The Anonymous Widower

Hydrogen-Powered Turbines May Help Clean And Improve Electrical Grid Reliability

The title of this post, is the same as that of this article on Hydrogen Fuel News.

This is the first paragraph.

In less than three years, one or more hydrogen-powered turbines are expected to be up and running at or near New Jersey’s Bayonne Energy Center power plant, which feeds power to New York City.

Note.

  1. The Bayonne Energy Center is a peaker plant with ten gas turbines, with a total capacity of 640 MW.
  2. Peaker plants automatically cut in, when power demand is high, but power generation is low.
  3. The Bayonne Energy Centre transfers power to New York, through an underwater cable.
  4. The electrolyzers will be made by Ohmium International Inc and I suspect they will be powered by offshore wind.
  5. The hydrogen that is created will be stored. As Bayonne has a history of chemical manufacturing, there may be salt caverns that can be used or the hydrogen could be stored as a compressed gas or liquid in tanks.

I can see hydrogen being used in peaker plants elsewhere in the world, where there is lots of renewable energy and suitable hydrogen storage.

The hydrogen can also be used to decarbonise local industries and transportation.

The Potential For Wind Power In New Jersey

Wikipedia says this about the potential of wind power in the state.

New Jersey has the potential to generate 373 GWh/year from 132 MW of 80 m high wind turbines or 997 GWh/year from 349 MW of 100 m high wind turbines located onshore as well as 430,000 GWh/year from 102,000 MW of offshore wind turbines.

Note.

  1. New Jersey used 76,759 GWh in 2011
  2. It appears that most of these turbines would be located along the coast.

There is also a worry about hurricanes. But solving that is an engineering problem.

From my experience of modelling floating structures, I believe they may stand up to high winds better. But I’m not sure!

November 19, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , , , , | Leave a comment

Biggleswade Wind Farm

The Biggleswade Wind Farm is a small wind farm on the East side of the East Coast Main Line, to the South of Biggleswade.

I took the pictures as I went North to Doncaster yesterday.

  • The wind farm generates 20 MW.
  • There are ten turbines.

I was sitting backwards in one of LNER’s Azuma trains.

It was in some ways an experiment to get a general wind farm picture.

November 3, 2022 Posted by | Energy | , , , , | 2 Comments

Rolls-Royce And SOWITEC Cooperate On Power-To-X Projects

The title of this post, is the same of that of this press release from Rolls-Royce.

The press release starts with these two bullet points.

  • Target: up to 500 MW electrolysis capacity for power-to-X projects
  • Production of green hydrogen and e-fuels for shipping, aviation, mining, agriculture, data centers

In Rolls-Royce Makes Duisburg Container Terminal Climate Neutral With MTU Hydrogen Technology, I wrote how Rolls-Royce were building a carbon-neutral energy supply for the port.

This Rolls-Royce graphic illustrates the project.

It looks like SOWITEC would be the sort of company to install the decentralised renewables for this project.

Rolls-Royce seem to be collecting the technology to build complex projects like the power supply for the Duisburg Container Terminal, either by acquisition or negotiating friendly links.

But I do think, that Rolls-Royce possibly need two items for a complete portfolio.

A factory with a large capacity to build electrolysers. The press release says they need 500 MW by 2028 or nearly 100 MW per year.

Some form of GWh-sized energy storage. I wouldn’t be surprised to see Rolls-Royce do a deal with an energy storage company.

 

October 5, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , | Leave a comment

Chancellor Confirms England Onshore Wind Planning Reform

The title of this post, is the same as that of this article on renews.biz.

These are the first two paragraphs.

UK Chancellor Kwasi Kwarteng has confirmed that onshore wind planning policy is to be brought in line with other infrastructure to allow it to be deployed more easily in England.

The announcement is the strongest sign yet that the Conservative Party could be poised to reverse its 2015 ban on new onshore wind farms being built in England.

I take a scientifically-correct view of onshore wind, in that I am sometimes against it, but on the other hand in certain locations, I would be very much in favour.

These pictures show Keadby Wind Farm in Lincolnshire.

As the wind farm sits next to two gas-fired power stations and is surrounded by high voltage overhead electricity cables, this is probably a more acceptable location, than beside a picturesque village.

In this page on their web site, SSE says this about the construction of the 68 MW wind farm.

After receiving planning permission in 2008, construction began in 2012 and the first turbine foundation was complete in February 2013. The final turbine was assembled on 11 December 2013 and the project was completed in summer 2014.

If this is typical, and I think it is, it would take six years plus the time arguing about planning permission, to get a new onshore wind farm built.

But supposing, you are a farmer who wants to decarbonise. One way might be with a 10 MW wind turbine and a hydrogen electrolyser, so you had your own hydrogen source to power your tractors and other equipment.

On the other hand, solar panels on house, shed and barn roofs  might be a more discrete alternative.

 

September 24, 2022 Posted by | Energy | , , , , , , , | 11 Comments

SSE Renewables Completes Acquisition Of European Renewable Energy Development Platform

The title of this post, is the same as that of this press release from SSE.

This paragraph introduces the deal.

SSE Renewables has completed the transaction with Siemens Gamesa Renewable Energy (SGRE) to acquire its existing European renewable energy development platform for a consideration of €580m.

I have a few thoughts.

Why Have Siemens Gamesa Sold Their European Renewable Energy Development Platform?

This article on Renewables Now is entitled Siemens Gamesa Wraps Up Sale Of 3.9-GW Wind Portfolio To SSE Renewables, gives a reason.

For the turbine maker, the sale represents one of the measures implemented to rein in profit losses quarter after quarter due to internal challenges, high costs and supply chain issues.

As with many things, it appears to be all about the money.

Can SSE Renewables Afford It?

Consider.

SSE seem to have found a Scottish magic money tree.

€580m is just small change.

What Projects Are Included In The Deal?

This is a paragraph from the press release.

The SGRE portfolio includes c.3.8GW of onshore wind development projects – around half of which is located in Spain with the remainder across France, Italy and Greece – with scope for up to 1.4GW of additional co-located solar development opportunities. Development of the portfolio of projects has continued to progress since the acquisition was announced in April, with additional opportunities identified and permits and grid connections advancing. Over 2GW of the total pipeline is considered to be at a secured stage, where a grid connection or land agreement has been secured or relevant permits granted.

Note.

  1. As an engineer, I note that there is no offshore wind, which surely is the renewable energy development with most risk and installation costs.
  2. SSE Renewables have a lot of experience of onshore wind, so delivering and financing the extra 3.8 GW, shouldn’t be a problem.
  3. The 1.4 GW of solar comes with the word co-located. Wind and solar together, perhaps with a battery must surely be a good investment in the sunnier climes of Europe.

It doesn’t look to me that SSE Renewables have bought a load of assets that no-one wants.

I do wonder thought, if Siemens Gamesa were having trouble progressing this large diverse portfolio of projects, due to a shortage of resources like money and engineers.

So are SSE finishing off a few projects and they can transfer a few engineers to these projects?

Are SSE Spreading The Risk?

SSE operate mainly in the UK and Ireland, so is adding Spain, France, Italy and Greece a good idea?

Of the four new countries, it’s unlikely that all will perform well, but a mixed portfolio is usually a good idea.

Will SSE Renewables  Buy Siemens Gamesa Turbines In The Future?

SSE Renewables seem to do an individual deal on each wind farm, as no one manufacturer dominates.

But now Siemens Gamesa may be more financially stable, perhaps they can get a better deal for the turbines they want.

Conclusion

I don’t think SSE Renewables have done a bad deal.

 

 

September 5, 2022 Posted by | Energy | , , , , , , , , , | Leave a comment

Bord na Mona Planning Offaly Hydrogen Project As New Wind Farm Is Switched On

The title of this post, is the same as that of this article on OffalyLive.

The policy of the Bord na Mona is described in detail in the article.

This paragraph describes the green hydrogen development.

The development will be two megawatts and will comprise a hydrogen electrolysis plant containing an electrolyser, three high pressure hydrogen storage units, a generator, a substation and an underground cable connecting to a wind turbine 600 metres away.

Surely, this hydrogen will have the right to be marketed as genuine Irish green hydrogen!

For those of you, who are confused by the various colours of hydrogen, this page on the National Grid web site, which is entitled The Hydrogen Colour Spectrum gives a useful guide.

Note that there is no orange hydrogen defined as yet, but there is a yellow hydrogen defined like this.

Yellow hydrogen is a relatively new phrase for hydrogen made through electrolysis using solar power.

So it does look, that yellow hydrogen, which could be called orange hydrogen at a pinch, is as environmentally-friendly as green hydrogen.

 

August 18, 2022 Posted by | Energy, Hydrogen | , , , , | 2 Comments

Is The Morocco-UK Power Project Just A Taste Of The Future?

After writing WSP Lends Hand On Morocco-UK Power Link, about WSP’s involvement in the ambitious project to create a 3.6 GW interconnector to bring power from Morocco to the UK, I’m now certain, that this major project will come to fruition.

Out of curiosity, I created this Google Map of North-West Africa.

Note.

  1. Morocco is at the North edge of the map.
  2. The map is filled with the Sahara Desert.
  3. The Caqnary Islands are off the coast of Africa.
  4. Three of the least developed countries in the world; Western Sahara, Mauritania and Mali, circle the desert to the South-West and South.

I do wonder if the Morocco-UK Power Project is a success, if other developers and countries will decide to developer their renewable energy resources.

  • France, Portugal and Spain may want to get involved.
  • High-Temperature Electrolysis boosted by solar energy,  could be used to generate hydrogen for shipment to Europe.
  • The interconnectors to Europe will be upgraded.

Given the size of the desert, I’m sure that several GW of electricity could be delivered to Europe.

August 2, 2022 Posted by | Energy | , , , , , , , | Leave a comment

The Concept Of Remote Island Wind

This document from the Department of Business, Industry and Industrial Strategy lists all the Contracts for Difference Allocation Round 4 results for the supply of zero-carbon electricity that were announced yesterday.

The contracts have also introduced a concept that is new to me, called Remote Island Wind. All have got the same strike price of £46.39 per MWh.

Two of the projects on Orkney are community projects of around 30 MW, run by local trusts. This is surely, a model that will work in many places.

There is more on Orkney’s Community Wind Farm Project on this page of the Orkney Islands Council web site.

It could even have an electrolyser to provide hydrogen for zero-carbon fuel, when there is more electricity than is needed. Companies like ITM Power and others already build filling stations with an electrolyser, that can be powered by wind-generated electricity.

The other Remote Island Wind projects are larger with two wind farms of over 200 MW.

It does look to me, that the Department of BEIS is nudging wind farm developers in remote places to a model, that all stakeholders will embrace.

The Viking Wind Farm

I wrote about this wind farm in Shetland’s Viking Wind Farm.

There are more details in this press release from SSE enewables, which is entitled CfD Contract Secured For Viking Energy Wind Farm.

These introductory paragraphs, give a good explanation of the finances of this farm.

SSE Renewables has been successful in the UK’s fourth Contract for Difference (CfD) Allocation Round, announced today, and has secured a low-carbon power contract for 220MW for its wholly-owned Viking Energy Wind Farm (Viking) project, currently being constructed in Shetland.

Viking’s success in securing a contract follows a competitive auction process in Allocation Round 4 (AR4) where it competed within Pot 2 of the allocation round set aside for ‘less established’ technologies including Remote Island Wind.

The 443MW Viking project, which SSE Renewables is currently building in the Shetland Islands, has secured a CfD for 220MW (50% of its total capacity) at a strike price of £46.39/MWh for the 2026/27 delivery year.

The successful project will receive its guaranteed strike price, set on 2012 prices but annually indexed for CPI inflation, for the contracted low carbon electricity it will generate for a 15-year period. Securing a CfD for Viking stabilises the revenue from the project whilst also delivering price security for bill payers.

It’s very professional and open to explain the capacity, the contract and the finances in detail.

The press release also has this paragraph, which details progress.

Viking is progressing through construction with over 50 per cent of turbine foundation bases poured. When complete in 2024, Viking Energy Wind Farm will be the UK’s most productive onshore wind farm in terms of annual electricity output, with the project also contributing to Shetland’s security of supply by underpinning the HVDC transmission link that will connect the islands to the mainland for the first time.

SSE also released this press release, which is entitled Major Milestone Reached As First Subsea Cable Installation Begins On Shetland HVDC Link, where this is the first paragraph.

The first phase of cable laying as part of the SSEN Transmission Shetland High-Voltage Direct Current (HVDC) Link began this week off the coast of Caithness, marking a major milestone in the £660M project.

SSE seem to be advancing on all fronts on the two projects!

The Stornoway Wind Farm

This press release from EDF Renewables is entitled EDF Renewables UK Welcomes Contract for Difference Success, where these are the first two paragraphs.

Two EDF Renewables UK projects bid into the Contract for Difference (CfD) auction round held by the UK Government’s BEIS department have been successful.

The projects are the Stornoway wind farm on the Isle of Lewis and Stranoch wind farm in Dumfries and Galloway. Together these onshore wind farms will provide 300 MW of low carbon electricity which is an important contribution to reaching net zero.

The press release also gives this information about the contract and completion of the Stornoway wind farm.

Stornoway Wind Farm on the Isle of Lewis is a joint venture with Wood. The project has won a CfD for 200 MW capacity, the strike price was £46.39, the target commissioning date is 31 March 2027.

This page on the Lewis Wind Power web site, gives these details of the Stornoway Wind Farm.

The Stornoway Wind Farm would be located to the west of the town of Stornoway in an area close to the three existing wind farm sites.

The project has planning consent for up to 36 turbines and is sited on land owned by the Stornoway Trust, a publicly elected body which manages the Stornoway Trust Estate on behalf of the local community.

The local community stands to benefit as follows:

  • Community benefit payments currently estimated at £900,000 per annum, which would go to an independent trust to distribute to local projects and organisations
  • Annual rental payments to local crofters and the Stornoway Trust – which we estimate could total more than £1.3m, depending on the CfD Strike Price secured and the wind farm’s energy output
  • Stornoway Wind Farm is the largest of the three consented wind farm projects with a grid connection in place and is therefore key to the needs case for a new grid connection with the mainland.  Indeed, the UK energy regulator Ofgem has stated that it will support the delivery of a new 450MW cable if the Stornoway and Uisenis projects are successful in this year’s Contract for Difference allocation round.

Note the last point, where only the Stornoway wind farm was successful.

The Uisenis Wind Farm

This press release from EDF Energy is entitled Lewis Wind Power Buys Uisenis Wind Farm, gives these details of the sale.

Lewis Wind Power (LWP), a joint venture between Amec Foster Wheeler and EDF Energy Renewables has bought the Uisenis Wind Farm project on the Isle of Lewis. The wind farm has planning consent for the development of 45 turbines with a maximum capacity of 162 MW. This would be enough to power 124,000 homes and would be the biggest renewable energy development on the Western Isles.

LWP owns the Stornoway Wind Farm project located around 20km to the north of Uisenis which has planning consent to develop 36 turbines to a maximum capacity of 180 MW – enough to power 135,000 homes.

This would bring Stornoway and Uisenis wind farms under the similar ownership structures.

This is a significant paragraph in the press release.

On behalf of Eishken Limited, the owner of the site where the Uisenis Wind Farm will be located, Nick Oppenheim said: “I am delighted that LWP are taking forward the wind farm. The resources available on the Eishken estate, and the Western Isles in general, means that it is an excellent location for renewable energy projects and, as such, the company is also developing a 300MW pumped storage hydro project immediately adjacent to the Uisenis wind farm. With such potential for renewables and the positive effect they will have on the local community, economy, and the UK as a whole I am are looking forward to positive news on both support for remote island projects and the interconnector.”

Note the mention of pumped storage.

This article on the BBC is entitled Pumped Storage Hydro Scheme Planned For Lewis, where this paragraph introduces the scheme.

A pumped storage hydro scheme using sea water rather than the usual method of drawing on freshwater from inland lochs has been proposed for Lewis.

The only other information is that it will provide 300 MW of power, but nothing is said about the storage capacity.

It looks like Lewis will have a world-class power system.

Mossy Hill And Beaw Field Wind Farms

Mossy Hill near Lerwick and Beaw Field in Yell are two Shetland wind farms being developed by Peel L & P.

This press release from Peel L & P is entitled Government Support For Two Shetland Wind Farms, where these are the first two paragraphs.

Plans for two onshore wind farms on the Shetland Islands which would help meet Scotland’s targets for renewable energy production are a step closer to being delivered after receiving long-term Government support.

Clean energy specialists Peel NRE has been successful in two bids in the Department for Business, Energy and Industrial Strategy’s (BEIS) Contracts for Difference (CfD) scheme; one for its Mossy Hill wind farm near Lerwick and the other for Beaw Field wind farm in Yell.

It looks like the two wind farms will power 130,000 houses and are planned to be operational in 2027.

Conclusion

I must admit that I like the concept. Especially, when like some of the schemes, it is linked to community involvement and improvement.

Only time will tell, if the concept of Remote Island Wind works well.

July 8, 2022 Posted by | Energy, Hydrogen | , , , , , , , , , , , , | 10 Comments

Octopus Energy On Xlinks

Today, Octopus Energy published a web page, which is entitled Backing Cheaper, Greener Energy Globally, giving more details of the Xlinks project.

I first wrote about the tie-up between Octopus Energy and Xlinks in Xlinks Welcomes New Investor Octopus Energy In Providing Cheap Green Power To Over 7 Million Homes.

Points made in the page on the Octopus web page include.

  • The project will cover over 570 square miles in Morocco with 7GW of solar and 3.5GW of wind generation alongside a 20GWh battery storage facility.
  • This green energy powerhouse will be connected to the UK via 2,361 miles of HVDC subsea cables.
  • The cables will be built with British steel in a new factory in Hunterton, Scotland.
  • It also appears that the site of the project has been chosen to optimise energy collection.

This project appears to be excellently-thought out to bring large benefits to all stakeholders.

June 29, 2022 Posted by | Energy, Energy Storage | , , , , , , | 17 Comments

Rolls-Royce To Develop mtu Hydrogen Electrolyser And Invest In Hoeller Electrolyser

The title of this post, is the same as that of this press release from Rolls-Royce.

These are the three main points in the press release.

  • Holdings in start-up companies in northern Germany secure Rolls-Royce Power Systems access to key green hydrogen production technology.
  • Electrolysis systems for several megawatts of power.
  • First demonstrator in 2023 using a Hoeller stack.

This is the introductory paragraph to the deal.

Rolls-Royce is entering the hydrogen production market and acquiring a 54% majority stake in electrolysis stack specialist Hoeller Electrolyzer, whose innovative technology will form the basis of a new range of mtu electrolyzer products from its Power Systems division. Hoeller Electrolyzer, based in Wismar, Germany, is an early-stage technology company that is developing highly efficient polymer electrolyte membrane (PEM) stacks, under the brand name Prometheus, for the cost-effective production of hydrogen.

This page on the Hoeller Electrolysis web site gives details of Prometheus.

  • Hoeller are planning small, medium and large electrolyser modules, the largest of which is rated at 1.4 MW.
  • Load changes of between 0 and 100 % within seconds.
  • Cold start capability.
  • It will produce 635 Kg/day.
  • They are talking of a cost of 4€/Kg.

It all sounds good to me.

This paragraph is from the press release.

Founded in 2016, Hoeller Electrolyzer has positioned itself, with Prometheus, as one of the few highly specialized expert players in the field of high-efficiency PEM electrolysis stacks. Its founder, Stefan Höller, has more than a quarter of a century’s experience of developing electrolysis technology and has already registered 14 patents connected with Prometheus. Particularly high efficiency is promised by special surface technologies for the bipolar plates which significantly reduce the use of expensive precious metals platinum and iridium as catalysts, as well as increased output pressure.

I know a small amount about electrolysis and feel that Rolls-Royce may have got themselves a high-class deal.

Rolls-Royce’s large German presence in companies like mtu, will also help to smooth any doubts about the deal.

This paragraph indicates a shared belief.

Rolls-Royce and Hoeller Electrolyzer are united by a shared belief in the opportunity of zero-carbon energy – both for power supply and the propulsion of heavy vehicles. With decades of experience and systems expertise, Rolls-Royce is going to develop a complete electrolyzer system and has a global sales and service network, which opens up the potential for significant worldwide sales.

But perhaps, this is the most significant paragraph of the press release.

Armin Fürderer, who heads up the Net Zero Solutions business unit of Power Systems, said: “We’re going to launch electrolyzers with several megawatts of power right from the start. A total output of over 100 megawatts is conceivable by combining several electrolyzers.”

A quick search of the Internet, indicates that 100 MW is the size of the world’s largest electrolysers.

Applications

I can see applications for these large electrolysers.

Rolls-Royce Power Systems

This is a sentence from the press release.

Hoeller Electrolyzer, whose innovative technology will form the basis of a new range of mtu electrolyzer products from its Power Systems division.

The Rolls-Royce Power Systems web site, has this mission statement.

The Power Systems Business Unit of Rolls-Royce is focused on creating sustainable, climate neutral solutions for drive, propulsion and power generation.

In Rolls-Royce Makes Duisburg Container Terminal Climate Neutral With MTU Hydrogen Technology, I describe one of Rolls-Royce Power Systems projects.

The title of this post, is the same as this press release from Rolls-Royce.

This is the first sentence.

Rolls-Royce will ensure a climate-neutral energy supply at the container terminal currently under construction at the Port of Duisburg, Germany.

There is also this Rolls-Royce graphic, which shows the energy sources.

It would appear batteries,  combined heap and power (CHP), grid electricity, hydrogen electrolyser, hydrogen storage and renewable electricity are being brought together to create a climate-neutral energy system.

Note.

  1. The system uses a large hydrogen electrolyser.
  2. I suspect the hydrogen will be generated by off-peak electricity and local renewables.
  3. Hydrogen will probably power the container handling machines, ships, trucks, vehicles and other equipment in the port.

Hydrogen appears to be used as a means of storing energy and also for providing motive power.

I would suspect, the ultimate aim is that the port will not emit any carbon dioxide.

Other ports like Felixstowe and Holyhead seem to be going the hydrogen route.

Refuelling Hydrogen Buses and Charging Electric Buses

If you look at the Duisburg system, I can imagine a similar smaller system being used to refuel hydrogen buses and charge electric ones.

  • The hydrogen electrolyser would be sized to create enough hydrogen for a day or so’s work.
  • Hydrogen would be generated by off-peak electricity and local renewables.
  • If an operator bought more buses, I’m certain that the architecture of the electrolyser would allow expansion.
  • Hydrogen fuel cells would boost the electricity supply, when lots of buses needed to be charged.
  • Any spare hydrogen could be sold to those who have hydrogen-powered vehicles.
  • Any spare electricity could be sold back to the grid.

It should be noted that manufacturers like Wrightbus have developed a range of hydrogen and electric buses that use the same components. So will we see more mixed fleets of buses, where the best bus is assigned to each route?

I have used buses as an example, but the concept would apply to fleets of cars, trucks and vans.

Green Hydrogen

Large efficient electrolysers will surely be the key to producing large quantities of green hydrogen in the future.

It appears that about 55 MWh is needed to produce a tonne of green hydrogen using existing electrolysers.

The Hoeller electrolyser appears to be about 53 MWh, so it is more efficient.

Green Hydrogen From An Onshore Wind Farm

If you look at the average size of an onshore wind farm in the UK, a quick estimate gives a figure of 62 MW. I shouldn’t expect the figure for much of the world is very different, where you ignore the gigafarms, as these will distort the numbers.

An appropriately-sized electrolyser could be added to onshore wind farms to provide a local source of hydrogen for transport, an industrial process or a domestic gas supply for a new housing estate.

A single 5 MW wind turbine with a capacity factor of around 30 % would produce around 680 Kg of green hydrogen per day.

Green Hydrogen From An Offshore Wind Farm

There are basic methods to do this.

Put the electrolyser onshore or put the electrolyser offshore and pipe the hydrogen to the shore.

I think we will see some innovative configurations.

In ScotWind N3 Offshore Wind Farm, I described how Magnora ASA are developing the ScotWind N3 wind farm.

The floating turbines surround a concrete floater, which in the future could contain an electrolyser and tankage for hydrogen.

The ScotWind N3 wind farm is designed to be a wind farm rated at 500 MW.

I can see an electrolyser on the floater, of an optimal size to make sure all electricity is used.

Pink Hydrogen

Pink hydrogen, is zero-carbon hydrogen produced using nuclear-generated electricity.

There are industrial processes, like the making of zero-carbon chemicals, concrete and steel, that will require large quantities of zero-carbon green or pink hydrogen.

Rolls-Royce are developing the Rolls-Royce SMR, which will be a 470 MW small modular nuclear reactor.

One of these placed near to a steel works and coupled to one or more 100 MW electrolysers could provide enough zero-carbon electricity and hydrogen to produce large quantities of zero-carbon green steel.

Manufacturing

Rolls-Royce and their subsidiaries like mtu, seem to be extensive users of advanced manufacturing techniques and I would expect that they can improve Hoeller’s manufacturing.

Research And Development

The press release says this about the founder of Hoeller.

Its founder, Stefan Höller, has more than a quarter of a century’s experience of developing electrolysis technology and has already registered 14 patents connected with Prometheus.

If Rolls-Royce can develop and support Stefan Höller and his team, development could easily go to a higher level.

Conclusion

I think that Rolls-Royce have taken over a company, that will in the end, will design excellent efficient electrolysers.

 

 

 

June 29, 2022 Posted by | Hydrogen | , , , , , , , , , , , , , , , | 1 Comment