically-Driven Trains Benefit From Batteries To Handle Regenerative Braking?

There are two basic types of electrically-driven trains.

Electric trains, which include electrical multiple units and trains hauled by electric locomotives like the InterCity 225.

Diesel-electric trains, which include multiple units like Voyagers and the InterCity 125.

Regenerative Braking

In an electrically-driven train, the traction motors can be turned into generators to slow the train, by turning the train’s kinetic energy into electricity.

Many electric trains can do this and the generated electricity is returned through the electrification system, so that it can power other trains nearby.

This all sounds fine and dandy, but there is the disadvantage that all the electrification system must be able to handle the reverse currents, which increases the capital cost of the electrification.

Batteries For Regenerative Braking

Fitting batteries to a train, to handle the electricity that is generated by regenerative braking is an alternative.

A Station Stop

Suppose a four-car train that weighs 200 tonnes is travelling at 125 mph and needs to stop at a station.

My example train would according to Omni’s Kinetic Energy Calculator would have a kinetic energy of 86.7 kWh.

To put that amount of energy into context, the traction battery in a New Routemaster bus is 55 kWh.

So if a battery of this size was put into each car, there is more than enough capacity to store the energy of the train, when it stops at a station.

When the train leaves the station, a proportion of this energy can be used to accelerate the train back to 125 mph.

As regenerative braking is perhaps only eighty percent efficient at present, additional energy will need to be provided.

But even with today’s primitive batteries and less-than-efficient traction motors, there are still substantial energy savings to be achieved.

Hitachi Class 800/801/802 Trains

In Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?, I looked at the question in the title.

I found this document on the Hitachi Rail web site, which is entitled Development of Class 800/801 High-speed Rolling Stock for UK Intercity Express Programme.

It was written in 2013 and I suspect every train designer has read it, as it gives a deep insight into the design of the trains.

The document provides this schematic of the traction system.

Note

  1. BC which is described as battery charger.
  2. The battery size is not disclosed.
  3. The APS supplies the hotel power for the train in two different voltages.
  4. Can the APS with the battery supply power to the Drive Converter?

After a lot of reasoning, I came to this conclusion.

I will be very surprised if Class 800/801/802 trains don’t have batteries.

Looking at the schematic of the electrical system, the energy captured will at least be used for hotel power on the train.

Hitachi have not said, if the batteries on the Class 800/801/802 trains can be used for traction purposes.

Storing the regenerative energy in a battery can be used for one of two purposes.

Hotel Power

Hitachi’s Class 800 trains certainly use the electricity in the battery to power the hotel functions of the train like air-conditioning, doors, lights, power-sockets, toilets and wi-fi.

In a diesel-electric train, this could give benefits.

  • The engines generally won’t need to run in a station to provide hotel power.
  • Less fuel will need to be expended to provide hotel power.
  • If say the train has to halt perhaps because of a signalling or track fault, hotel power can be provided without running the engines.
  • If batteries are supplying the hotel power, the train may have more power for traction.

Overall, the diesel-electric train would be more efficient and would emit less carbon dioxide and pollutants.

Traction Power

There is no engineering reason, why the energy in the battery can’t be used to actually move the train.

But to implement it, could be complicated and expensive on an existing train.

Some Worked Examples

I’ll look at a few examples.

InterCity 125

The iconic InterCity 125s are unique, in that they are impossible to scrap. Just as they seem to beapproaching the end of their life, a devious engineer or marketing man comes up with a plan to keep them running.

 

As I write this, Great Western Railway and Abellio ScotRail are testing short-formation InterCity 125s and training drivers for services in the South West of England and Scotland. Both train operating companies appreciate the marketing advantages of Terry Miller‘s world-famous train, that was built as a stop-gap, after the failure of the Advanced Passenger Train.

So what size of battery would need to be fitted to each locomotive to handle the braking energy of a short-formation InterCity 125 with four passenger cars?

Consider.

  • Each Class 43 locomotive weighs 70.25 tonnes.
  • Each Mark 3 coach weighs 33.60 tonnes.
  • An eight car InterCity 125 can carry about 500 passengers.
  • I will assume that a four-car InterCity 125 can carry 250 passengers.
  • If each passenger weighs 90 Kg with all their bikes, buggies and baggage, that adds up to 22.50 tonnes.

This gives a total train weight of 297.40 tonnes.

Calculating the kinetic energy using Omni’s Kinetic Energy Calculator for various speeds gives.

  • 50 mph – 20.6 kWh
  • 75 mph – 46.4 kWh
  • 90 mph – 66.9 kWh
  • 100 mph – 82.5 kWh

A fifty kWh battery in each locomotive would be able to handle the braking energy of the train.

The only problem, is that Class 43 locomotives have DC traction motors, no regenerative braking and air brakes.

But if any operator or rolling stock owner were bonkers enough to fit a new traction system, a diesel/electric/battery Class 43 locomotive is possible for a four-car InterCity 125.

This page on the Hitachi web site is entitled V-TRAIN 2.

Hitachi used a Class 43 power car to prove that diesel/electric/battery trains were feasible, before getting the order for the Class 800 trains.

So fitting batteries to Class 43 locomotives has been done before!

The simplest thing to do would be to use the batteries to provide hotel power for the train.

Class 375 Train

In this exercise, I shall consider a Class 375/6 train, with the following characteristics.

  • Four cars
  • Three cars are motored.
  • Regenerative braking
  • A weight of 173.6 tonnes.
  • A capacity of 236 seated passengers
  • An operating speed of 100 mph.

I will now go through my standard train kinetic energy calculation.

  • I will assume three hundred passengers including standees.
  • If each passenger weighs 90 Kg with all their bikes, buggies and baggage, that adds up to 27 tonnes.

This gives a total train weight of 200.60 tonnes.

Calculating the kinetic energy using Omni’s Kinetic Energy Calculator for various speeds gives.

  • 50 mph – 13.9 kWh
  • 80 mph – 35.6 kWh
  • 100 mph – 55.7 kWh

It would appear that adding batteries to a Class 375 train would not involve large capacity batteries, especially if one was added to each of the three cars with motors.

As a Control Engineer by training, blending battery and electrification power could run the train more efficiently.

Probably naively on my part, I suspect that using batteries on Class 375 trains to handle regenerative braking, would be one of the easier installations.

Other Electrostars

All Electrostars are fairly similar, so if Class 375 trains could be updated, then I wouldn’t be surprised if all could.

InterCity 225

It looks like InterCity 225 trains will be used between London and Blackpool by Alliance Rail Holdings.

Other commentators have suggested that shortened sets run on the Midland Main Line between a diesel locomotive and a Driving Van Trailer (DVT) or two Class 43 locomotives.

I shall do the energy calculation for a five-car InterCity 225.

  • A Class 91 locomotive weighs 81.5 tonnes.
  • A Mark 4 coach weighs between 40 and 43.5 tonnes.
  • A nine-car InterCity 225 seats 535 passengers.
  • I will assume that a five-car InterCity 225 will seat around 300 passengers.
  • I will assume each passenger weighs 90 Kg. with all their baggage, bikes and buggies.
  • A DVT weighs 42.7 tonnes.

For a current nine-car train this gives the following.

  • The empty train weight is almost exactly 500 tonnes.
  • The passengers weigh 48 tonnes.
  • This gives a total weight of 548 tonnes.

At 125 mph, the nine-car InterCity 225 has a kinetic energy of 238 kWh.

For a proposed five-car train this gives the following.

  • The empty train weight is almost exactly 333 tonnes.
  • The passengers weigh 27 tonnes.
  • This gives a total weight of 360 tonnes.

At 125 mph, the five-car InterCity 225 has a kinetic energy of 156 kWh.

Reduce the speed to 110 mph and the kinetic energy drops to 121 kWh.

I suspect that using current technologies, there is not enough space in a Class 91 locomotive for the batteries.

Perhaps a short section of the coach next to the engine could be converted to hold a large enough battery.

Five Mark 4 Coaches And Two Class 43 Locomotives

This has been suggested in Modern Railways by Ian Walmsley and I wrote about it in Midland Mark 4.

Consider.

  • A Class 43 locomotive weighs 70.25 tonnes.
  • A Mark 4 coach weighs between 40 and 43.5 tonnes.
  • A nine-car InterCity 225 seats 535 passengers.
  • I will assume that a five-car InterCity 225 will seat around 300 passengers.

This gives the following.

  • The empty train weight is 349 tonnes
  • The passengers weigh 27 tonnes
  • The train weight is 376 tonnes.

At 125 mph this train would have a kinetic energy of 163 kWh.

I’m sure that it would be possible to put a 100 kWh battery in the space behind the engine of a Class 43 locomotive, so I suspect that all the engineering solutions exist to create a train with the following characteristics.

  • Two Class 43 locomotives with new traction motors to enable regenerative braking and a 100 kWh battery.
  • Five Mark 4 coaches meeting all the regulations.
  • The batteries would provide hotel power for the train.
  • 125 mph operating speed.

It may be a fantasy, as the economics might not stack up.

Five Mark 4 Coaches, A Driving Van Trailer And A Stadler UKLight Locomotive

I wrote about this combination in Five Mark 4 Coaches, A Driving Van Trailer And A Stadler UKLight Locomotive.

I came to this conclusion.

Using the Mark 4 coaches or new Mark 5A coaches with a new 125 mph diesel/electric/battery hybrid Stadler UKLight locomotive could create an efficient tri-mode train for the UK rail network.

The concept would have lots of worldwide applications in countries that like the UK, are  only partially electrified.

The concept or something like it, has possibilities.

Voyagers

In the July 2018 Edition of Modern Railways, there is an article entitled Bi-Mode Aventra Details Revealed.

A lot of the article takes the form of reporting an interview with Des McKeon, who is Bombardier’s Commercial |Director and Global Head of Regional and Intercity.

This is a paragraph.

He also confirmed Bombardier is examining the option of fitting batteries to Voyager DEMUs for use in stations.

The Voyager family of trains has three members.

The trains are diesel-electric and I explore the possibility of using batteries in these trains in Have Bombardier Got A Cunning Plan For Voyagers?.

I felt is was a good plan.

Conclusion

In answer to the question, that I posed in the title of this post, I feel that handling regenerative braking in batteries on the train could be of benefit.

 

 

 

 

 

 

 

 

 

 

 

August 5, 2018 Posted by | Transport | , , , | 1 Comment

Five Mark 4 Coaches, A Driving Van Trailer And A Stadler UKLight Locomotive

In writing Would Electrically-Driven Trains Benefit From Batteries To Handle Regenerative Braking?, I started to analyse the mathetics and possibilities of a train with the following formation.

The sub-section got too large and important so I decided to write it as a separate post.

I like the Class 68 locomotive, as it looks professional and seems to do all asked of it.

So what would be the kinetic energy of a formation of five Mark 4 coaches, between a DVT and a Class 68 Locomotive?

  • The five Mark 4 coaches would weigh 209 tonnes.
  • The Class 68 locomotive weighs 85 tonnes.
  • The DVT weighs 42.7 tonnes
  • I will assume that a five cars will seat around 300 passengers.
  • The passengers weigh 27 tonnes, if you assume each weighs 90 Kg, with baggage, bikes and buggies.
  • The train weight is 363.7 tonnes.

At 100 mph, which is the maximum speed of the Class 68 locomotive, the Omni Kinetic Energy Calculator gives the kinetic energy of the train as 100 kWh.

I doubt there’s the space to squeeze a 100 kWh of battery into a Class 68 locomotive to handle the regenerative braking of the locomotive, but I do believe that a locomotive can be built with the following specification.

  • Enough diesel power to pull perhaps five or six Mark 4 coaches and a DVT at 125 mph.
  • Ability to use both 25 KVAC and 750 VDC electrification.
  • Battery to handle regenerative braking.
  • As the Class 88 electro-diesel locomotive, which is around the same weight as a Class 68 locomotive, I suspect the proposed locomotive would be a bit heavier at perhaps 95 tonnes.

This train would have a kinetic energy of 160 kWh at 125 mph.

Consider.

  • If the locomotive could have a 200 kWh battery, it could harvest all the regenerative braking energy.
  • Accelerating the train to cruising speed uses most energy.
  • Running at a constant high speed, would conserve the kinetic energy in the train.
  • Stadler, who manufacture the Class 68 and 88 locomotives are going to supply a diesel/electric/battery version of the Class 755 train, for the South Wales Metro. In What Is The Battery Size On A Tri-Mode Stadler Flirt?, I estimated the battery size is about 120 kWh.
  • The Class 68 and 88 locomotives are members of Stadler’s Eurolight family, which are designed for a 125 mph capability with passenger trains.
  • I don’t believe the UK is the only country looking for an efficient locomotive to haul short rakes of coaches at 125 mph, on partially-electrified lines.

It should also be noted, that to pull heavy freight trains, the Class 88 locomotive has a 700 kW Caterpillar C27 diesel that weighs over six tonnes, whereas 200 kWh of battery, would weigh about two tonnes. I believe that a smaller diesel engine might allow space for a large enough battery and still be able to sustain the 125 mph cruise.

Stadler have the technology and I wonder, if they can produce a locomotive to fill the market niche!

In HS2 To Kick Off Sheffield Wiring, I reported on the news that the Northern section of the Midland Main Line between Clay Cross and Sheffield will be electrified.

This would greatly improve the performance of diesel/electric/battery hybrid trains between London and Sheffield.

  • Between London and Kettering, the trains would be electrically-powered.
  • Between Kettering and Clay Cross, they would use a mixture of diesel and battery operation.
  • Between Clay Cross and Sheffield, the trains would be electrically-powered.

Note.

  1. Going North, trains would pass Kettering with a full battery.
  2. Going South, trains would pass Clay Cross with a full battery.
  3. Regenerative braking at stops between Kettering and Clay Cross would help recharge the batteries.
  4. The diesel engine would be sized to keep the train cruising at 125 mph on the gentle Midland Main Line and back up the acceleration needed after stops.

It would be a faster and very electrically-efficient journey, with a large reduction in the use of diesel power.

The locomotive would also have other uses in the UK.

  • TransPennine services, where they could surely replace the Class 68 locomotives, that will haul Mark 5A coaches between Liverpool and Scarborough and Manchester Airport and Middlesborough.
  • Between London and Holyhead
  • Waterloo to Exeter via Basingstoke and Salisbury.
  • Marylebone to Birmingham via the Chiltern Main Line, if the two ends were to be electrified.
  • Services on the East West Rail Link.
  • Between Norwich and Liverpool
  • CrossCountry services.

Note.

  1. Services could use a rake of Mark 4 coaches and a DVT or a rake of new Mark 5A coaches.
  2. If more electrification is installed, the trains would not need to be changed, but would just become more efficient.
  3. The competition would be Bombardier’s proposed 125 mph bi-mode Aventra with batteries, that I wrote about in Bombardier Bi-Mode Aventra To Feature Battery Power.

And that is just the UK!

Conclusion

Using the Mark 4 coaches or new Mark 5A coaches with a new 125 mph diesel/electric/battery hybrid Stadler UKLight locomotive could create an efficient tri-mode train for the UK rail network.

The concept would have lots of worldwide applications in countries that like the UK, are only partially electrified.

 

 

August 5, 2018 Posted by | Transport | , , , , , | 1 Comment

A Hydrogen-Powered Locomotive

If Alstom’s ventures in Germany and the UK with hydrogen-powered trains, are successful, I don’t think it will be long before engineers start thinking about a hydrogen-powered locomotive.

Consider some of the various locomotives used in the UK.

  • Class 66 – Diesel – 2,500 kW – Over 400 in service
  • Class 67 – Diesel – 2,400 kW – 30 in service
  • Class 68 – Diesel – 2,800 kW – 34 in service
  • Class 70 – Diesel – 2,800 kW – 37 in service
  • Class 88 – Diesel – 700 kW – Electric – 4,000 kW – 10 in service
  • Class 90 – Electric – 3,700 kW – 50 produced.
  • Class 91 – Electric – 4,800 kW – 31 produced
  • Class 92 – Electric – 5.000 kW – 46 produced.

Note.

  1. Many of the diesel locomotives, like the Class 66, don’t meet the latest emission regulations.
  2. Class 66 locomotives spent a lot of time pulling freight trains on electrified lines.
  3. The Class 90 electric locomotives are getting old and need careful maintenance.
  4. The Rail Minister, Jo Johnson, would like to see diesel power on UK railways gone by 2040.

I have not included some of the heritage locomotives, that are regularly seen on the UK rail network pulling freight.

This picture shows a pair of Class 86 locomotives hauling a freight train through Hackney Wick station.

These two Class 86 locomotives date from the mid-1960s. But they do have 2,700 kW of power. Each!

According to Wikipedia, fourteen of Freightliner‘s thirty Class 86 locomotives are still in regular use.

Not only is this a tribute to 1960s engineering, but it does show that there is a shortage of suitable locomotives in the UK.

So could a modern environmentally-friendly locomotive be developed to fill the gap?

A Look At The Class 88 Locomotive

There could be a clue as to what could be a useful power output in the design of the Class 88 locomotive.

  • These are a modern design from Shadler that entered service in 2017.
  • They have a power output of 4,000 kW from electricity.
  • They have a power output of 700kW from diesel.
  • They can switch between power sources automatically.
  • They can haul passenger trains, as well as heavy freight trains.
  • They comply with Euro III B emission limits.

Did Direct Rail Services make sure they got a correctly-sized locomotive with the right capabilities?

They obviously find the diesel Class 68 locomotive to their liking, as they have bought over thirty.

So they probably knew very well, the sort of power that they would need from a dual-mode electro-diesel locomotive.

On electricity, the Class 88 locomotive is more powerful than a Class 90 electric locomotive, which commonly haul heavy freight trains on the electrified network.

In this article in Rail Magazine, the following is said about Class 88 locomotives, operating from Preston to Glasgow.

When hauling the maximum permitted load of 1,536 tonnes on the 1 in 75 banks on this route, Class 88 has a balancing speed of 34mph in electric mode or 5mph in diesel mode.

This shows how a well-delivered 700 kW, isn’t that inadequate.

I suspect that there is sufficient power to bring a heavy freight train out of Felixstowe and the other ports without electrification.

So perhaps, we should take the specification of a Class 88 train, as a starting point for the specification of a proposed hydrogen locomotive?

Possible Routes And Duties

There are also some specific problems associated with various routes and duties, where the current UK fleet of locomotives are used.

InterCity 225 Trains

There are currently thirty-one InterCity 225 trains, running on the East Coast Main Line.

  • They are hauled by a 4,800 kW Class 91 electric locomotive.
  • The trains consist of nine Mark 4 coaches and a driving van trailer.
  • The trains were designed for 140 mph, but normally run at 125 mph.
  • The trains have a capacity of over five hundred passengers.
  • The trains could be made to meet all proposed access regulations for those with reduced mobility, with not a great deal of expensive work.
  • Most of the trains will be replaced by Class 800 trains in the next couple of years.
  • The trains are owned by Eversholt Rail Group, who are gaining a reputation for innovation.

The trains could probably give a few more years of service.

One suggestion, that has been made, would be to run the trains on the Midland Main Line.

  • Sections of the route allow running at 125 mph.
  • The route needs an urgent replacement for InterCity 125 trains.
  • The route is only to be electrified as far as Kettering and Corby.

So an alternative and powerful  locomotive would be needed, that could run on both lines with and without electrification.

The Class 91 locomotives are powerful beasts running on electricity, but with careful calculations, I’m sure that the power needed on lines with and without wires should be known.

The trains might also be formed of less coaches and selective electrification could be used in stations to accelerate the trains.

Note that accelerating the train to 125 mph, will be the major use of electricity. Hence, electrified stations would be welcome.

Expect some innovative proposals to use Mark 4 coaches from the InterCity 225 on the Midland Main Line.

Initially, could two Class 88 locomotives working in push-pull mode, handle say six Mark 4 coaches between London and Derby, Nottingham and Sheffield?

Who knows? But there are probably teams of engineers working away to create plausible solutions for the bidders for the new East Midlands Franchise, which will be awarded in April 2019.

Class 66 Locomotive Replacement

Because of their number, you see Class 66 locomotives everywhere on the UK network.

  • They haul long inter-modal freight trains.
  • They haul freight into and out of docks like Felixstowe, that are without electrification.
  • They haul engineering trains.
  • They are often seen hauling trains using diesel power on electrified lines.

But they are one of the most environmentally-unfriendly of diesel trains, which don’t meet the latest emission regulations.

How long before residents and rail passengers, start to complain about these locomotives, where electric haulage is possible?

I believe there is an increasingly urgent need for a go-anywhere replacement for the Class 66 locomotive.

It would appear, that the Class 88 locomotive, was specified so it can take over some of the duties of a Class 66 locomotive,

Could this see more orders for the Stadler locomotive?

I also believe that we could see other types of locomotive built to replace the Class 66 locomotive.

We might even see a locomotive with a lower power rating able to use electric or hydrogen power for work with all the smaller trains, that Class 66 locomotives haul.

Hydrogen Instead Of Diesel

The 700 kW diesel engine in a Class 88 locomotive is a Caterpillar C27, which drives an ABB alternator.

The engine alone weighs three tonnes.

By comparison Ballard make a hydrogen fuel cell that has an output of 100 kW, for a weight of  385 Kg.

This gives a weight of 2.7 tonnes for an output of 700 kW.

There will need to be a substantial battery. I estimate that a 500 kWh battery will weigh about eight tonnes.

On balance, the hydrogen-powered locomotive will probably be heavier than a diesel one, but it will have environmental advantages.

But with good design, I do think that a locomotive with similar performance to a Class 88 can be produced.

It might need to be longer and have more powered axles, to cope with extra weight.

Conclusion

I am led to the belief that a hydrogen-powered locomotive with sufficient power is possible.

They may be able to handle a lot of the duties of Class 66 locomotives, but I doubt they would be powerful enough for hauling full rakes of Mark 4 coaches.

It will be interesting to see, what solutions are proposed to solve the forthcoming rolling stock shortage on the Midland Main Line.

 

 

 

May 18, 2018 Posted by | Transport | , , , , | 1 Comment

Midland Mark 4

The title of this post is the same as an article by Ian Walmsley in the March 2018 Edition of Modern Railways.

Ian builds on what he said in an article in the August 2017 Edition of the same magazine. I wrote about that article in We Should All Think Radically!

He proposes using Mark 4 coaches with two Class 43 power cars to create trains that meet the PRM-TSI regulations deadline, which will mean the replacement of the East Midland Franchise’s twelve InterCity 125s.

He suspects various technical solutions can be borrowed to make it all possible and because of the extra weight of the Mark 4 coaches, the trains may become 2+7 sets instead of the current 2+8.

The trains could be rather nice.

  • The Mark 4 coaches have been extensively refurbished in the last two decades and have full wi-fi and power socket fitment.
  • The Mark 4 coaches meet all the PRM-TSI regulations.
  • 125 mph running would be possible, where the track allowed.
  • The East Midland Franchise already has the Class 43 power-cars.
  • If the electrification of the Midland Main Line is ever electrified, then the Class 43 power cars could be swapped for electric locomotives.

I would assume that three extra sets, that the franchise is acquiring from Grand Central could also be converted., giving the East Midlands Franchise, fifteen sets with a life of at least ten years.

A quick calculation would indicate that this reorganisation could see the current 132 Mark 3 coaches replaced by perhaps 120 Mark 4 coaches. I’ve just applied 7/8 to the Mark 3 coach total after the Grand Central trains have been added to the fleet.

What Will Happen To The Remaining Mark 4 Coaches?

Currently, there are 302 Mark 4 coaches in service on the East Coast Main Line with Virgin Trains East Coast.

In the Wikipedia entry for the Mark 4 coach, there is a section named Future.

This is said.

The Mark 4s are scheduled to be replaced on the East Coast Main Line by Class 801s in 2018. Some may be redeployed to Midland Main Line services.[19] Virgin Trains East Coast will retain seven or eight nine-carriage sets to operate extra services to Edinburgh.

In 2017, Alliance Rail Holdings announced that, owing to it being unable to source new build Class 390 EMUs for its intended service between London and Blackpool, it was revising its proposal to use the Class 91/Mark 4 combination instead

So it looks like seventy-two coaches will be retained for the East Coast Main Line.

As to how many trains will be needed between London and Blackpool, that’s the old question of how long is a piece of string.

Consider.

  • I don’t think that the platforms at Blackpool will accept full-length sets.
  • Class 180 trains used by various operators are five cars in length.
  • There are fourteen Class 180 trains, running to Bradford, Hull and Sunderland.
  • TransPennine Express has ordered several multiple units and rakes of coaches, that are five-cars long.

So perhaps three sets of five carriages, which seem adequate for Sunderland, would be a rough estimate.

This gives the following  totals.

  • East Midlands Franchise – 120
  • East Coast Main Line – 72
  • Euston-Blackpool – 15

Which gives a total of 207.

This leaves ninety-five coaches for other purposes. Or dare I say it, nineteen sets of five coaches?

Motive Power

The rakes of coaches will need to be powered.

These are a few possibilities.

Class 91 Locomotive And A Mark 4 Driving Van Trailer

Currently, Mark 4 coaches are powered and driven by a Class 91 locomotive with a Mark 4 Driving Van Trailer, at the other end of the train.

Total numbers available are

  • 31 – Class 91 Locomotive
  • 32 – Mark 4 Driving Van Trailer

If eight sets are retained for the East Coast Main Line, this means that a maximum of twenty-three trains could be created.

But except for limited use by Open Access Operators from London on fully-electrified lines, I can’t see all Class 91 locomotives being required.

Mark 4 Coaches Topped And Tailed With Class 43 Locomotives

This is Ian Walmsley’s plan for the Midland Main Line, as he outlined in the March 2018 Edition of Modern Railways.

Consider.

  • There are quite a few Class 43 locomotives available. There are thirty-two on the East Coast Main line for a start.
  • Ian feels that creating 2+7 sets is possible, but many needed would be shorter.
  • According to the article, Mark 4 coaches would be more affordable than making Mark 3 coaches PRM-TSI compliant.

The trains would share the iconic appearance of the InterCity 125, which passengers seem to love so much!

Class 68 Locomotive And A Mark 4 Driving Van Trailer

Chiltern use Class 68 locomotives and Mark 3 Driving Van Trailers, with Mark 3 coaches, so it is likely perhaps after some modification, these locomotives could be used with Mark 4 coaches and an appropriate Driving Van Trailer.

If a Class 68 locomotive would work, surely the closely-related Class 88 locomotive could also be used.

Mark 4 Coaches Topped And Tailed With Class 68 Locomotives

This arrangement has been used between Norwich, Lowestoft and Yarmouth with an elderly rake of Mark 2 coaches for some time.

It is a method that could be surely be used with Mark 4 coaches after a few modifications.

A New Class Of Electro-Diesel Locomotive And A Mark 4 Driving Van Trailer

I very much feel we need a new electro-diesel locomotive for both freight and passenger purposes.

Mark 4 Coaches Topped And Tailed With A Class 68 And A Class 88 Locomotive

I have often wondered, if instead of using two Class 68 locomotives, whether a Class 68 and a Class 88 locomotive could be used at opposite ends, to create the ultimate hybrid train, with a powerful diesel locomotive on one end and a powerful electric locomotive on the other.

Summing Up Motive Power

With a bit of ingenuity, I’m sure that uses could be found for most of the Mark 4 coaches.

Possible Routes

These routes need good quality rolling stock and innovatively-hauled Mark 4 coaches could be a solution.

Wales

Scotland has decided that the best way of serving some of its long routes, is to use shortened InterCity 125s.

Surely, if the concept works in Scotland, it is likely to work in Wales.

These could use Mark 4 coaches or more likely updated Mark 3 coaches.

Liverpool and Manchester To Holyhead

Once the Halton Curve is open, the possibility of a Liverpool to Holyhead service must exist.

A quality service along the North Wales Coast, must surely be beneficial to residents, business and tourism.

London Waterloo To Exeter Via Basingstoke

This service is currently served by Class 158 or Class 159 trains.

  • Trains generally work as six-car units.
  • The route is electrified between London Waterloo and Basingstoke.
  • Time could be saved by partial electric haulage.

The problem of this route might be solved by converting the Class 158/159 trains in bi-modes, as I wrote about in Class 158/159 Bi-Modes?

Cross-Country Routes

Cross Country routes and I don’t just mean those run by the company of the same name are often very-well pastronised, as often these routes are the only way to get between two provincial cities.

Take Norwich to Liverpool, which has a route, that definitely needs more coaches than those offered by a two-car Class 158 train.

Scenic Routes

Scotland is to run short-formation InterCity 125s between major cities.

IMany of these routes also fall into the category of scenic routes.

If this Scottish innovation is successful, will we see pressure for similar trains to work routes like Settle-Carlisle in England?

Summing Up Possible Routes

I don’t think there will be a shortage of routes to run Mark 4 coach-based services.

Conclusion

Don’t underestimate how the retired Mark 4 coaches will be used.

February 27, 2018 Posted by | Transport | , , , , , , | 1 Comment