The Anonymous Widower

Puzzled By New Fleets For TransPennine Express

TransPennine Express (TPE) are replacing all their trains, but their choice of three different new fleets puzzles me.

The new fleets and their routes are as follows.

Nova1

This is a fleet of nineteen five-car bi-mode Class 802 trains.

According to Wikipedia, they will work the following routes, with probably a frequency of one tph

Liverpool Lime Street and Edinburgh via Newcastle, which I estimate will take 4:15 hours

Manchester Airport and Newcastle, which takes around 2:45 hours

These two services would probably need nine for the Edinburgh service and six for the Manchester Airport service.

This means that there are four extra trains.

If there is a spare or one in maintenance, that means that two trains are available to boost capacity on busy services if needed, by running a ten-car train.

I doubt that ten-car services to Manchester Airport could be run through the Castlefield Corridor due to the inadequate stations, but Liverpool and Edinburgh might be a route for longer trains.

I have some observations on Nova1.

  • The trains are 125 mph trains, that can be upgraded to 140 mph with in-cab signalling.
  • The trains will share the East Coast Main Line with LNER’s Azumas, which are other members of te same family of Hitachi trains.

The trains have been authorised to start running services.

Nova2

This is a fleet of twelve electric Class 397 trains.

According to Wikipedia, they will work the following routes,

  • Manchester Airport and Glasgow Central, which takes around 3:30 hours.
  • Manchester Airport and Edinburgh, which takes around 3:15 hours.
  • New route – Liverpool Lime Street and Glasgow Central, which could take around 3:30 hours.

Currently, the two existing routes run at a frequency of one train per two hours, which would probably need at least seven trains.

This probably means that there will be four trains left for the service between Liverpool and Glasgow, if it assumed there is one train spare or in maintenance.

As a round trip between the two cities, would probably take eight hours, it looks like the frequency will be one train per two hours.

This would give the following services, all with a frequency of one train per two hours.

  • Manchester Airport and Glasgow Central via Manchester Piccadilly
  • Manchester Airport and Edinburgh via Manchester Piccadilly
  • Liverpool Lime Street and Glasgow Central

Passengers wanting to go between Liverpool Lime Street and Edinburgh should keep reading.

I have some observations on Nova2.

  • They are 125 mph trains that are replacing the 110 mph Class 350 trains.
  • In the next few years, these 125 mph trains will be sharing the West Coast Main Line with faster trains like Class 390 trains and the trains of High Speed Two, both of which should be capable of 140 mph, when running using in-cab signalling.
  • I would assume that the trains can be similarly upgraded, otherwise they will have to be replaced.
  • There was an option for more trains, but I suspect the success of Class 802 trains on the Great Western Railway led to it not being taken up.,

The trains should come into service later this year.

Nova3

This is a fleet of five-car rakes of Mark 5A coaches, hauled by a Class 68 diesel locomotive.

There are fourteen locomotives and driving van trailers, with enough coaches for thirteen rakes.

I would suspect that TPE are aiming to have twelve trains available for service.

According to Wikipedia, they will work the following routes, which both have a frequency of one train per hour (tph)

  • Liverpool Lime Street and Scarborough via Manchester Victoria, which takes around 2:45 hours.
  • Manchester Airport and Middlesbrough, which takes around 2:45 hours.

So with turnround at both ends, I suspect that a six hour round trip is possible. So to provide the two hourly services across the Pennines, TPE will need six trains for each route.

This explains a fleet size of twelve operational trains.

I have two observations on Nova3.

  • They are diesel-powered and will be running at times on electrified lines. But I suspect the diesel Class 68 locomotive could be replaced in the future with an electro-diesel Class 88 locomotive.
  • Questions have been raised about the speed of exit and entry from the coaches through single end doors of the coaches.
  • They have an operating speed of only 100 mph, but opportunities for higher speeds on the routes are limited to perhaps thirty to forty miles on the East Coast Main Line.

At least they should be in service within a couple of months.

Why Didn’t TPE Order A Unified Fleet?

To summarise TPE have ordered the following trains.

  • Nova1 – Nineteen Class 802 trains
  • Nova2 – Twelve Class 397 trains.
  • Nova3 – Thirteen trains consisting of four coaches topped and tailed by a a Class 68 locomotive and driving van trailer.

All forty-four trains are five cars.

Surely, it would have been easier for TPE to have a fleet, where all the trains were the same.

I suspect that all routes can be run using Class 802 trains, so it as not as if there are any special requirements for the trains.

So why didn’t TPE order a fleet of Class 802 trains?

I can only think of these reasons.

  • Hitachi couldn’t supply the required number of trains in the appropriate time-scale.
  • ,CAF made an offer that TPE couldn’t refuse.

It should also be born in mind that Great Western Railway and Hull Trains, which like TPE are  First Group companies, went down the Class 802 route.

The Future

There are various issues, that will arise in the future.

Nova2 And West Coast Main Line Operating Speed

The new Nova trains are running on TPE’s Northern and Scottish routes and as I indicated earlier, the Nova2 trains might not be fast enough in a few years time for the West Coast Main Line, which will have Class 390 trains running at 140 mph using in-cab signalling.

High Speed Two will surely make this incompatibility worse, unless CAF can upgrade the Nova2 trains for 140 mph running.

Replacing the Nova2 trains with Class 802 trains, which are being built for 140 mph running, would solve the problem.

Nova3 And Class 68 Locomotives

There are powerful reasons to replace diesel locomotives on the UK’s railways, with noise, pollution and carbon emissions at the top of the list.

As Northern Powerhouse Rail is created, there will be more electrification between Manchester and York, adding to the pressure to change the traction.

  • There could be a change of locomotives to Class 88 or Class 93 locomotives, which would run using the overhead electrification, where it exists.
  • The trains could be changed to Class 802 trains.

The Class 68 locomotive is increasingly looking like an interim solution. At least, it’s a less polluting locomotive, than the dreaded and ubiquitous Class 66 locomotive.

Class 185 Replacement

TPE will still have a fleet of diesel three-car Class 185 trains.

  • They are running on routes between Manchester and Hull and Cleethorpes via Huddersfield, Leeds and Sheffield.
  • These are best described as just-about-adequate trains and are one of The Treasury’s boob-buys.
  • As Northern Powerhouse Rail is created, they will be increasingly running under wires.
  • Could it be likely that more capacity will be needed on routes run by these trains?
  • The capacity of a Class 185 train is 169 seats, as opposed to the 342 seats of a five-car Class 802 train.

I think it could be very likely that instead of running pairs of Class 185 trains, TPE will replace them with five-car Class 802 trains.

Conclusion

I very much feel, that over the next few years, TPE’s fleet will change further in the direction of a one-unified fleet!

 

 

 

June 15, 2019 Posted by | Transport | , , , , , , , | 4 Comments

A Better News Day For New Trains

Yesterday, was a better news day for new trains, with articles with these headlines.

All are significant for passengers.

Class 710 Trains

The authorisation of the Class 710 trains is particular importance to me, as they will be running locally to where I live.

It will be a couple of months before they enter passenger service.

But the trains have mainly been delayed by software problems and now that appears to have been fixed and as there are twenty trains already built, I could see them entering service, as soon as drivers have been trained.

It should be noted that eight trains are needed for the Gospel Oak to Barking Line and six for the Watford DC Line, so if twenty have been built, I would expect that these two routes could be converted to the new trains by the summer.

Class 801 Trains

LNER’s Class 801 trains will be a significant introduction, as they will enable the cascade of the Mark 4 coaches to other operators, like Trains for Wales and East Midlands Railway.

April 17, 2019 Posted by | Transport | , , , , , , , , | 2 Comments

Dwell Times And End Doors

Chris Stokes finishes his column in the January 2019 Edition of  Modern Railways, with this paragraph.

Dwell times remain critical too. The new TransPennine units provide more seats, but have single end doors. For an operation with high numbers joining and alighting at many stops, dwell times are going to increase significantly at stations such as Manchester Victoria, Huddersfield, Leeds, Boltonand Preston, chewing up any savings in running times, and exacerbating the problems at platforms 13 and 14 at Manchester Piccadilly.

I haven’t seen a TransPennine Mark 5A coach in the flesh yet, but I’ve seen several pictures, which show each coach has single end doors.

This  picture of the 100 mph Class 755 train shows the door layout is totally different.

It looks like it has a single double door on each coach.

It appears that the electric Class 745 trains have more doors.

If you look at a typical Bombardier Aventra or Electrostar, Stadler Flirt or Siemens Desiro City, there are generally no end doors.

Have CAF commited a design crime of the highest order?

Or is it TransPennine’s fault?

December 28, 2018 Posted by | Transport | , , , , , , , , | Leave a comment

Stadler’s New Tri-Mode Class 93 Locomotive

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I looked at an electro-diesel freight locomotive with batteries instead of a diesel engine, as a freight locomotive. It would have the size and weight of a Class 70 locomotive and perhaps use similar technology to Stadler’s Class 88 locomotive.

I concluded the article like this.

It would be a heavyweight locomotive with a performance to match.

I believe that such a locomotive would be a very useful addition to the UK’s fleet of freight locomotives.

Stadler have not produced a battery/electric replacement for a Class 66 locomotive, but they have added a diesel/electric/battery Class 93 locomotive with a heavyweight performance to their Class 68/88 or UKLIGHT family of locomotives built at Valencia in Spain.

Details of the locomotive are given in this article in Rail Magazine, which is entitled Rail Operations Fuels Its Ambitions With Tri-Mode Class 93s. There is also a longerand more detailed  article in the print edition of the magazine, which I purchased today.

Reading both copies of the article, I can say the following.

A More Powerful Class 88 Locomotive

At a first glance, the Class 93 locomotive appears to be a more powerful version of the Class 88 locomotive.

  • The power on electric mode is the same in both locomotives at four megawatt. It would probably use the same electrical systems.
  • Some reports give the diesel power of the Class 93 locomotive as 1.34 MW as opposed to 0.7 MW of the Class 88 locomotive.
  • The Class 93 locomotive has a top speed of 110 mph, as opposed to the 100 mph of the Class 88 locomotive.
  • The article says, “It’s an ’88’ design with the biggest engine we could fit.”

It would also appear that much of the design of the two locomotives is identical, which must make design, building and certification easier.

The Class 93 Locomotive Is Described As A Hybrid Locomotive

Much of the article is an interview with Karl Watts, who is Chief Executive Officer of Rail Operations (UK) Ltd, who have ordered ten Class 93 locomotives. He says this.

However, the Swiss manufacturer offered a solution involving involving an uprated diesel alternator set plus Lithium Titanate Oxide (LTO) batteries.

Other information on the batteries includes.

  • The batteries are used in regenerative braking.
  • Batteries can be charged by the alternator or the pantoraph.
  • Each locomotive has two batteries slightly bigger than a large suitcase.

Nothing is said about the capacity of the batteries, but each could be a cubic metre in size.

I have looked up manufacturers of lithium-titanate batteries and there is a Swiss manufacturer of the batteries called Leclanche, which has this helpful page that compares various batteries.

  • The page gives an energy density of 120-200 Wh/Kg for their traditional lithium-ion batteries and 70-80 Wh/Kg for LTO batteries.
  • But it gives LTO batteries a five-star rating, for charge power, discharge power and energy efficiency.

Leclanche also have a product called a TiRack63, which is intended for industrial applications, such as.

  • ,Grid stabilization in on-grid application
  • Providing short term power to cover the first seconds in a grid failure incident to industrial users.
  • Managing the integration of renewable energy (solar and wind) into off grid applications with diesel generators (e.g. mining),

The battery has the following characteristics.

  • 15000 charge/discharge cycles
  • 100 % depth of discharge.
  • Charging and discharging at 300 Amps.
  • Modular setup.
  • 510-810 VDC output.
  • 63 kWh capacity.
  • Size of 2300 x 1800 x 600 mm
  • Weight of 1800 Kg.

These batteries with their fast charge and discharge are almost like supercapacitors.

, It would appear that, if these batteries are used the Class 93 locomotive will have an energy storage capacity of 126 kWh.

But this is said about Class 93 locomotive performance..

LTO batteries were chosen because they offer a rapid recharge and can maintain line speed while climbing a gradient, and will recharge when running downhill.

Looking at the batteries, they could provide up to around 240 kW of extra power for perhaps half an hour to help the train climb a gradient and then recharge using regenerative braking or the diesel alternator.

This is a hybrid vehicle, with all the efficiency advantages.

The article does say, that with a light load, the locomotives can do 110 mph on hybrid. Nothing is said about what is a light load. Could it be a rake of five modern Mark 5A coaches?

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I said this.

It is worth looking at the kinetic energy of a Class 88 locomotive hauling five forty-three tonne CAF Mark 5A coaches containing a full load of 340 passengers, who each weigh 90 Kg with baggage, bikes and buggies. This gives a total weight would be 331.7 tonnes.

The kinetic energy of the train would be as follows for various speeds.

90 mph – 75 kWh
100 mph – 92 kWh
110 mph – 111 kWh
125 mph – 144 kWh

The increase in energy is because kinetic energy is proportional to the square of the speed.

There would be little difference in this calculation, using a Class 93 locomotive, which is only a tonne heavier. The kinetic energy at 110 mph, would be 112 kWh.

This could be very convenient, as it looks like the battery capacity could be larger than the kinetic energy of a fully-loaded train.

Similar Weight And Axle Load To A Class 88 Locomotive

The article states that the locomotive will weight 87 tonnes, as opposed to the 86 tonnes of a Class 88 locomotive.

As both locomotives have four axles, this would mean that their axle loading is almost the same.

So anywhere the Class 88 locomotive can go, is most likely to be territory suitable for the Class 93 locomotive.

Again, this must make certification easier.

A Modular Design

In a rail forum, members were saying that the Class 93 locomotive has a modular design.

So will we see other specifications with different sized diesel engines and batteries?

The TransPennine routes, for example, might need a locomotive with a smaller diesel engine, more battery capacity and a 125 mph-capability for the East Coast Main Line.

Stadler have said they specialise in niche markets. Have they developed the tailor-made locomotive?

Power Of Various Locomotives

These are various UK locomotives and their power levels in megawatts.

  • Class 43 – Diesel – 1.7
  • Class 66 – Diesel – 2.4
  • Class 67 – Diesel – 2.4
  • Class 68 – Diesel – 2.8
  • Class 88 – Electric – 4
  • Class 88 – Diesel – 0.7
  • Class 90 – Electric – 3.9
  • Class 91 – Electric – 4.8
  • Class 93 – Electric – 4
  • Class 93 – Diesel – 1.3

The interesting figure, is that the Class 93 locomotive has 76 % of the diesel power of a Class 43 locomotive from an InterCity 125. The difference could probably be made up using battery power, where needed.

Could The Locomotive Be Uprated To 125 mph?

Consider.

  • The UK has successfully run 125 mph Class 43 and 91 locomotives for many years.
  • Stadler has built trains that run at that speed.
  • Mark 3, Mark 4 and Mark 5A coaches are all certified for 125 mph.
  • There are hundreds of miles of track in the UK, where 125 mph running is possible.

I would think it very unlikely, that the engineers designing the Class 93 locomotive, ruled out the possibility of 125 mph running in the future!

Only Stadler will know!

Could A Battery/Electric Version Of The Locomotive Be Created?

I don’t see why not!

The diesel engine, fuel, exhaust and cooling systems and some ancilliary systems could all be removed and be replaced with an equivalent weight of batteries.

As the C27 diesel engine in a Class 88 locomotive weighs almost seven tonnes, I suspect a ten tonne battery would be possible.

Given the current typical energy density and using the Leclanche figures, this would mean that thr batteries would have a total capacity of around 700-800 kWh.

Possible Uses Of The Class 93 Locomotive

The Rail Magazine article goes on to detail some of the uses of a Class 93 locomotive.

Express Freight

Karl Watts says this.

They can operate express freight. In Europe, there are vehicles capable of 100 mph running, and these are perfect for high-speed domestic freight. We have been running intermodals at 75 mph since the 1960s – It’s time to change that.

The locomotive would certainly be able to haul express freight at 100 mph on an electrified main line.

Note the following.

  1. This would greatly help with freight between Felixstowe and London on the 100 mph Great Eastern Main Line.
  2. Running freight trains at 100 mph on the major electrified lines would increase capacity, of the lines.
  3. Ports and freight terminals wouldn’t need to be electrified.

Overall, the proportion of freight mileage, where electric power was used, would grow significantly.

Electrification Gap Jumping

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I gave a list of typical gaps in the electrification in the UK.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

How many of these gaps could be bridged by a Class 93 locomotive working in a diesel hybrid mode?

It should be noted, that many of the busiest gaps are in the flatter Eastern areas of England.

I’m sure Stadler and Rail Operations Group have done extensive simulation of possible routes and know where the locomotives are best suited.

Class 66 Locomotive Replacement

I suspect that several of these locomotives will end up replacing duties currently done by Class 66 locomotives.

It could haul an intermodal freight from Felixstowe to Manchester, Liverpool, Glasgow or Doncaster, using electrification where it exists.

And do it at a speed of 100 mph, where speed limits allow!

No other locomotive on the UK network could do that!

Use On Electrified Urban Freight Routes

Near to where I live there are two electrified lines passing through North London; the North London Line and the Gospel Oak To Barking Line.

Both lines have several freight trains a day passing through, that are still hauled by diesel locomotives.

There are other urban freight routes around the UK, where despite electrification, polluting diesel locomotives are still used.

Class 93 locomotives would be an ideal environmentally-friendly replacement locomotive on these routes.

Thunderbird Duties

Karl Watts says this.

They can be used for network recovery as a more comprehensive Thunderbird. Currently, stand-by locomotives are hired or used by an operator to rescue its own trains, but these would be available for anything or anyone. I have sopken to Network Rail about this and they need convincing. But as the network gets busier, so it will be that one failure causes chaos.

Perhaps, a better method for recovering failed trains could be developed.

Passenger Trains

Karl Watts says this.

I can say that the 93s’ feature n two franchise bids, although I cannot say which, due to non-disclosure agreements.

We can only speculate!

Class 93 locomotives could replace the Class 68 locomotives on TransPennine Express services between Liverpool and Scarborough, where Mark 5A coaches will be used.

  • Electric mode could be used between Liverpool and Stalybridge and on the East Coast Main Line.
  • Diesel or hybrid mode would be used where needed.
  • If the locomotives could be uprated to 125 mph, that would help on the East Coast Main Line.

There are certainly, redundant Mark 4 coaches or new Mark 5A coaches that could be used to provide services.

An InterCity 125 For the Twenty-First Century

The InterCity 125 is a masterpiece of engineering, that passengers love.

One of the reasons for the success, is the superb dynamics of the train, which gives them a very comfortable ride.

Could it be that by putting two Class 93 locomotives at each end of a rake of suitable coaches could create a 125 mph train, with the same faultless dynamics?

The answer is probably yes, but in many cases either half-length trains or bi-mode multiple units may be a more affordable or capable train.

The locomotive certainly gives a lot of flexibility.

Conclusion

This is going to be a very useful locomotive.

This was the last paragraph of the printed article, as spoken by Karl Watts.

I don’t think I will be ordering only ten or 20 – there will be more.

I have registered 93001 to 93050.

The word hybrid opens the door.

I think this might be the third member of a very large and widespread family.

 

 

 

December 19, 2018 Posted by | Transport | , , , , , , , , , | 6 Comments

TPE Pledges Capacity Boost With Class 68/Mk 5A Sets

The title of this post is the same as that of an article in Issue 851 of Rail Magazine.

It adds a few extra details to those, that I wrote about in Nova 3 On The Test Track.

This information is revealed.

The Route

The TransPennine Express fleet will run on the Liverpool Lime Street-Manchester Airport-Scarborough/Middlesbrough Routes, replacing three car Class 185 trains.

Train Length

Each Mark 5A car has a length of 22.2 or 22.37 metres.

Adding on the Class 68 locomotive gives a train length of 131.84 metres.

This compares with a train length for the Class 185 train of 71.276 metres.

It means that two Class 185 trains working together, which is current practice, are longer than the new fleet.

This must limit platform and depot modifications.

The Capacity

The number of seats on the two trains are as follows.

  • Class 185 train – 15 First Class – 165 Second Class
  • Class 68/Mk 5A sets – 30 First Class – 261 Second Class

This gives twice as many seats in First Class and nearly sixty percent more in second.

Both trains seem to have around sixty seats in each car.

Technical Characteristics

The Rail Magazine article gives several technical characteristics.

  • Each coach has two passenger doors, except the First Class coach which has one.
  • There is Selective Door Opening controlled by GPS.
  • Door controls are in the Driver Trailer and Class 68 cans, which the driver controls.
  • Two door control panels are in every vehicle for usde by the conductor.
  • Wheel Slip Protection is fitted.
  • Automatic passenger counting is provided.
  • Wi-fi is fitted.

The trains have a high specification.

 

 

 

 

May 8, 2018 Posted by | Transport | , , , | Leave a comment

Nova 3 On The Test Track

The title of this post is the same as that of an article in the May 2018 Edition of Modern Railways.

Nova 3 is the name that TransPennine Express (TPE) have given to their thirteen new rakes of Mark 5A coaches, that are being built by CAF in Spain and will be hauled by Class 68 locomotives.

These are my thoughts on what we know about the trains.

The Test Phase

Testing is being performed on the Velim test track in the Czech Republic.

Increasingly, it seems that a lot of testing of trains is done on this track and I do wonder if one of the problems al our trains seeming to be late, is a lack of the suitable testing facilities in the UK.

Spanish train manufacturer; Talgo, seem to have noticed this gap and I wrote about their plans for a UK test track in Talgo Explores Options For Building UK Test Track.

Modern Railways, states that there was trouble getting the two test locomotives to Velim, because of industrial action in France.

Perhaps in parallel with the ordering of large numbers of trains, we should have built a test track!

Buying New CAF carriages Enabled Faster Deployment, Than Converting Spare Mark 3 carriages

I think that the main problem of converting Mark 3 carriages, which Chiltern have shown is very possible, is that until Greater Anglia release their carriages, after receiving their new Class 745 trains, the fifty-two coaches needed by TPE could be difficult to find. There are plenty of driving van trailers in store, that just need refurbishing.

The Modern Railways article says that most if not all, of the new Mark 5A coaches will be in service by early 2019.

I suspect that Greater Anglia won’t release their Mark 3 carriages until late 2019.

So to get the required number of Mark 3 coaches could be difficult!

I also suspect that going the CAF route means that if any extra sets re needed or the current ones need lengthening, that CAF would oblige. Whereas starching around for spare Mark 3 coaches might be more difficult.

Transpennine’s New Fleet Of Coaches

TPE have ordered the following.

  • Fifty-two coaches, of which thirteen are First Class and the rest Second Class
  • Fourteen driving van trailers (DVT). A spare seems prudent, as surely train ends are more likely to hit something.
  • Fourteen Class 68 locomotives, two of which are spare.
  • These are formed into thirteen  fixed rakes of four coaches and DVT, which are hauled by a single Class 68 locomotive.

The Modern Railways article says that the idea is to have twelve sets in service and one in maintenance.

Flexible Length

The rakes appear to have been designed, so they can be lengthened to six or seven coaches.

The article also says that extension beyond six would need infrastructure work at some stations.

Changing The Power Unit

These twelve rakes are powered by a Class 68 diesel locomotive.

But I suspect, they could be powered by any suitable locomotive for the route.

I would be interesting to find out how an electro-diesel locomotive live a Class 88 locomotive, performed with a rake of five Mark 5A coaches.

What is probably needed in the future is an electroc-diesel locomotive with the following characteristics.

  • Ability to haul a rake of five coaches at 125 mph on electricity.
  • Ability to haul a rake of five coaches at 90 mph on diesel.

In a few years time, such a locomotive could handle some of TPE’s routes as electrification progresses.

Wheelchair Users Travel First Class

The First Class vehicle is next to the engine.

  • A small kitvhen is provided.
  • It seats thirty passengers.
  • It has the only accessible toilet on the train.

Because of the last feature, TPE have taken the pragmatic decision, that all wheelchair users will be able to travel in First.

I’m not disabled or a wheelchair user, but that is probably down to luck more than anything else. So there but for luck, go I!

I travel on trains a lot and it is very rare for me to see more than one wheelchair user on a train.

Obviously TPE have statistics and adding everything up, they find that one accessible toilet is enough provided those needing it can sit close.

By not providing a second accessible toilet, but three ordinary toilets, they probably get another six seats they can sell to passengers.

I do wonder, if other train operating comp will adopt a similar philosophy.

Other Orders

The fleet appears to have been designed, so it can be adjusted to a train operating company’s needs.

I would suspect, that after two orders for their Mark 5 coaches, CAF are expecting more, from the next round of franchise renewals.

I also think, that TPE’s concept of a rake of five coaches with a locomotive could appeal to Open Access Operators like Grand Central Trains, especially if a 125 mph electro-diesel locomotive can be built.

One great advantage that CAF have is that once the TPE fleet is operating  successfully, there would not be a large testing phase for a new operator.

Conclusion

It appears that CAF and TransPennine Express have thought long and hard about these trains and I’m looking forward to riding in one.

 

 

April 28, 2018 Posted by | Transport | , , | 1 Comment

We Should All Think Radically!

In the August 2017 Edition of Modern Railways, Ian Walmsley, who is a writer, that I respect, thinks radically about how to upgrade or replace the High Speed Trains  on the Midland Main Line.

He has a lot of experience in the rail industry and his views in this issue, are probably worth the price of the magazine alone.

He feels the InterCity 125s should be replaced as you can only make-do-and-mend for so long and he proposes replacing them with a modern equivalent, which would initially be two diesel locomotives topping and tailing a rake of new coaches, and then if electrification happens, the diesels are replaced with electric units.

Ian’s article comes a few days after this article in Rail Technology Magazine, entitled New bi-mode fleet a requirement for East Midlands as consultation opens, was published.

This is the first paragraph.

The DfT has this week launched its public consultation on the new East Midlands franchise, including specifications for a new bi-mode fleet of intercity trains, whilst at the same time revealing that plans to electrify the Midland Main Line north of Kettering have been abandoned.

There is going to have to be a lot of radical thinking to get a solution for that.

To make the replacement harder, Ian indicates various problems, which I won’t disclose here.

But I do think Ian’s idea is sound and it could be the solution to the problem of running modern 125 mph trains from St. Pancras to Derby, Nottingham and Sheffield.

So How Feasible Is Ian’s Plan?

Maths and physics don’t change. so I suspect that the calculations done by Terry Miller and his team in the 19670s, which led to the iconic InterCity 125 are still valid.

Locomotive Haulage

The power output of each Class 43 power car is 2,250 hp, so to propel an appropriate number of new carriages, you still need a locomotive at each end of the train.

The most modern diesel locomotive in the UK is the Stadler-built Class 68 locomotive, which has a power voutput of 3,800 hp, but a top speed of only 100 mph. The only 125 mph diesel locomotive in the UK is the Class 67 locomotive. To complicate matters, there is also the Stadler-built Class 88 locomotive, which is a 100 mph electro-diesel locomotive, but this locomotive is more a powerful electric locomotive with a sensible-sized last-mile diesel engine.

Ian suggests, that as the Class 68 is a few tonnes lighter than the Class 67, that a 125 mph Class 68/2 locomotive would be possible.

I don’t disagree, but given the quality of railway engineering coming out of companies like Bombardier, CAF and Stadler, that someone will do better.

We should also consider that the UK will need more than a few new freight locomotives in the next few years, as they do seem to be scratching around for motive power, as this picture shows.

These two Class 86 locomotives date from the mid-1960s. But they do have around 3,600 hp each and a top speed of around 100-110 mph.

I even saw this interesting combination at Shenfield.

The Class 90 and Class 66 locomotives appear to be double-heading the heavy freight train. The Class 90, of which several will become available soon from Greater Anglia are 5,000 hp units with a top speed of 110 mph, whereas the ubiquitous Class 66 has only 3,300 hp and 75 mph.

With more and more long freight trains appearing on increasingly busy main lines, these freight trains must be becoming unwelcome to the companies running passenger trains and also to those, who live alongside the lines.

So is there another desperate need for a powerful locomotive to pull express freight trains at maximum length and weight around the country?

Some main freight routes like these are electrified with 25 KVAC overhead wires or will be soon.

  • East Coast Main Line
  • West Coast Main Line
  • Greast Eastern Main Line
  • Great Western Main Line
  • North London Line
  • Gospel Oak to Barking Line

But others are not.

  • London to Southampton
  • Felixstowe to Peterborough and The Midlands
  • Peterborough to Doncaster via Lincoln
  • Trans-Pennine Routes

And that’s just for starters.

I think it becomes obvious, why Direct Rail Services and Stadler came up with the Class 88 locomotive. The 5,300 hp available under the wires is more than adequate for the heaviest express intermodel freight train and the 1,000 hp under diesel can probably move the train into and out of the docks.

But this amount of diesel power is probably inadequate for hauling a heavy  freight train at 100 mph.

A New Electro-Diesel Locomotive

So could we see a new electro-diesel locomotive with the following characteristics?

  • The ability of a pair to top-and-tail an express passenger train on both diesel and 25 KVAC overhead electrification.
  • The ability to haul the heaviest intermodal freight trains at up to 100 mph  on both diesel and 25 KVAC overhead electrification.
  • The ability to switch between modes at line speed.
  • Regenerative braking underboth elkectricity and diesel.

In a few years time the diesel might be replaced by hydrogen or some other exotic fuel.

Electrification South Of Bedford

It might appear that these locomotives if working the Midland Main Line could switch to electric power South of Bedford or in the near future; Kettering, but the electrification is limited to 100 mph and there is no planned upgrade. This is a familiar story for anybody like me who uses the Great Eastern Main Line, where the inadequate electrification has had to be upgraded over the last couple of years to allow faster services.

The Coaches

The coaches are the least of the problems for Ian’s proposals.

This article on Rail Technology Magazine is entitled First bodyshell completed by CAF for new TPE fleet.

This is the first paragraph.

Pictures of the first bodyshell for new rolling stock to be used by TransPennine Express (TPE) have been unveiled as the operator looks to introduce 13 five-car Mark 5A Coaches – being built by Spanish company CAF – as part of its brand-new fleet.

The Mark 5A coaches, being built by CAF are designed for 125 mph!  So all that is needed is to specify the interior!

As the Spanish train manufacturer has just announced the building of a factory at Llanwern in South Wales, that might be an ideal place to build the coaches needed.

Beating The PRM Deadline In 2020

The Mark 5A coaches for TransPennine Express are scheduled for delivery in 2018-2019, so I suspect the coaches for the Midland Main Line could start to be delivered after the TransPennine Express and Caledonian Sleeper orders are complete.

The locomotives might be move problematical, but if they are a derivative of an existing type, then surely this wouldn’t delay fleet introduction.

I suspect that a certain amount of testing can be done in parallel too!

So having some trains in service by the PRM eadline of 2020 could certainly be possible.

Conclusion

Ian Walmsley’s proposal for the next Midland Main Line franchise is possible.

July 29, 2017 Posted by | Transport | , , , , | 3 Comments