The Anonymous Widower

Overhauls for LNER’s Remaining Class 91s And Mk 4s

The title of this post, is the same as that of this article on Rail Magazine.

This is the introductory paragraph.

Eversholt Rail, which owns the trains, has confirmed that 12 London North Eastern Railway Class 91s and the remaining Mk 4 coaches will undergo overhauls at Wabtec Rail, Doncaster.

It had been expected, that LNER would purchase more trains, as I wrote about in More New Trains On LNER Wish List.

The article gives more details of the trains to be retained.

  • Twelve Class 91 locomotives, seven rakes of Mark 4 coaches and two spare coaches will be retained.
  • They will be confined to routes between London Kings Cross and Bradford, Leeds, Skipton and York.

How many trains will be needed to cover these routes?

  • Trains take two hours and fifteen minutes between London Kings Cross and Leeds and run at a frequency of two trains per hour (tph)
  • Trains take two hours and twenty-one minutes between London Kings Cross and York and run hourly.
  • I suspect that a round trip to Leeds or York can be five hours.

So a crude analysis says, that will mean fifteen trains will be needed,

But some of these trains will be extended past Leeds.

These are, electrification status and the times and distances between Leeds and the final destinations.

  • Bradford – Electrified – 22 minutes – 13.5 miles
  • Harrogate – Not Electrified – 40 minutes – 18 miles
  • Huddersfield – Not Electrified – 33 minutes – 17 miles
  • Skipton – Electrified  – 45 minutes – 26 miles

It appears that the following is true.

  • Trains serving Harrogate and Huddersfield must be worked by bi-mode Class 800 trains.
  • Trains serving Bradford and Skipton could be worked by InterCity 225 trains or an all-electric nine-car Class 801 train.

Note.

  1. Some times are those taken by LNER services and some are estimates from TransPennine Express.
  2. I have assumed 8-10 minutes for the Split-and-Join at Leeds and included it in the times.
  3. Class 800 trains seem to take around ten minutes to turnround at Harrogate.
  4. Times between London Kings Cross and Doncaster will decrease by a few minutes, with the addition of digital in-cab signalling on the route, which will allow 140 mph running by InterCity 225s, Class 800 trains and Class 801 trains.

I estimate that it will be possible for an InterCity 225, Class 800 train or Class 801 train to do a round trip between London Kings Cross and Bradford, Harrogate, Huddersfield or Skipton in six hours.

The round trip between London Kings Cross and York will be the five hours, I estimated earlier.

Wikipedia also says this.

LNER expects to introduce two-hourly services to Bradford and a daily service to Huddersfield in May 2020 when more Azuma trains have been introduced.

So would the pattern of trains to Leeds/York be as follows?

  • One tph – One pair of five-car Class 800 trains to Leeds, of which some or all split and join at Leeds, with one train going to and from Harrogate and the other going to and from Huddersfield.
  • One tph per two hours (tp2h) – An InterCity 225 or nine-car Class 801 train to Leeds, of which some or all are extended to Bradford.
  • One tp2h – An InterCity 225 or nine-car Class 801 train to Leeds, of which some or all are extended to Skipton.
  • One tph – An InterCity 225 or nine-car Class 801 train to York.

I estimate that it will be possible for an InterCity 225, Class 800 train or Class 801 train to do a round trip between London Kings Cross and Bradford, Harrogate, Huddersfield or Skipton in six hours.

This would need the following trains.

  • Six pairs of five-car Class 800 trains for the Harrogate and Huddersfield services.
  • Six full size all electric trains, which could be an InterCity 225, a nine-car Class 801 train or a pair of five Class 801 trains, for Bradford and Skipton services.
  • Five full size all electric trains, which could be an InterCity 225, a nine-car Class 801 train or a pair of Class 801 trains, for York services.

So why have LNER changed their mind and are retaining the InterCity 225?

Are InterCity 225 Trains Already Certified For 140 mph Running?

I wouldn’t be surprised, if a large part of the certification work for this had been done for 140 mph running and for it to be allowed, it needs digital in-cab signalling to be installed on the East Coast Main Line.

The Wikipedia entry for the InterCity 225 says this about the train’s performance.

The InterCity 225 has a top service speed of 140 mph (225 km/h); during a test run in 1989 on Stoke Bank between Peterborough and Grantham an InterCity 225 reached 162 mph (260.7 km/h). However, except on High Speed 1, which is equipped with cab signalling, British signalling does not allow trains to exceed 125 mph (201 km/h) in regular service, due to the impracticality of correctly observing lineside signals at high speed.

The Wikipedia entry for the East Coast Main Line says this about the future signalling.

A new Rail operating centre (ROC), with training facilities, opened in early 2014 at the “Engineer’s Triangle” in York. The ROC will enable signalling and day-to-day operations of the route to be undertaken in a single location. Signalling control/traffic management using ERTMS is scheduled to be introduced from 2020 on the ECML between London King’s Cross and Doncaster – managed from the York ROC.

A small fleet of InterCity 225 trains could be the ideal test fleet to find all the glitches in the new signalling.

Are InterCity 225 trains Already Certified To Run To Bradford and Skipton?

If they are, then that is another problem already solved.

A Fleet Of Seven Trains Would Cover Bradford And Skipton Services

Six trains are needed to run a one tp2h service to both Bradford and Skipton, so they could fully cover one tp2h to Bradford and occasional trains to Skipton with a spare train and one in maintenance.

Using InterCity 225s To Bradford and Skipton Would Not Require A Split-And-Join At Leeds

The number of trains that would Split-and-Join at Leeds would be only two tph instead  of four tph, which would be simpler with less to go wrong.

Not Enough Five-Car Bi-Mode Class 800 Trains

LNER’s full fleet of Azumas will be as follows.

  • 13 – Nine-car bi-mode Class 800 trains.
  • 10 – Five-car bi-mode Class 800 trains.
  • 30 – Nine-car electric Class 801 trains.
  • 12 – Five-car electric Class 801 trains.

This would appear to be a major problem, if Harrogate and Huddersfield were to be served hourly by Class 800 trains, existing services are to be maintained or even increased to Hull and Lincoln and extra services are to be added to Middlesbrough and perhaps Nottingham and other destinations.

The InterCity 225s only help indirectly, if they provided the London Kings Cross and Bradford and Skipton services.

Conversion Of Class 800 and Class 801 Trains To Regional Battery Trains

Hitachi have launched the Regional Battery Train, which is described in this Hitachi infographic.

For LNER, they will be useful for any Journey under about 90 kilometres or 56 miles.

The trains should be able to serve these routes.

  • Leeds and Harrogate and back – 36 miles
  • Leeds and Huddersfield and back – 34 miles
  • Newark and Lincoln and back – 33 miles
  • Northallerton and Middlesbrough and back – 42 miles

Whilst Class 800 trains and Class 801 trains are converted, the InterCity 225 trains would act as valuable cover on services like London to Leeds and York.

Conclusion

I think it is a good plan.

September 14, 2020 Posted by | Transport | , , , , , , , , , , , , , | 1 Comment

LNER To Keep Class 91s Until 2023

The title of this post is the same as that of this article on Rail Magazine.

This is the two introductory paragraphs.

Class 91s hauling Mk 4s will remain with London North Eastern Railway until 2023.

Ten rakes of coaches and ten ‘91s’ will be used, with two additional spare ‘91s’ and a handful of spare Mk 4s also retained.

It looks like LNER are keeping enough Class 91 locomotives and Mark 4 coaches to guarantee having ten trains in service.

Why 2023?

The answer to this question is probably contained in an article in Issue 901 of Rail Magazine, which is entitled ORR Approves New Hitachi Inter-Car Connector Design, which has these two statements.

  • All inter-car connectors will have been updated by Summer 2022.
  • Hitachi has deals for a further 61 trains for three operators and all will be in traffic by the end of 2022.

It looks like Hitachi could have production capability from 2023.

The original Rail Magazine article also says this.

The extension is until the end of 2023 while LNER sources brand new trains, which would take a minimum of around two years to build and deliver. The operator has previously told RAIL it needs around six new trains.

It appears the difference between retaining ten InterCity 225 trains and adding six new trains to the fleet, is to cover for the retrofit of the inter-car connectors.

The Performance Of A Class 91 Locomotive And Five Mark 4 Coaches

I have seen in mentioned that Virgin East Coast were intending to run shortened rakes of Mark 4 coaches.

In the Wikipedia entry for the Class 91 locomotive, there is a section called Speed Record, where this is said.

A Class 91, 91010 (now 91110), holds the British locomotive speed record at 161.7 mph (260.2 km/h), set on 17 September 1989,[ just south of Little Bytham on a test run down Stoke Bank with the DVT leading. Although Class 370s, Class 373s and Class 374s have run faster, all are EMUs which means that the Electra is officially the fastest locomotive in Britain. Another loco (91031, now 91131), hauling five Mk4s and a DVT on a test run, ran between London King’s Cross and Edinburgh Waverley in 3 hours, 29 minutes and 30 seconds on 26 September 1991. This is still the current record. The set covered the route in an average speed of 112.5 mph (181.1 km/h) and reached the full 140 mph (225 km/h) several times during the run.

When you consider, this was nearly forty years ago, there can’t be much wrong with British Rail’s train engineering.

What Average Speed Do You Need  To Achieve London And Edinburgh In Four Hours?

The rail distance between London and Edinburgh is 393 miles, so four hours needs an average speed of 98 mph.

Consider.

  • I have travelled in InterCity 125 and InterCity 225 trains, where I have measured the speed at around 125 mph for perhaps thirty or forty miles.
  • In Norwich-In-Ninety Is A Lot More Than Passengers Think!, I travelled to Norwich and back, at around 100 mph most of the way.
  • Continuous 125 mph running is just as much about the track as the train.
  • I have watched a driver in an InterCity 125 at work and these guys and girls know the route and their charges, like the backs of their hands.

I think it is possible to arrange train pathing, so that trains could run between London and Edinburgh in excess of 100 mph.

I believe, that this would enable London and Edinburgh in under four hours.

Will LNER Run Faster Services With Short Sets?

Virgin East Coast’s original plan, was to run short sets between London and Edinburgh.

Would these short sets have been faster, than full size sets?

  • The power-to-weight ratio is higher, so acceleration would be better.
  • A five-car train would probably need half the power of a ten-car train to cruise at a given speed.
  • It might be possible to save weight to increase performance.
  • There would be no intermediate stops.
  • They know that the Kings Cross and Edinburgh record is three-and-a-half hours, which was set by a five-car train.
  • In-cab digital signalling and other improvements could be fitted.

It should also be noted, that a short set would probably do significantly less damage to the track than a full-size set at 140 mph.

Possible Short InterCity 225 Routes

LNER have only six fully-electrified routes, where they could run short InterCity 225 sets.

  • Kings Cross and Leeds
  • Kings Cross and Doncaster
  • Kings Cross and York
  • Kings Cross and Newcastle
  • Kings Cross and Edinburgh
  • Kings Cross and Stirling

Note.

  1. All routes are fully-electrified, which is a pre-requisite, as InterCity 225 sets have no self-power capability.
  2. Kings Cross and Leeds will probably be run by pairs of Class 800 trains, as LNER looks like it will split trains at Leeds and serve two destinations.
  3. Do Doncaster, York and Newcastle generate enough traffic for a fast service?
  4. The Edinburgh route will have direct competition from East Coast Trains, who will be running five-car Class 803 trains.
  5. The Stirling route at over five hours is probably too long.

It looks to me, that the preferred route for InterCity 225 sets,; short or full-size will be Kings Cross and Edinburgh.

How Many Trains Would Be Needed To Run An Edinburgh Service?

A flagship service between London and Edinburgh might have the following timetable.

  • One tph perhaps leaving at a fixed time in every hour.
  • A timing of under four hours.
  • Minimal numbers of intermediate stops.
  • The service would not be extended past Edinburgh, as the trains need electrified lines.

Suppose, the trains could do a round trip in eight hours, this would mean that eight trains would be needed to provide a service.

Ten trains would allow one train in maintenance and one ready to be brought into service at a moment’s notice.

Does this explain, why ten InterCity 225 sets are being retained.

Would In-Cab Signalling Be Needed?

I suspect that under current rules, in-cab digital signalling might be needed! But as I observed in Partners On Board For In-Cab Signalling Project On East Coast Main Line, this is on its way!

But, as the average speed needed to do London and Edinburgh in four hours is only 98 mph, I wonder what time could be achieved by one of the top drivers, using the following.

  • All their route knowledge and driving skill.
  • A five-car train.
  • Maximum acceleration.
  • A well-thought out pathing structure.
  • A clear track
  • No hold-ups
  • A non-stop run.

If the train were to run at 125 mph all the way without stopping, the journey time would be around three hours and ten minutes.

Wikipedia says this about in-cab digital signalling on the East Coast Main Line.

The line between London King’s Cross and Bawtry, on the approach to Doncaster, will be signalled with Level 2 ERTMS. The target date for operational ERTMS services is December 2018 with completion in 2020.

  • I estimate that that this will mean that 145 miles of the route will have full in-cab digital signalling.
  • Currently, the fastest London and Doncaster times are around 90 minutes, with many taking 97-98 minutes for the 155 miles.

This means the fast train takes 84 minutes between King’s Cross and Bawtry, at an average speed of 103 mph.

Suppose this fast train could go at 125 mph for all but twenty of the distance between King’s Cross and Bawtry, how much time would this save?

  • 125 miles at 125 mph would take 60 minutes.
  • 125 miles at 103 mph would take 72 minutes.

This means that just by running at 125 mph continuously for all but twenty miles could save up to twelve minutes.

If 140 mph running could be maintained on this section, another six minutes would be saved.

As they say, every little helps!

Lessons From Norwich-in-Ninety

In Norwich-In-Ninety Is A Lot More Than Passengers Think!, I travelled to Norwich and back, at around 100 mph most of the way.

Liverpool Street and Norwich is 114 miles and a ninety minute journey is an average of just 76 mph, which is 24 mph below the maximum cruise of a Class 90 locomotive and a rake of eight Mark 3 coaches. Compare this with an average speed of 98 mph needed for London and Edinburgh in four hours and the 125 mph maximum certified cruise of an InterCity 225 train, without in-cab digital signalling.

It should also be noted that Greater Anglia, run an additional stopping train after the Norwich-in-Ninety expresses, that call at several important stations and not just Ipswich.

Will LNER use a similar strategy? It was working well and successfully for Greater Anglia, until services were decimated by COVID-19!

Will LNER Increase Frequency Between London And Edinburgh To Three Trains Per Hour?

It would seem that the current two tph service running nine- or ten-car trains, runs with a high level of occupancy, so to replace some of these trains with faster and shorter trains might cause capacity problems.

But to add, a third faster train in the hour might be possible. Especially, if the Norwich-in-Ninety strategy were to be used. The timetable in both directions could be something like.

  • XX:00 – Four hour express
  • XX:06 – Four-hour plus train to current timing
  • XX:30 – Four-hour plus train to current timing

LNER’s Marketing Department would like it.

Could Hitachi Trains Achieve London and Edinburgh In Four Hours?

The all-electric Class 801 trains most certainly have a performance to match an InterCity 225 in terms of acceleration and maximum operating speed without in-cab digital signalling. After all, the Japanese train was designed as a direct replacement for British Rail’s last high performance train!

So I believe that with a well-designed timetable, electric Hitachi trains will be able to run between London and Edinburgh in under four hours, with a small number of stops.

Note that LNER will have a fleet of thirty nine-car and twelve five-car all-electric Class 801 trains.

But East Coast Trains will have a fleet of five five-car all-electric Class 803 trains, which could get near to a four-hour timing, despite their four stops at Stevenage, Durham, Newcastle and Morpeth.

  • I have timed a Class 800 train leaving Kings Cross and they get up to 125 mph fairly fast, by about Potters Bar, which is reached in eleven minutes.
  • Stops at Stevenage, Durham and Morpeth will probably each add two minutes to the timing, with Newcastle adding five minutes.
  • 125 mph all the way from Kings Cross to Edinburgh would be a timing of three hours and ten minutes.

Add up the stationary times at the stops (2+2+2+5) and that gives a journey time of three hours and twenty-one minutes, which leaves thirty-nine minutes for the five decelerations and accelerations between stationary and 125 mph.

This page on the Eversholt Rail web site, has a data sheet for a Class 802 train, which is a Class 800 train with larger engines.

The data sheet shows that a five-car train can accelerate to 125 mph and then decelerate to a stop in six minutes in electric mode. So five accelerations/deceleration cycles  to 125 mph would take thirty minutes. This gives a journey time between London and Edinburgh of three hours and fifty-one minutes.

Note that Class 801 trains, which don’t lug diesel engines about will have better acceleration, due to the lower weight, so should have better acceleration and deceleration.

Does this time seem reasonable? First Group with their extensive experience of running Class 800 trains on the Great Western Main Line will know the capabilities of the trains, down to the last mph.

I doubt, they’d have bought the trains for East Coast Trains, if they couldn’t do London and Edinburgh in four hours.

I believe that both InterCity 225 and Class 801/803 trains can do London and Edinburgh in four hours and any train company that doesn’t offer this timing, will come second!

A Possible Hitachi-Based Timetable For LNER

I would be very surprised if a service pattern like this wouldn’t be possible.

  • XX:00 – Four hour express – Class 801 train
  • XX:06 – Four-hour plus train to current timing – Class 801 train or InterCity 225
  • XX:30 – Four-hour plus train to current timing – Class 801 train or InterCity 225

Note.

  1. As there is only one extra train per hour, ten extra trains would be the addition to the fleet, needed to run this service pattern.
  2. Class 801 trains could be five-car or nine-car sets as passenger numbers require.
  3. InterCity 225 trains could be as long as are needed.

InterCity 225 trains would only be doing the job, they’ve done for many years.

Targeting The Airline Market

In Trains Ordered For 2021 Launch Of ‘High-Quality, Low Fare’ London – Edinburgh Service, which described the launch of First East Coast Trains, I said this about their target market.

First East Coast Trains is targeting the two-thirds of passengers, who fly between London and Edinburgh. The company are also targeting business passengers, as the first train arrives in Edinburgh at 10:00. Trains will take around four hours.

Note that currently, LNER’s first train arrives at 11:12. In the future, I would envisage that LNER intend to go for four hour journeys.

It would seem to me, that both train companies will be attempting to take passengers from the airlines.

Conclusion

It looks to me that ten InterCity 225 trains could add a third train in each hour between London and Edinburgh for LNER, that would do the journey in under four hours.

The third train could either be an InterCity 225 or a Class 801 train.

 

 

March 24, 2020 Posted by | Transport | , , , , , , , , | 4 Comments

Grand Union Seeks ’91s’ To Cardiff

The title of this post is the same as that of an article in the May 2019 Edition Of Modern Railways.

These are points fro the article.

  • Grand Union Railway is a new open access operator.
  • Trains will be formed of a Class 91 locomotive, nine Mark 4 coaches and a driving van trailer.
  • Trains will go between London and Cardiff, stopping at Bristol Parkway, Severn Tunnel Junction and Newport
  • Trains will leave Paddington hourly from 07:35 to 21:35
  • Trains will leave Cardiff hourly from 06:35 to 19:35
  • The journey time will be one hour and forty-five minutes.
  • To run this timetable would appear to need four trains. Grand Union will probably have a fifth train, to allow for one in maintenance.

The service is subject to regulatory approval.

Note that the company has been formed by Ian Yeowart, who was previously Managing Director of Grand Central.

Currently, Great Western Railway (GWR) runs the following trains to South Wales

  • Paddington and Cardiff via Reading, Didcot Parkway, Swindon, Bristol Parkway and Newport
  • Paddington and Swansea via Reading, Swindon, Bristol Parkway, Newport, Cardiff, Bridgend, Port Talbot Parkway and Neath

Services will soon be run exclusively by Class 800 or Class 802 trains.

Note.

  1. Some of the Swansea services are extended to Carmarthen and Pembroke Dock.
  2. Paddington to Cardiff takes two hours and eight minutes.
  3. Paddington to Swansea takes just under three hours.
  4. These times will be improved when the the electrification is completed between Paddington and Cardiff

Paddington and Cardiff will be getting three trains per hour (tph) and two operators

Great Western Railway And Grand Union Services Compared

It is interesting to compare the two services.

Journey Times

Consider.

  • The Grand Union service at one hour forty-five minutes appears to be quicker than the GWR service at two hours eight minutes.
  • But are we comparing times after full electrification of the route to Cardiff, which the Class 91 locomotives will need to operate?
  • There is also the possibility of digital signalling being fitted to both sets of trains.
  • Both trains can run at 140 mph with in-cab signalling
  • The Grand Union service has less stops than the GWR service.

Will the trains settle for a draw and have the same journey times?

Capacity

The seating capacity of the two trains are as follows.

  • GWR Class 800/802 train – 655 seats
  • Grand Union – InterCity 225 – 535 seats

My only thought, is that is there enough space in the GWR train or all luggage.

Bicycles And Bulky Luggage

Tourists with cycles are increasing in number and Wales will become a destination.

Hitachi Class 800 trains do not have much space for bicycles and  bulky luggage.

On the other hand, the driving van trailer of an InterCoty225 can swallow a lot.

Will There Be Sufficient Demand For An Extra Service between London and Cardiff?

A friend asked.

Is there actually a market/capacity for an extra hourly service?

I made these points in reply.

  • The South Wales Metro will be one of the best City metros in the world and will improve feeder services to Cardiff Central dramatically.
  • The M4 is getting busier between Bristol and Cardiff, partly due to the abolition of tolls on the Severn Bridge.
  • The Principality Stadium
  • Tourism to South Wales is growing.
  • Business and finance in Wales is finally looking up.
  • All trains will be at 140 mph for long stretches, so journey times will be one hour forty-five minutes.
  • Paddngton is not an attractive place to arrive at in London, but after Crossrail opens, all should  be different.
  • City of London to City of Cardiff in two hours.
  • Cardiff will be closer to the City of London, than Brussels, Leeds, Liverpool, Manchester or Paris!
  • Heathrow’s Third Runway.
  • Four wheels bad, rails good
  • Kids are getting to like trains, just as  we did.
  • The next generation of on-train Internet will be much faster for working and keeping kids of all ages amused.
  • GWR, Grand Union and the Welsh Government could market the route as High Speed Wales!

Will three tph be enough?

My Prediction In October 2013

In October 2013, I wrote Will We Get HSW Before HS2?

This was the conclusion of that post.

So I believe that even if it still goes slower on opening, trains to Bristol and Wales will be doing 225 kph before the end of this decade.

If that isn’t a high speed railway like HS1, I don’t know what is?

But whatever we call it, it’ll be here several years before HS2!

I think we need to call for three cheers for Brunel, who got the route right in the first place.

I felt the biggest problem would be the Severn Tunnel! I got that wrong, as that difficult job is now done.

Conclusion

I like this proposal.

  • The important Paddington and Cardiff route gets a fifty percent increase in train frequency.
  • There could be genuine competition on the route.
  • Grand Union would be using five of the thirty InterCity225 sets, which are in good condition, judging by my recent journeys.
  • Could we see a customer service and catering war between the two operators?

If Grand Union Railway runs to Cardiff, I’ll give it a go.

 

 

April 25, 2019 Posted by | Transport | , , , , , , , | Leave a comment

A Better News Day For New Trains

Yesterday, was a better news day for new trains, with articles with these headlines.

All are significant for passengers.

Class 710 Trains

The authorisation of the Class 710 trains is particular importance to me, as they will be running locally to where I live.

It will be a couple of months before they enter passenger service.

But the trains have mainly been delayed by software problems and now that appears to have been fixed and as there are twenty trains already built, I could see them entering service, as soon as drivers have been trained.

It should be noted that eight trains are needed for the Gospel Oak to Barking Line and six for the Watford DC Line, so if twenty have been built, I would expect that these two routes could be converted to the new trains by the summer.

Class 801 Trains

LNER’s Class 801 trains will be a significant introduction, as they will enable the cascade of the Mark 4 coaches to other operators, like Trains for Wales and East Midlands Railway.

April 17, 2019 Posted by | Transport | , , , , , , , , | 2 Comments

Abellio’s Plans For The Midland Main Line

This page on the Department for Transport web site is an interactive map of the Abellio’s promises for East Midlands Railway.

These are mentioned for Midland Main Line services to Derby, Nottingham and Sheffield.

From May 2020, Modern Diesel Trains Will Begin To Replace Ageing HSTs.

May 2020 is only a year away. Is that enough time to order and build new or refurbish existing diesel trains.

So how will they obtain new trains?

Timetable Changes Will Enable Faster Journey Times From December 2020

These HST-replacement trains must be faster too!

This article on Rail Magazine is entitled Government Seeks Midland Main Line HST Upgrade Update.

It describes how the current eleven HSTs are being updated with retention tanks and accessible toilets, so they can continue to run after this year.

But as the doors won’t be replaced, this means that eleven trains with between six and eight coaches must be found.

One solution mooted is to use Mark 4 Coaches released from LNER, by new Class 801 trains.

In Midland Mark 4, I talk about a possible solution described by Ian Walmsley in the March 2018 Edition of Modern Railways.

  • Two Class 43 power cars would be at each end of a rake of Mark 4 coaches.
  • The current 2+8 formation may need to be shortened to 2+7 because of the heavier coaches.
  • The coaches meet all the regulations.
  • There are plenty of power cars available.

I rode in a Mark 4 coach back from Scotland recently and these will be comfortable trains.

The pictures show First Class, is as good as anything in Europe. The only thing worse, than in Eurostar’s latest Class 374 trains is the space, which is due to our smaller loading gauge.

Not bad for a thirty year old train.

But

  • They were designed for a 140 mph maximum speed.
  • There are 302 coaches of various types available.
  • They meet all current and future accessibility regulations.
  • They have push-button automatic doors.

I estimate that a seven-car set of coaches for the Midland Main Line would have a capacity of around 400-420 passengers in two classes.

As there are currently, eleven InterCity 125 trains working the Midland Main Line, I can’t see there being a shortage of carriages.

Earlier And Later Train Service Each Day To East Midlands Parkway Enabling better Airport Connectivity

iIt won’t affect me, but I suspect other travellers will benefit.

Earlier And Later Trains To And From London, With A More Regular Evening Service Between London And Sheffield

I have moaned about this for a long time.

Try going to Derby or Sheffield from London for an evening football match and getting home that day!

Brand-New 125mph trains Will Be Introduced Into Service From April 2022

Fwatures include.

  • More reliable service
  • Improved comfort
  • Passenger information system
  • Free on-board Wi-Fi
  • At-seat power sockets
  • USB points
  • Air conditioning
  • Tables at all seats
  • increased luggage space
  • On-board cycle storage

I speculate as to who will build them in Hydrogen Trains To Be Trialled On The Midland Main Line.

April 11, 2019 Posted by | Transport | , , , , | 2 Comments

Would Electrically-Driven Trains Benefit From Batteries To Handle Regenerative Braking?

There are two basic types of electrically-driven trains.

Electric trains, which include electrical multiple units and trains hauled by electric locomotives like the InterCity 225.

Diesel-electric trains, which include multiple units like Voyagers and the InterCity 125.

Regenerative Braking

In an electrically-driven train, the traction motors can be turned into generators to slow the train, by turning the train’s kinetic energy into electricity.

Many electric trains can do this and the generated electricity is returned through the electrification system, so that it can power other trains nearby.

This all sounds fine and dandy, but there is the disadvantage that all the electrification system must be able to handle the reverse currents, which increases the capital cost of the electrification.

Batteries For Regenerative Braking

Fitting batteries to a train, to handle the electricity that is generated by regenerative braking is an alternative.

A Station Stop

Suppose a four-car train that weighs 200 tonnes is travelling at 125 mph and needs to stop at a station.

My example train would according to Omni’s Kinetic Energy Calculator would have a kinetic energy of 86.7 kWh.

To put that amount of energy into context, the traction battery in a New Routemaster bus is 55 kWh.

So if a battery of this size was put into each car, there is more than enough capacity to store the energy of the train, when it stops at a station.

When the train leaves the station, a proportion of this energy can be used to accelerate the train back to 125 mph.

As regenerative braking is perhaps only eighty percent efficient at present, additional energy will need to be provided.

But even with today’s primitive batteries and less-than-efficient traction motors, there are still substantial energy savings to be achieved.

Hitachi Class 800/801/802 Trains

In Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?, I looked at the question in the title.

I found this document on the Hitachi Rail web site, which is entitled Development of Class 800/801 High-speed Rolling Stock for UK Intercity Express Programme.

It was written in 2013 and I suspect every train designer has read it, as it gives a deep insight into the design of the trains.

The document provides this schematic of the traction system.

Note

  1. BC which is described as battery charger.
  2. The battery size is not disclosed.
  3. The APS supplies the hotel power for the train in two different voltages.
  4. Can the APS with the battery supply power to the Drive Converter?

After a lot of reasoning, I came to this conclusion.

I will be very surprised if Class 800/801/802 trains don’t have batteries.

Looking at the schematic of the electrical system, the energy captured will at least be used for hotel power on the train.

Hitachi have not said, if the batteries on the Class 800/801/802 trains can be used for traction purposes.

Storing the regenerative energy in a battery can be used for one of two purposes.

Hotel Power

Hitachi’s Class 800 trains certainly use the electricity in the battery to power the hotel functions of the train like air-conditioning, doors, lights, power-sockets, toilets and wi-fi.

In a diesel-electric train, this could give benefits.

  • The engines generally won’t need to run in a station to provide hotel power.
  • Less fuel will need to be expended to provide hotel power.
  • If say the train has to halt perhaps because of a signalling or track fault, hotel power can be provided without running the engines.
  • If batteries are supplying the hotel power, the train may have more power for traction.

Overall, the diesel-electric train would be more efficient and would emit less carbon dioxide and pollutants.

Traction Power

There is no engineering reason, why the energy in the battery can’t be used to actually move the train.

But to implement it, could be complicated and expensive on an existing train.

Some Worked Examples

I’ll look at a few examples.

InterCity 125

The iconic InterCity 125s are unique, in that they are impossible to scrap. Just as they seem to beapproaching the end of their life, a devious engineer or marketing man comes up with a plan to keep them running.

 

As I write this, Great Western Railway and Abellio ScotRail are testing short-formation InterCity 125s and training drivers for services in the South West of England and Scotland. Both train operating companies appreciate the marketing advantages of Terry Miller‘s world-famous train, that was built as a stop-gap, after the failure of the Advanced Passenger Train.

So what size of battery would need to be fitted to each locomotive to handle the braking energy of a short-formation InterCity 125 with four passenger cars?

Consider.

  • Each Class 43 locomotive weighs 70.25 tonnes.
  • Each Mark 3 coach weighs 33.60 tonnes.
  • An eight car InterCity 125 can carry about 500 passengers.
  • I will assume that a four-car InterCity 125 can carry 250 passengers.
  • If each passenger weighs 90 Kg with all their bikes, buggies and baggage, that adds up to 22.50 tonnes.

This gives a total train weight of 297.40 tonnes.

Calculating the kinetic energy using Omni’s Kinetic Energy Calculator for various speeds gives.

  • 50 mph – 20.6 kWh
  • 75 mph – 46.4 kWh
  • 90 mph – 66.9 kWh
  • 100 mph – 82.5 kWh

A fifty kWh battery in each locomotive would be able to handle the braking energy of the train.

The only problem, is that Class 43 locomotives have DC traction motors, no regenerative braking and air brakes.

But if any operator or rolling stock owner were bonkers enough to fit a new traction system, a diesel/electric/battery Class 43 locomotive is possible for a four-car InterCity 125.

This page on the Hitachi web site is entitled V-TRAIN 2.

Hitachi used a Class 43 power car to prove that diesel/electric/battery trains were feasible, before getting the order for the Class 800 trains.

So fitting batteries to Class 43 locomotives has been done before!

The simplest thing to do would be to use the batteries to provide hotel power for the train.

Class 375 Train

In this exercise, I shall consider a Class 375/6 train, with the following characteristics.

  • Four cars
  • Three cars are motored.
  • Regenerative braking
  • A weight of 173.6 tonnes.
  • A capacity of 236 seated passengers
  • An operating speed of 100 mph.

I will now go through my standard train kinetic energy calculation.

  • I will assume three hundred passengers including standees.
  • If each passenger weighs 90 Kg with all their bikes, buggies and baggage, that adds up to 27 tonnes.

This gives a total train weight of 200.60 tonnes.

Calculating the kinetic energy using Omni’s Kinetic Energy Calculator for various speeds gives.

  • 50 mph – 13.9 kWh
  • 80 mph – 35.6 kWh
  • 100 mph – 55.7 kWh

It would appear that adding batteries to a Class 375 train would not involve large capacity batteries, especially if one was added to each of the three cars with motors.

As a Control Engineer by training, blending battery and electrification power could run the train more efficiently.

Probably naively on my part, I suspect that using batteries on Class 375 trains to handle regenerative braking, would be one of the easier installations.

Other Electrostars

All Electrostars are fairly similar, so if Class 375 trains could be updated, then I wouldn’t be surprised if all could.

InterCity 225

It looks like InterCity 225 trains will be used between London and Blackpool by Alliance Rail Holdings.

Other commentators have suggested that shortened sets run on the Midland Main Line between a diesel locomotive and a Driving Van Trailer (DVT) or two Class 43 locomotives.

I shall do the energy calculation for a five-car InterCity 225.

  • A Class 91 locomotive weighs 81.5 tonnes.
  • A Mark 4 coach weighs between 40 and 43.5 tonnes.
  • A nine-car InterCity 225 seats 535 passengers.
  • I will assume that a five-car InterCity 225 will seat around 300 passengers.
  • I will assume each passenger weighs 90 Kg. with all their baggage, bikes and buggies.
  • A DVT weighs 42.7 tonnes.

For a current nine-car train this gives the following.

  • The empty train weight is almost exactly 500 tonnes.
  • The passengers weigh 48 tonnes.
  • This gives a total weight of 548 tonnes.

At 125 mph, the nine-car InterCity 225 has a kinetic energy of 238 kWh.

For a proposed five-car train this gives the following.

  • The empty train weight is almost exactly 333 tonnes.
  • The passengers weigh 27 tonnes.
  • This gives a total weight of 360 tonnes.

At 125 mph, the five-car InterCity 225 has a kinetic energy of 156 kWh.

Reduce the speed to 110 mph and the kinetic energy drops to 121 kWh.

I suspect that using current technologies, there is not enough space in a Class 91 locomotive for the batteries.

Perhaps a short section of the coach next to the engine could be converted to hold a large enough battery.

Five Mark 4 Coaches And Two Class 43 Locomotives

This has been suggested in Modern Railways by Ian Walmsley and I wrote about it in Midland Mark 4.

Consider.

  • A Class 43 locomotive weighs 70.25 tonnes.
  • A Mark 4 coach weighs between 40 and 43.5 tonnes.
  • A nine-car InterCity 225 seats 535 passengers.
  • I will assume that a five-car InterCity 225 will seat around 300 passengers.

This gives the following.

  • The empty train weight is 349 tonnes
  • The passengers weigh 27 tonnes
  • The train weight is 376 tonnes.

At 125 mph this train would have a kinetic energy of 163 kWh.

I’m sure that it would be possible to put a 100 kWh battery in the space behind the engine of a Class 43 locomotive, so I suspect that all the engineering solutions exist to create a train with the following characteristics.

  • Two Class 43 locomotives with new traction motors to enable regenerative braking and a 100 kWh battery.
  • Five Mark 4 coaches meeting all the regulations.
  • The batteries would provide hotel power for the train.
  • 125 mph operating speed.

It may be a fantasy, as the economics might not stack up.

Five Mark 4 Coaches, A Driving Van Trailer And A Stadler UKLight Locomotive

I wrote about this combination in Five Mark 4 Coaches, A Driving Van Trailer And A Stadler UKLight Locomotive.

I came to this conclusion.

Using the Mark 4 coaches or new Mark 5A coaches with a new 125 mph diesel/electric/battery hybrid Stadler UKLight locomotive could create an efficient tri-mode train for the UK rail network.

The concept would have lots of worldwide applications in countries that like the UK, are  only partially electrified.

The concept or something like it, has possibilities.

Voyagers

In the July 2018 Edition of Modern Railways, there is an article entitled Bi-Mode Aventra Details Revealed.

A lot of the article takes the form of reporting an interview with Des McKeon, who is Bombardier’s Commercial |Director and Global Head of Regional and Intercity.

This is a paragraph.

He also confirmed Bombardier is examining the option of fitting batteries to Voyager DEMUs for use in stations.

The Voyager family of trains has three members.

The trains are diesel-electric and I explore the possibility of using batteries in these trains in Have Bombardier Got A Cunning Plan For Voyagers?.

I felt is was a good plan.

Conclusion

In answer to the question, that I posed in the title of this post, I feel that handling regenerative braking in batteries on the train could be of benefit.

 

 

 

 

 

 

 

 

 

 

 

August 5, 2018 Posted by | Energy Storage, Transport | , , | 1 Comment

Five Mark 4 Coaches, A Driving Van Trailer And A Stadler UKLight Locomotive

In writing Would Electrically-Driven Trains Benefit From Batteries To Handle Regenerative Braking?, I started to analyse the mathetics and possibilities of a train with the following formation.

The sub-section got too large and important so I decided to write it as a separate post.

I like the Class 68 locomotive, as it looks professional and seems to do all asked of it.

So what would be the kinetic energy of a formation of five Mark 4 coaches, between a DVT and a Class 68 Locomotive?

  • The five Mark 4 coaches would weigh 209 tonnes.
  • The Class 68 locomotive weighs 85 tonnes.
  • The DVT weighs 42.7 tonnes
  • I will assume that a five cars will seat around 300 passengers.
  • The passengers weigh 27 tonnes, if you assume each weighs 90 Kg, with baggage, bikes and buggies.
  • The train weight is 363.7 tonnes.

At 100 mph, which is the maximum speed of the Class 68 locomotive, the Omni Kinetic Energy Calculator gives the kinetic energy of the train as 100 kWh.

I doubt there’s the space to squeeze a 100 kWh of battery into a Class 68 locomotive to handle the regenerative braking of the locomotive, but I do believe that a locomotive can be built with the following specification.

  • Enough diesel power to pull perhaps five or six Mark 4 coaches and a DVT at 125 mph.
  • Ability to use both 25 KVAC and 750 VDC electrification.
  • Battery to handle regenerative braking.
  • As the Class 88 electro-diesel locomotive, which is around the same weight as a Class 68 locomotive, I suspect the proposed locomotive would be a bit heavier at perhaps 95 tonnes.

This train would have a kinetic energy of 160 kWh at 125 mph.

Consider.

  • If the locomotive could have a 200 kWh battery, it could harvest all the regenerative braking energy.
  • Accelerating the train to cruising speed uses most energy.
  • Running at a constant high speed, would conserve the kinetic energy in the train.
  • Stadler, who manufacture the Class 68 and 88 locomotives are going to supply a diesel/electric/battery version of the Class 755 train, for the South Wales Metro. In What Is The Battery Size On A Tri-Mode Stadler Flirt?, I estimated the battery size is about 120 kWh.
  • The Class 68 and 88 locomotives are members of Stadler’s Eurolight family, which are designed for a 125 mph capability with passenger trains.
  • I don’t believe the UK is the only country looking for an efficient locomotive to haul short rakes of coaches at 125 mph, on partially-electrified lines.

It should also be noted, that to pull heavy freight trains, the Class 88 locomotive has a 700 kW Caterpillar C27 diesel that weighs over six tonnes, whereas 200 kWh of battery, would weigh about two tonnes. I believe that a smaller diesel engine might allow space for a large enough battery and still be able to sustain the 125 mph cruise.

Stadler have the technology and I wonder, if they can produce a locomotive to fill the market niche!

In HS2 To Kick Off Sheffield Wiring, I reported on the news that the Northern section of the Midland Main Line between Clay Cross and Sheffield will be electrified.

This would greatly improve the performance of diesel/electric/battery hybrid trains between London and Sheffield.

  • Between London and Kettering, the trains would be electrically-powered.
  • Between Kettering and Clay Cross, they would use a mixture of diesel and battery operation.
  • Between Clay Cross and Sheffield, the trains would be electrically-powered.

Note.

  1. Going North, trains would pass Kettering with a full battery.
  2. Going South, trains would pass Clay Cross with a full battery.
  3. Regenerative braking at stops between Kettering and Clay Cross would help recharge the batteries.
  4. The diesel engine would be sized to keep the train cruising at 125 mph on the gentle Midland Main Line and back up the acceleration needed after stops.

It would be a faster and very electrically-efficient journey, with a large reduction in the use of diesel power.

The locomotive would also have other uses in the UK.

  • TransPennine services, where they could surely replace the Class 68 locomotives, that will haul Mark 5A coaches between Liverpool and Scarborough and Manchester Airport and Middlesborough.
  • Between London and Holyhead
  • Waterloo to Exeter via Basingstoke and Salisbury.
  • Marylebone to Birmingham via the Chiltern Main Line, if the two ends were to be electrified.
  • Services on the East West Rail Link.
  • Between Norwich and Liverpool
  • CrossCountry services.

Note.

  1. Services could use a rake of Mark 4 coaches and a DVT or a rake of new Mark 5A coaches.
  2. If more electrification is installed, the trains would not need to be changed, but would just become more efficient.
  3. The competition would be Bombardier’s proposed 125 mph bi-mode Aventra with batteries, that I wrote about in Bombardier Bi-Mode Aventra To Feature Battery Power.

And that is just the UK!

Conclusion

Using the Mark 4 coaches or new Mark 5A coaches with a new 125 mph diesel/electric/battery hybrid Stadler UKLight locomotive could create an efficient tri-mode train for the UK rail network.

The concept would have lots of worldwide applications in countries that like the UK, are only partially electrified.

 

 

August 5, 2018 Posted by | Transport | , , , , , | 1 Comment

A Hydrogen-Powered Locomotive

If Alstom’s ventures in Germany and the UK with hydrogen-powered trains, are successful, I don’t think it will be long before engineers start thinking about a hydrogen-powered locomotive.

Consider some of the various locomotives used in the UK.

  • Class 66 – Diesel – 2,500 kW – Over 400 in service
  • Class 67 – Diesel – 2,400 kW – 30 in service
  • Class 68 – Diesel – 2,800 kW – 34 in service
  • Class 70 – Diesel – 2,800 kW – 37 in service
  • Class 88 – Diesel – 700 kW – Electric – 4,000 kW – 10 in service
  • Class 90 – Electric – 3,700 kW – 50 produced.
  • Class 91 – Electric – 4,800 kW – 31 produced
  • Class 92 – Electric – 5.000 kW – 46 produced.

Note.

  1. Many of the diesel locomotives, like the Class 66, don’t meet the latest emission regulations.
  2. Class 66 locomotives spent a lot of time pulling freight trains on electrified lines.
  3. The Class 90 electric locomotives are getting old and need careful maintenance.
  4. The Rail Minister, Jo Johnson, would like to see diesel power on UK railways gone by 2040.

I have not included some of the heritage locomotives, that are regularly seen on the UK rail network pulling freight.

This picture shows a pair of Class 86 locomotives hauling a freight train through Hackney Wick station.

These two Class 86 locomotives date from the mid-1960s. But they do have 2,700 kW of power. Each!

According to Wikipedia, fourteen of Freightliner‘s thirty Class 86 locomotives are still in regular use.

Not only is this a tribute to 1960s engineering, but it does show that there is a shortage of suitable locomotives in the UK.

So could a modern environmentally-friendly locomotive be developed to fill the gap?

A Look At The Class 88 Locomotive

There could be a clue as to what could be a useful power output in the design of the Class 88 locomotive.

  • These are a modern design from Shadler that entered service in 2017.
  • They have a power output of 4,000 kW from electricity.
  • They have a power output of 700kW from diesel.
  • They can switch between power sources automatically.
  • They can haul passenger trains, as well as heavy freight trains.
  • They comply with Euro III B emission limits.

Did Direct Rail Services make sure they got a correctly-sized locomotive with the right capabilities?

They obviously find the diesel Class 68 locomotive to their liking, as they have bought over thirty.

So they probably knew very well, the sort of power that they would need from a dual-mode electro-diesel locomotive.

On electricity, the Class 88 locomotive is more powerful than a Class 90 electric locomotive, which commonly haul heavy freight trains on the electrified network.

In this article in Rail Magazine, the following is said about Class 88 locomotives, operating from Preston to Glasgow.

When hauling the maximum permitted load of 1,536 tonnes on the 1 in 75 banks on this route, Class 88 has a balancing speed of 34mph in electric mode or 5mph in diesel mode.

This shows how a well-delivered 700 kW, isn’t that inadequate.

I suspect that there is sufficient power to bring a heavy freight train out of Felixstowe and the other ports without electrification.

So perhaps, we should take the specification of a Class 88 train, as a starting point for the specification of a proposed hydrogen locomotive?

Possible Routes And Duties

There are also some specific problems associated with various routes and duties, where the current UK fleet of locomotives are used.

InterCity 225 Trains

There are currently thirty-one InterCity 225 trains, running on the East Coast Main Line.

  • They are hauled by a 4,800 kW Class 91 electric locomotive.
  • The trains consist of nine Mark 4 coaches and a driving van trailer.
  • The trains were designed for 140 mph, but normally run at 125 mph.
  • The trains have a capacity of over five hundred passengers.
  • The trains could be made to meet all proposed access regulations for those with reduced mobility, with not a great deal of expensive work.
  • Most of the trains will be replaced by Class 800 trains in the next couple of years.
  • The trains are owned by Eversholt Rail Group, who are gaining a reputation for innovation.

The trains could probably give a few more years of service.

One suggestion, that has been made, would be to run the trains on the Midland Main Line.

  • Sections of the route allow running at 125 mph.
  • The route needs an urgent replacement for InterCity 125 trains.
  • The route is only to be electrified as far as Kettering and Corby.

So an alternative and powerful  locomotive would be needed, that could run on both lines with and without electrification.

The Class 91 locomotives are powerful beasts running on electricity, but with careful calculations, I’m sure that the power needed on lines with and without wires should be known.

The trains might also be formed of less coaches and selective electrification could be used in stations to accelerate the trains.

Note that accelerating the train to 125 mph, will be the major use of electricity. Hence, electrified stations would be welcome.

Expect some innovative proposals to use Mark 4 coaches from the InterCity 225 on the Midland Main Line.

Initially, could two Class 88 locomotives working in push-pull mode, handle say six Mark 4 coaches between London and Derby, Nottingham and Sheffield?

Who knows? But there are probably teams of engineers working away to create plausible solutions for the bidders for the new East Midlands Franchise, which will be awarded in April 2019.

Class 66 Locomotive Replacement

Because of their number, you see Class 66 locomotives everywhere on the UK network.

  • They haul long inter-modal freight trains.
  • They haul freight into and out of docks like Felixstowe, that are without electrification.
  • They haul engineering trains.
  • They are often seen hauling trains using diesel power on electrified lines.

But they are one of the most environmentally-unfriendly of diesel trains, which don’t meet the latest emission regulations.

How long before residents and rail passengers, start to complain about these locomotives, where electric haulage is possible?

I believe there is an increasingly urgent need for a go-anywhere replacement for the Class 66 locomotive.

It would appear, that the Class 88 locomotive, was specified so it can take over some of the duties of a Class 66 locomotive,

Could this see more orders for the Stadler locomotive?

I also believe that we could see other types of locomotive built to replace the Class 66 locomotive.

We might even see a locomotive with a lower power rating able to use electric or hydrogen power for work with all the smaller trains, that Class 66 locomotives haul.

Hydrogen Instead Of Diesel

The 700 kW diesel engine in a Class 88 locomotive is a Caterpillar C27, which drives an ABB alternator.

The engine alone weighs three tonnes.

By comparison Ballard make a hydrogen fuel cell that has an output of 100 kW, for a weight of  385 Kg.

This gives a weight of 2.7 tonnes for an output of 700 kW.

There will need to be a substantial battery. I estimate that a 500 kWh battery will weigh about eight tonnes.

On balance, the hydrogen-powered locomotive will probably be heavier than a diesel one, but it will have environmental advantages.

But with good design, I do think that a locomotive with similar performance to a Class 88 can be produced.

It might need to be longer or articulated and have more axles, to cope with extra weight.

Conclusion

I am led to the belief that a hydrogen-powered locomotive with sufficient power is possible.

They may be able to handle a lot of the duties of Class 66 locomotives, but I doubt they would be powerful enough for hauling full rakes of Mark 4 coaches.

It will be interesting to see, what solutions are proposed to solve the forthcoming rolling stock shortage on the Midland Main Line.

 

 

 

May 18, 2018 Posted by | Transport | , , , , | 1 Comment

Midland Mark 4

The title of this post is the same as an article by Ian Walmsley in the March 2018 Edition of Modern Railways.

Ian builds on what he said in an article in the August 2017 Edition of the same magazine. I wrote about that article in We Should All Think Radically!

He proposes using Mark 4 coaches with two Class 43 power cars to create trains that meet the PRM-TSI regulations deadline, which will mean the replacement of the East Midland Franchise’s twelve InterCity 125s.

He suspects various technical solutions can be borrowed to make it all possible and because of the extra weight of the Mark 4 coaches, the trains may become 2+7 sets instead of the current 2+8.

The trains could be rather nice.

  • The Mark 4 coaches have been extensively refurbished in the last two decades and have full wi-fi and power socket fitment.
  • The Mark 4 coaches meet all the PRM-TSI regulations.
  • 125 mph running would be possible, where the track allowed.
  • The East Midland Franchise already has the Class 43 power-cars.
  • If the electrification of the Midland Main Line is ever electrified, then the Class 43 power cars could be swapped for electric locomotives.

I would assume that three extra sets, that the franchise is acquiring from Grand Central could also be converted., giving the East Midlands Franchise, fifteen sets with a life of at least ten years.

A quick calculation would indicate that this reorganisation could see the current 132 Mark 3 coaches replaced by perhaps 120 Mark 4 coaches. I’ve just applied 7/8 to the Mark 3 coach total after the Grand Central trains have been added to the fleet.

What Will Happen To The Remaining Mark 4 Coaches?

Currently, there are 302 Mark 4 coaches in service on the East Coast Main Line with Virgin Trains East Coast.

In the Wikipedia entry for the Mark 4 coach, there is a section named Future.

This is said.

The Mark 4s are scheduled to be replaced on the East Coast Main Line by Class 801s in 2018. Some may be redeployed to Midland Main Line services.[19] Virgin Trains East Coast will retain seven or eight nine-carriage sets to operate extra services to Edinburgh.

In 2017, Alliance Rail Holdings announced that, owing to it being unable to source new build Class 390 EMUs for its intended service between London and Blackpool, it was revising its proposal to use the Class 91/Mark 4 combination instead

So it looks like seventy-two coaches will be retained for the East Coast Main Line.

As to how many trains will be needed between London and Blackpool, that’s the old question of how long is a piece of string.

Consider.

  • I don’t think that the platforms at Blackpool will accept full-length sets.
  • Class 180 trains used by various operators are five cars in length.
  • There are fourteen Class 180 trains, running to Bradford, Hull and Sunderland.
  • TransPennine Express has ordered several multiple units and rakes of coaches, that are five-cars long.

So perhaps three sets of five carriages, which seem adequate for Sunderland, would be a rough estimate.

This gives the following  totals.

  • East Midlands Franchise – 120
  • East Coast Main Line – 72
  • Euston-Blackpool – 15

Which gives a total of 207.

This leaves ninety-five coaches for other purposes. Or dare I say it, nineteen sets of five coaches?

Motive Power

The rakes of coaches will need to be powered.

These are a few possibilities.

Class 91 Locomotive And A Mark 4 Driving Van Trailer

Currently, Mark 4 coaches are powered and driven by a Class 91 locomotive with a Mark 4 Driving Van Trailer, at the other end of the train.

Total numbers available are

  • 31 – Class 91 Locomotive
  • 32 – Mark 4 Driving Van Trailer

If eight sets are retained for the East Coast Main Line, this means that a maximum of twenty-three trains could be created.

But except for limited use by Open Access Operators from London on fully-electrified lines, I can’t see all Class 91 locomotives being required.

Mark 4 Coaches Topped And Tailed With Class 43 Locomotives

This is Ian Walmsley’s plan for the Midland Main Line, as he outlined in the March 2018 Edition of Modern Railways.

Consider.

  • There are quite a few Class 43 locomotives available. There are thirty-two on the East Coast Main line for a start.
  • Ian feels that creating 2+7 sets is possible, but many needed would be shorter.
  • According to the article, Mark 4 coaches would be more affordable than making Mark 3 coaches PRM-TSI compliant.

The trains would share the iconic appearance of the InterCity 125, which passengers seem to love so much!

Class 68 Locomotive And A Mark 4 Driving Van Trailer

Chiltern use Class 68 locomotives and Mark 3 Driving Van Trailers, with Mark 3 coaches, so it is likely perhaps after some modification, these locomotives could be used with Mark 4 coaches and an appropriate Driving Van Trailer.

If a Class 68 locomotive would work, surely the closely-related Class 88 locomotive could also be used.

Mark 4 Coaches Topped And Tailed With Class 68 Locomotives

This arrangement has been used between Norwich, Lowestoft and Yarmouth with an elderly rake of Mark 2 coaches for some time.

It is a method that could be surely be used with Mark 4 coaches after a few modifications.

A New Class Of Electro-Diesel Locomotive And A Mark 4 Driving Van Trailer

I very much feel we need a new electro-diesel locomotive for both freight and passenger purposes.

Mark 4 Coaches Topped And Tailed With A Class 68 And A Class 88 Locomotive

I have often wondered, if instead of using two Class 68 locomotives, whether a Class 68 and a Class 88 locomotive could be used at opposite ends, to create the ultimate hybrid train, with a powerful diesel locomotive on one end and a powerful electric locomotive on the other.

Summing Up Motive Power

With a bit of ingenuity, I’m sure that uses could be found for most of the Mark 4 coaches.

Possible Routes

These routes need good quality rolling stock and innovatively-hauled Mark 4 coaches could be a solution.

Wales

Scotland has decided that the best way of serving some of its long routes, is to use shortened InterCity 125s.

Surely, if the concept works in Scotland, it is likely to work in Wales.

These could use Mark 4 coaches or more likely updated Mark 3 coaches.

Liverpool and Manchester To Holyhead

Once the Halton Curve is open, the possibility of a Liverpool to Holyhead service must exist.

A quality service along the North Wales Coast, must surely be beneficial to residents, business and tourism.

London Waterloo To Exeter Via Basingstoke

This service is currently served by Class 158 or Class 159 trains.

  • Trains generally work as six-car units.
  • The route is electrified between London Waterloo and Basingstoke.
  • Time could be saved by partial electric haulage.

The problem of this route might be solved by converting the Class 158/159 trains in bi-modes, as I wrote about in Class 158/159 Bi-Modes?

Cross-Country Routes

Cross Country routes and I don’t just mean those run by the company of the same name are often very-well pastronised, as often these routes are the only way to get between two provincial cities.

Take Norwich to Liverpool, which has a route, that definitely needs more coaches than those offered by a two-car Class 158 train.

Scenic Routes

Scotland is to run short-formation InterCity 125s between major cities.

IMany of these routes also fall into the category of scenic routes.

If this Scottish innovation is successful, will we see pressure for similar trains to work routes like Settle-Carlisle in England?

Summing Up Possible Routes

I don’t think there will be a shortage of routes to run Mark 4 coach-based services.

Conclusion

Don’t underestimate how the retired Mark 4 coaches will be used.

February 27, 2018 Posted by | Transport | , , , , , , | 3 Comments