The Anonymous Widower

Huddersfield Station – 30th September 2025

This press release on the Network Rail Media Centre is entitled Huddersfield Station Set To Reopen Next Week With New Temporary Layout.

As it is now next week, I went to have a look at the progress today.

I made a mistake and got on a Grand Central Train, which meant, I had to change at York.

Speeding past Drax power station on the Selby Diversion, I took these pictures.

We were only in a 125 mph diesel, so we couldn’t take advantage of the 160 mph running, that the East Coast Main Line’s new signalling might allow on this section. The Wikipedia entry for the Selby Diversion, says this about the possible speeds.

The line was the first purpose-built section of high-speed railway in the UK having a design speed of 125 mph; however, research by British Rail in the 1990s indicated that the route geometry would permit up to 160 mph operation, subject to the necessary overhead line equipment and signalling upgrades. The new line also avoided the speed restriction over the swing bridge at Selby. The former ECML route, the NER’s 1871 York and Doncaster branch line, was closed from Selby northwards.

As the Selby Diversion opened in 1983, I wouldn’t be surprised that the calculations were performed on British Rail Research’s Pace 231-R, which was similar to the one I used at ICI and the pair, that NASA used calculate how to land Apollo on the moon.

When I eventually got to Huddersfield, I took these pictures.

Note.

  1. In I’ve Just Glimpsed The Future Of Train Travel Across The North Of England And I Like It, there are pictures of Huddersfield station, that were taken on the 21st August, soon after the work started.
  2. In Huddersfield Station – 15th December 2023, there are pictures of Huddersfield before the work started.
  3. Much of the work seems to have been done at the Western end of the station to lengthen the platform on the Penistone Line to Sheffield.
  4. Platform 2 for the Penistone Line has also been renumbered Platform 1.

Work still to be carried out at Huddersfield station, includes refurbishing the roof, installing the electrification and adding a couple of new platforms.

These are my thoughts.

Which Platforms Will Be Electrified?

This OpenRailwayMap shows the proposed electrification in Huddersfield station.

Note.

  1. The blue arrow in the North-East corner of the map indicates Huddersfield atation.
  2. The two red-and-black tracks going diagonally across the map are the Hudderfield Line.
  3. The red-and-black colour, indicates that the two tracks will be electrified.
  4. South of these two tracks, the Penistone Line sneaks into Platform 1 at Huddersfield station.
  5. The Penistone Line goes to Sheffield in a South-Westerly direction.
  6. There appears to be a crossover, so that trains from the Penistone Line can use both Platforms 1 and 2 in Huddersfield station.
  7. The OpenRailwayMap appears to show planned electrification between Stalybridge and Leeds stations.
  8. To the East of Leeds planned electrification is shown as far as Micklefield and Church Fenton stations.

Once installed, this electrification will create a complete electrified route across the Pennines from Liverpool Lime Street in the West to the East Coast Main Line in the East.

This OpenRailwayMap shows the planned electrification between Micklefield and Hull stations.

Note.

  1. Red tracks are electrified.
  2. Black tracks are not electrified.
  3. York is in the North-West corner of the map, with the electrified East Coast Main Line going through the station North-South.
  4. South of York, the East Coast Main Line now splits.
  5. The Western branch includes an electrified line to Micklefield station, Neville Hill depot and Leeds station.
  6. The Eastern Branch is the Selby Diversion, which is an electrified 160 mph line, that avoids the Selby coalfield.
  7. Running West-East across the map is the unlectrified Micklefield and Hull Line, which goes via Selby.
  8. Hull is in the South-East corner of the map.
  9. Hull is 42 miles from Micklefield and 36.1 miles from the Temple Hirst junction on the Selby Diversion, so it is within range of battery-electric trains, with charging at Hull station.
  10. Hitachi’s battery-electric Class 802 trains, used by Hull Trains and TransPennine Express, which are currently on test, should certainly be able to serve Hull.

Hull can become an electrified station, without the expense and disruption of full electrification.

How Long Is Platform 1 At Huddersfield Station?

This OpenRailwayMap shows the new Platform 1 at Huddersfield station.

 

Note.

The blue arrow indicates Huddersfield station.

  1. The three darker orange lines indicate the two through platforms 2 and 3, and the reconfigured bay platform 1.
  2. There is a cross-over between platforms 1 and 2, which connects Platform 2 to the Penistone Line.
  3. In the South-West corner of the map is a hundred metre scale.
  4. Using the scale, I estimate that the length of the bay platform 1 is around 120 metres.
  5. In the last two rows of pictures in the gallery of this post, a three car Class 150 train is shown in Platform 1.
  6. A three car Class 150 train is approximately sixty metres long.

Looking at the pictures, I wouldn’t be surprised if the new platform has been designed to take two three-car Class 150 trains. It would certainly take a pair of two-car Class 150 trains.

Other trains and their lengths that might use the platform include.

  • Class 170 – three-car – 70.85 metres
  • Class 195 – two-car – 48.05 metres
  • Class 195 – three-car – 71.40 metres
  • Class 195 – 2 x two-car – 96.10 metres
  • Class 810 – five-car – 120 metres

The Class 810 uses 24 metre cars, so that a pair of trains, will fit in St. Pancras. But with perhaps selective door opening could a single Class 810 train run a St. Pancras and Huddersfield service, perhaps with a split and join at Sheffield.

Electrification Across The Pennines

The TransPennine Route will be electrified between Liverpool Lime Street and Micklefield stations, once the current works between Huddersfield and Leeds are complete.

Sections without electrification include.

  • Bradford Interchange and Doncaster – 52.1 miles
  • Cleethorpes and Doncaster – 52.1 miles
  • Harrogate and Leeds – 18.3 miles
  • Hazel Grove and Doncaster – 52.6 miles
  • Hull and Micklefield – 42 miles
  • Hull and Temple Hirst junction – 36.1 miles
  •  Saltburn and Northallerton – 28.1 miles
  • Sunderland and Northallerton – 46.8 miles
  • Scarborough and York – 42.1 miles

I expect that Hitachi trains with batteries or CAF’s tri-mode trains will be able to handle these routes in a low-carbon manner.

Electrification Between Stalybridge And Huddersfield

This section is shown as being electrified on OpenRailwayMap.

But as it is only 18 miles and includes the Standedge Tunnels will the route use battery-electric trains?

October 1, 2025 Posted by | Computing, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Should New Stations Be Shown On Google Maps With Opening Dates?

I recently posted a comment on The Times recently, where I suggested a guy was opening one of his coffee shops in a town, that was getting a new railway station.

Another, who commented, suggested that I look at Google Maps to see their relative positions.

The coffee shop was shown, but the station wasn’t.

Surely, once the position of the station is known, it should be marked on Google Maps with an opening date, as this could help people take important decisions about their life.

Blyth Bebside station on the new Northumberland Line between Newcastle and Ashington is already shown with the familiar logo, despite not opening until the 19th of October.

The other two unopened stations on the line, which are Northumberland Park and Bedlington, are going to open next year, are also shown with familiar logos, but no opening date.

Someone in Network Rail, needs to be given the responsibility to make sure that details like this are correct.

In the case of Blyth Bebside station, I can see two different captions indicating the station on Google Maps.

  • Before October 19th 2025 – Blyth Bebside – Opens 19th Octopber 2025.
  • After October 19th 2025 – Blyth Bebside – Opened 19th Octopber 2025.

Detailed labeling may even help deliveries during construction.

 

September 29, 2025 Posted by | Computing, Design | , , , , , | Leave a comment

Where Have The Special Characters Gone In WordPress?

I have just written Ørsted In Talks To Sell Half Of Huge UK Wind Farm To Apollo, where of necessity I have used Ørsted more than a few times.

There used to be an omega character in WordPress, that you used to access the special characters, but it seems to have disappeared.

Does anybody know where it’s gone?

TIA!

September 26, 2025 Posted by | Computing | | 1 Comment

How Will The UK Power All These Proposed Data Centres?

On Wednesday, a cardiologist friend asked me if we have enough power to do Trump’s UK AI, so I felt this post might be a good idea.

Artificial Intelligence Gave This Answer

I first asked Google AI, the title of this post and received this reply.

The UK will power proposed data centres using a mix of grid-supplied low-carbon electricity from sources like offshore wind and through on-site renewable generation, such as rooftop solar panels. Data centre operators are also exploring behind-the-meter options, including battery storage and potential future nuclear power, to meet their significant and growing energy demands. However, the UK’s grid infrastructure and high energy prices present challenges, with industry calls for grid reform and inclusion in energy-intensive industry support schemes to facilitate sustainable growth.

Google also pointed me at the article on the BBC, which is entitled Data Centres To Be Expanded Across UK As Concerns Mount.

This is the sub-heading.

The number of data centres in the UK is set to increase by almost a fifth, according to figures shared with BBC News.

These are the first three paragraphs.

Data centres are giant warehouses full of powerful computers used to run digital services from movie streaming to online banking – there are currently an estimated 477 of them in the UK.

Construction researchers Barbour ABI have analysed planning documents and say that number is set to jump by almost 100, as the growth in artificial intelligence (AI) increases the need for processing power.

The majority are due to be built in the next five years. However, there are concerns about the huge amount of energy and water the new data centres will consume.

Where Are The Data Centres To Be Built?

The BBC article gives this summary of the locations.

More than half of the new data centres would be in London and neighbouring counties.

Many are privately funded by US tech giants such as Google and Microsoft and major investment firms.

A further nine are planned in Wales, one in Scotland, five in Greater Manchester and a handful in other parts of the UK, the data shows.

While the new data centres are mostly due for completion by 2030, the biggest single one planned would come later – a £10bn AI data centre in Blyth, near Newcastle, for the American private investment and wealth management company Blackstone Group.

It would involve building 10 giant buildings covering 540,000 square metres – the size of several large shopping centres – on the site of the former Blyth Power Station.

Work is set to begin in 2031 and last for more than three years.

Microsoft is planning four new data centres in the UK at a total cost of £330m, with an estimated completion between 2027 and 2029 – two in the Leeds area, one near Newport in Wales, and a five-storey site in Acton, north-west London.

And Google is building a data centre in Hertfordshire, an investment worth £740m, which it says will use air to cool its servers rather than water.

There is a map of the UK, with dots showing data centres everywhere.

One will certainly be coming to a suitable space near you.

Concerns Over Energy Needs

These three paragraphs from the BBC article, talk about the concerns about energy needs.

According to the National Energy System Operator, NESO, the projected growth of data centres in Great Britain could “add up to 71 TWh of electricity demand” in the next 25 years, which it says redoubles the need for clean power – such as offshore wind.

Bruce Owen, regional president of data centre operator Equinix, said the UK’s high energy costs, as well as concerns around lengthy planning processes, were prompting some operators to consider building elsewhere.

“If I want to build a new data centre here within the UK, we’re talking five to seven years before I even have planning permission or access to power in order to do that,” he told BBC Radio 4’s Today programme.

But in Renewable Power By 2030 In The UK, I calculated that by 2030 we will add these yearly additions of offshore wind power.

  • 2025 – 1,235 MW
  • 2026 – 4,807 MW
  • 2027 – 5,350 MW
  • 2028 – 4,998 MW
  • 2029 – 9,631 MW
  • 2030 – 15,263 MW

Note.

  1. I have used pessimistic dates.
  2. There are likely to be more announcements of offshore wind power in the sea around the UK, in the coming months.
  3. As an example in Cerulean Winds Submits 1 GW Aspen Offshore Wind Project In Scotland (UK), I talk about 3 GW of offshore wind, that is not included in my yearly totals.
  4. The yearly totals add up to a total of 58,897 MW.

For solar power, I just asked Google AI and received this answer.

The UK government aims to have between 45 and 47 gigawatts (GW) of solar power capacity by 2030. This goal is set out in the Solar Roadmap and aims to reduce energy bills and support the UK’s clean power objectives. The roadmap includes measures like installing solar on new homes and buildings, exploring solar carports, and improving access to rooftop solar for renters.

Let’s assume that we only achieve the lowest value of 45 GW.

But that will still give us at least 100 GW of renewable zero-carbon power.

What will happen if the wind doesn’t blow and the sun doesn’t shine?

I have also written about nuclear developments, that were announced during Trump’s visit.

This is an impressive array of nuclear power, that should be able to fill in most of the weather-induced gaps.

In Renewable Power By 2030 In The UK, I also summarise energy storage.

For pumped storage hydro, I asked Google AI and received this answer.

The UK’s pumped storage hydro (PSH) capacity is projected to more than double by 2030, with six projects in Scotland, including Coire Glas and Cruachan 2, potentially increasing capacity to around 7.7 GW from the current approximately 3 GW. This would be a significant step towards meeting the National Grid’s required 13 GW of new energy storage by 2030, though achieving this depends on policy support and investment.

There will also be smaller lithium-ion batteries and long duration energy storage from companies like Highview Power.

But I believe there will be another source of energy that will ensure that the UK achieves energy security.

SSE’s Next Generation Power Stations

So far two of these power stations have been proposed.

  • Keadby will be 900 MW and has this web site.
  • Ferrybridge will be 1200 MW and has this web site.

Note.

  1. Both power stations are being designed so they can run on natural gas, 100 % hydrogen or a blend of natural gas and hydrogen.
  2. Keadby will share a site with three natural gas-powered power stations and be connected to the hydrogen storage at Aldbrough, so both fuels will be available.
  3. Ferrybridge will be the first gas/hydrogen power station on the Ferrybridge site and will have its own natural gas connection.
  4. How Ferrybridge will receive hydrogen has still to be decided.
  5. In Hydrogen Milestone: UK’s First Hydrogen-to-Power Trial At Brigg Energy Park, I describe how Centrica tested Brigg gas-fired power station on a hydrogen blend.
  6. The power stations will initially run on natural gas and then gradually switch over to lower carbon fuels, once delivery of the hydrogen has been solved for each site.

On Thursday, I went to see SSE’s consultation at Knottingley for the Ferrybridge power station, which I wrote about in Visiting The Consultation For Ferrybridge Next Generation Power Station At Knottingley.

In the related post, I proposed using special trains to deliver the hydrogen from where it is produced to where it is needed.

Could HiiROC Be Used At Ferrybridge?

Consider.

  • HiiROC use a process called thermal plasma electrolysis to split any hydrocarbon gas into hydrogen and carbon black.
  • Typical input gases are chemical plant off gas, biomethane and natural gas.
  • Carbon black has uses in manufacturing and agriculture.
  • HiiROC uses less energy than traditional electrolysis.
  • There is an independent power source at Ferrybridge from burning waste, which could be used to ower a HiiROC  system to generate the hydrogen.

It might be possible to not have a separate hydrogen feed and still get worthwhile carbon emission savings.

Conclusion

I believe we will have enough electricity to power all the data centres, that will be built in the next few years in the UK.

Some of the new power stations, that are proposed to be built, like some of the SMRs and SSE’s Next Generation power stations could even be co-located with data centres or other high energy users.

In Nuclear Plan For Decommissioned Coal Power Station, I describe how at the former site of Cottam coal-fired power station, it is proposed that two Holtec SMR-300 SMRs will be installed to power advanced data centres. If the locals are objecting to nuclear stations, I’m sure that an SSE Next Generation power station, that was burning clean hydrogen, would be more acceptable.

 

 

 

 

September 23, 2025 Posted by | Artificial Intelligence, Computing, Energy, Energy Storage, Hydrogen, World | , , , , , , , , , , , , , , , , , , , , | Leave a comment

National Grid And Emerald AI Announce Strategic Partnership To Demonstrate AI Power Flexibility In The UK

The title of this post, is the same as that of this press release from National Grid.

This is the sub-heading.

National Grid and Emerald AI are partnering to show how AI data centres can support a smarter, more flexible grid.
A UK-first live trial is planned for late 2025 on a grid connected data centre using Emerald AI’s platform.
Targeted for late 2025, the demonstration will use cutting-edge NVIDIA GPUs, to dynamically adjust energy consumption
Increased flexibility of data centre consumption can unlock capacity and accelerate connections to the electricity network.

These three introductory paragraphs indicate how the strategy partnership will work.

National Grid and Emerald AI today announced a strategic partnership to demonstrate how AI data centres can work with the transmission network to adjust their energy use in real time, making better use of existing capacity to support the UK’s growing digital needs.

The partners will deliver a live demonstration in the United Kingdom showcasing Emerald Conductor, an AI-powered system that acts as a smart mediator between the grid and a data centre, supporting flexible management of energy demand. Targeted for late 2025, the demonstration will use cutting-edge NVIDIA GPUs, dynamically adjust energy consumption, and support grid stability.

The electricity transmission network is designed with built-in redundancy to deliver world-class reliability and keep the lights on for customers. Capacity is typically available outside of peak events like hot summer days or cold winter storms, when there’s high demand for cooling and heating. That means, in many cases, there’s room on the existing grid to connect new data centres, if they can temporarily dial down energy usage during periods of peak demand.

Yesterday, there was an article in The Times which was entitled Octopus Energy Prepares Kraken Software Arm for Potential IPO.

I asked Google AI what Octopus Energy’s Kraken software does and received this answer.

Launched as part of the Octopus Energy Group in 2016, Kraken now serves 70 million household and business energy accounts worldwide through an operating system that processes 15 billion new data points each day. The software underpins Octopus Energy’s customer management and increasingly sophisticated smart tariffs.

I wouldn’t be surprised that similar methodology is used by both Emerald IT and Kraken.

As I have written at least four scheduling algorithms to best allocate available resources to tasks that need to be done for project management and other similar fields, I would have my ideas about the methods used by the two companies.

I am also sure, that the generic algorithm, that I have used in the past, could step up to the plate one more time, if anybody were to be interested.

 

September 19, 2025 Posted by | Computing, Energy | , , , , , , | 1 Comment

Is Last Energy The Artemis Of Energy?

In Raft Of US-UK Nuclear Deals Ahead Of Trump Visit, I quoted from this article on World Nuclear News.

The article also contains, these two paragraphs, with talk about an MoU between Last Energy and DP World.

An MoU has also been signed between US-based micro-nuclear technology developer Last Energy and DP World, a global leader in logistics and trade, to establish the world’s first port-centric micro nuclear power plant at London Gateway. A proposed PWR-20 microreactor – to begin operations in 2030 – would supply London Gateway with 20 MWe of electricity to power the logistics hub, with additional capacity exported to the grid.

“The initiative represents a GBP80 million (USD109 million), subsidy-free investment for the development of Last Energy’s first unit, unlocking clean power supply for DP World’s ongoing GBP1 billion expansion of London Gateway,” Last Energy said. “The partnership is closely aligned with both UK and US ambitions to increase nuclear capacity and strengthen long-term energy security.”

Note.

  1. Last Energy are proposing a micro-reactor of just 20 MW.
  2. DP World own and/or operate sixty ports in over forty countries, so should know their energy requirements well.
  3. It appears that DP World are investing £80 million in Last Energy’s first unit.
  4. Thurrock Storage is a 300 MW/600 MWh battery close to London Gateway and the Port of Tilbury.

This Google Map shows London Gateway and the Port of Tilbury.

Note.

  1. DP World London Gateway is in the North-East corner of the map.
  2. The A13 road runs across the North-West corner of the map and links the area to London and the M25.
  3. Thurrock Storage is next to the Tilbury substation, which is marked by the red arrow.
  4. The Port of Tilbury is to the West of the substation.

I wonder if DP World London Gateway have had power supply problems.

The Design Of The First Artemis Project Management Software System

Before Artemis, project management was usually done on a large mainframe computer like an IBM-360-50, that I’d used extensively for solving simultaneous differential equations  in a previous job at ICI.

Mainframe computers worked on complex problems, but to put it mildly, they were slow and needed a team to operate them and a big air-conditioned room to keep them happy.

When the four of us decided to create Artemis, our vision was something simpler.

  • A processor – something like a PDP-11, which I judged would be big-enough for the computing.
  • A visual display unit.
  • A printer.
  • A standard-size desk to hold the hardware.
  • Ability to run from a 13-amp socket.

When it came to writing the software, I took few risks.

  • Much of the data decoding software, I’d developed when I left ICI to write a program to solve up to a thousand simultaneous differential equations.
  • The scheduling software was generic and I’d first used it for different purposes in two programs at ICI.
  • The aggregation software had been devised, whilst I was a consultant at Lloyds Bank over several bottles of wine with their Chief Management Accountant, who was a wizard with numbers. I suspect, but can’t prove it, that if the idiots that programmed the Horizon system for the Post Office had used that algorithm, the problems there would have been much smaller.
  • I also spent a lot of time reading old papers from the 1950s in IBM’s library on the South Bank, looking for better algorithms.
  • I also made sure, I chose the best hardware and I believe HP did us proud.
  • I used HP’s operating system and proprietary database to cut down, what could go wrong.
  • Almost all of the first system was written by one person – me!

But we also put the right features into how we supported, delivered and trained users of the system.

I certainly, think we made few mistakes in the design of that first system.

Have Last Energy Used A Similar Cut Back Approach?

Reading their web site, I think they have.

They have obviously chosen, the 20 MW unit size with care.

But from worldwide experience with wind turbines, linking smaller power sources together, is not as difficult as it once was.

These are some of the statements on their web site’s introductory screens.

  • Fully Modular, Factory Made
  • A Scalable Solution
  • <24 Month Delivery
  • 100+ Supply Chain Partners
  • 300+ Pressurised Water Reactors Operating Globally
  • 0.3 acre – Plant Footprint Fits Within A Football Field

But a chain is only as strong as its weakest link.

It should be noted, that I have been over several nuclear power stations.

Three were a tour to show me how Artemis was being used to track and sign off, the problems identified after the Three Mile Island incident.

The other was a trip over Sizewell A, a couple of years before it was decommissioned.

Comparing these experiences with some of the chemical plants, that I’ve worked on, I would prefer to be close to a nuclear power plant.

September 17, 2025 Posted by | Computing, Design, Energy | , , , , , , , , , , , , | 1 Comment

Centrica And X-energy Agree To Deploy UK’s First Advanced Modular Reactors

The title of this post, is the same as that of this press release from Centrica.

This is the sub-heading.

Centrica and X-Energy, LLC, a wholly-owned subsidiary of X-Energy Reactor Company, LLC, today announced their entry into a Joint Development Agreement (JDA) to deploy X-energy’s Xe-100 Advanced Modular Reactors (“AMR”) in the United Kingdom.

These three paragraphs add more details.

The companies have identified EDF and Centrica’s Hartlepool site as the preferred first site for a planned U.K. fleet of up to 6 gigawatts.

The agreement represents the first stage in a new trans-Atlantic alliance which could ultimately mobilise at least £40 billion in economic value to bring clean, safe and affordable power to thousands of homes and industries across the country and substantive work for the domestic and global supply chain.

A 12-unit Xe-100 deployment at Hartlepool could add up to 960 megawatts (“MW”) of new capacity, enough clean power for 1.5 million homes and over £12 billion in lifetime economic value. It would be developed at a site adjacent to Hartlepool’s existing nuclear power station which is currently scheduled to cease generating electricity in 2028. Following its decommissioning, new reactors would accelerate opportunities for the site and its skilled workforce. The site is already designated for new nuclear under the Government’s National Policy Statement and a new plant would also play a critical role in generating high-temperature heat that could support Teesside’s heavy industries.

This is no toe-in-the-water project, but a bold deployment of a fleet of small modular reactors to provide the power for the North-East of England for the foreseeable future.

These are my thoughts.

The Reactor Design

The Wikipedia entry for X-energy has a section called Reactor Design, where this is said.

The Xe-100 is a proposed pebble bed high-temperature gas-cooled nuclear reactor design that is planned to be smaller, simpler and safer when compared to conventional nuclear designs. Pebble bed high temperature gas-cooled reactors were first proposed in 1944. Each reactor is planned to generate 200 MWt and approximately 76 MWe. The fuel for the Xe-100 is a spherical fuel element, or pebble, that utilizes the tristructural isotropic (TRISO) particle nuclear fuel design, with high-assay LEU (HALEU) uranium fuel enriched to 20%, to allow for longer periods between refueling. X-energy claims that TRISO fuel will make nuclear meltdowns virtually impossible.

Note.

  1. It is not a conventional design.
  2. Each reactor is only about 76 MW.
  3. This fits with “12-unit Xe-100 deployment at Hartlepool could add up to 960 megawatts (“MW”) of new capacity” in the Centrica press release.
  4. The 960 MW proposed for Hartlepool is roughly twice the size of the Rolls-Rpoyce SMR, which is 470 MW .
  5. Safety seems to be at the forefront of the design.
  6. I would assume, that the modular nature of the design, makes expansion easier.

I have no reason to believe that it is not a well-designed reactor.

Will Hartlepool Be The First Site?

No!

This page on the X-energy web site, describes their site in Texas, which appears will be a 320 MW power station providing power for Dow’s large site.

There appear to be similarities between the Texas and Hartlepool sites.

  • Both are supporting industry clustered close to the power station.
  • Both power stations appear to be supplying heat as well as electricity, which is common practice on large industrial sites.
  • Both use a fleet of small modular reactors.

But Hartlepool will use twelve reactors, as opposed to the four in Texas.

How Will The New Power Station Compare With The Current Hartlepool Nuclear Power Station?

Consider.

  • The current Hartlepool nuclear power station has two units with a total capacity of 1,185 MW.
  • The proposed Hartlepool nuclear power station will have twelve units with a total capacity of 960 MW.
  • My instinct as a Control Engineer gives me the feeling, that more units means higher reliability.
  • I suspect that offshore wind will make up the difference between the power output of the current and proposed power stations.

As the current Hartlepool nuclear power station is effectively being replaced with a slightly smaller station new station, if they get the project management right, it could be a painless exercise.

Will This Be The First Of Several Projects?

The press release has this paragraph.

Centrica will provide initial project capital for development with the goal of initiating full-scale activities in 2026. Subject to regulatory approval, the first electricity generation would be expected in the mid-2030s. Centrica and X-energy are already in discussions with additional potential equity partners, as well as leading global engineering and construction companies, with the goal of establishing a UK-based development company to develop this first and subsequent projects.

This approach is very similar to the approach being taken by Rolls-Royce for their small modular reactors.

Will Centrica Use An X-energy Fleet Of Advanced Modular Reactors At The Grain LNG Terminal?

This press release from Centrica is entitled Investment In Grain LNG Terminal.

This is one of the key highlights of the press release.

Opportunities for efficiencies to create additional near-term value, and future development options including a combined heat and power plant, bunkering, hydrogen and ammonia.

Note.

  1. Bunkering would be provided for ships powered by LNG, hydrogen or ammonia.
  2. Heat would be needed from the combined heat and power plant to gasify the LNG.
  3. Power would be needed from the combined heat and power plant to generate the hydrogen and ammonia and compress and/or liquify gases.

Currently, the heat and power is provided by the 1,275 MW Grain CHP gas-fired power station, but a new nuclear power station would help to decarbonise the terminal.

Replacement Of Heysham 1 Nuclear Power Station

Heysham 1 nuclear power station is part-owned by Centrica and EdF, as is Hartlepool nuclear power station.

Heysham 1 nuclear power station is a 3,000 MW nuclear power station, which is due to be decommissioned in 2028.

I don’t see why this power station can’t be replaced in the same manner as Hartlepool nuclear power station.

Replacement Of Heysham 2 Nuclear Power Station

Heysham 2 nuclear power station is part-owned by Centrica and EdF, as is Hartlepool nuclear power station.

Heysham 2 nuclear power station is a 3,100 MW nuclear power station, which is due to be decommissioned in 2030.

I don’t see why this power station can’t be replaced in the same manner as Hartlepool nuclear power station.

Replacement Of Torness Nuclear Power Station

Torness nuclear power station is part-owned by Centrica and EdF, as is Hartlepool nuclear power station.

Torness nuclear power station is a 1,290 MW nuclear power station, which is due to be decommissioned in 2030.

I don’t see why this power station can’t be replaced in the same manner as Hartlepool nuclear power station.

But the Scottish Nationalist Party may have other ideas?

What Would Be The Size Of Centrica’s And X-energy’s Fleet Of Advanced Modular Reactors?

Suppose.

  • Hartlepool, Grain CHP and Torness power stations were to be replaced by identical 960 MW ADRs.
  • Heysham 1 and Heysham 2 power stations were to be replaced by identical 1,500 MW ADRs.

This would give a total fleet size of 5,880 MW.

A paragraph in Centrica’s press release says this.

The companies have identified EDF and Centrica’s Hartlepool site as the preferred first site for a planned U.K. fleet of up to 6 gigawatts.

This fleet is only 120 MW short.

 

 

 

 

 

 

 

September 15, 2025 Posted by | Computing, Design, Energy, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

I’ve Signed Up For A Heata

I’ve now got the new boiler, I said I was getting in I’m Getting A New Hydrogen-Ready Boiler.

But unfortunately, during the fitting, we found that my hot water system had a leak problem and the immersion heater wasn’t working.

So I decided to sign up for a heata, which I wrote about in British Gas Partners With heata On Trial To Reuse Waste Heat From Data Processing.

It was a painless process, but unfortunately, I can’t have one yet, as they told me this.

Thank you for registering interest in being part of the heata network, very much appreciated.

We’ll be in touch when there is an opportunity to be part of a pilot, eg testing our unvented heata unit, or to join the network as it expands.

The heata team.

That is very fair.

They didn’t request anything more than name, e-mail address, broadband speed and my hot water tank type.

They didn’t ask for full address, credit card or even, who was my energy supplier.

In the meantime, I can use the new boiler for hot water.

How Heata Works

This page on the heata web site, describes how the system works.

September 10, 2025 Posted by | Computing, Energy | , , | Leave a comment

I’m Getting A New Hydrogen-Ready Boiler

The pump in my current nine-year-old boiler has died and it needs to be replaced.

The plumber gave me two solutions.

  • Put a new pump in the old boiler.
  • Replace the boiler with the current version of the old boiler.

Note.

  1. The plumber said the new boiler would be hydrogen-ready.
  2. I seem to remember the same pump failed before.
  3. The pump had failed because of a water-leak into its electrics.
  4. Was the previous failure of the pump caused by the same water-leak?
  5. Fitting a heat pump in my house would probably cost more than I could afford.
  6. The new boiler would come with a ten-year guarantee.

As an engineer, I can see the following scenarios for heating my house and providing hot water.

1. Keeping Calm And Carrying On

This means that the current arrangements for energy continue.

  • There would be no compulsory heat pumps.
  • There would be no change to any of my hardware, after installing the new boiler.
  • I would continue to get gas for heating and hot water  delivered through the mains.

The new boiler solution should give me ten years of reasonably trouble free-running, so long as the gas was natural gas, hydrogen blend or hydrogen.

2. Keeping Calm And Carrying On But My Energy Supplier Switches My Gas To 20 % Hydrogen-Blend

This means that the current arrangements for energy continue.

  • There would be no compulsory heat pumps.
  • There would be no change to any of my hardware, after installing the new boiler.
  • I would continue to get gas for heating and hot water  delivered through the mains.
  • The gas pipe into my house would have to be checked for compatibility with hydrogen-blend. But then I encountered no problems when switched from coal-gas to North Sea Gas around 1970.

The new boiler solution should give me ten years of reasonably trouble free-running, so long as the gas was natural gas, hydrogen-blend or hydrogen.

3. Keeping Calm And Carrying On But My Energy Supplier Switches My Gas To 100 % Hydrogen

This means that the current arrangements for energy continue.

  • There would be no compulsory heat pumps.
  • There would be no change to any of my hardware, after installing the new boiler.
  • I would continue to get gas for heating and hot water  delivered through the mains.
  • The gas pipe into my house would have to be checked for compatibility with hydrogen.

The new boiler solution should give me ten years of reasonably trouble free-running, so long as the gas was natural gas, hydrogen blend or hydrogen.

4. Switching To Some Form Of Heat Pump

  • This would mean that I would go all electric.
  • My house is a concrete lump and a guy I trust, said it would be difficult to fit a heat pump.
  • I am suspicious of scientific and technical solutions proposed by politicians.

I’m not saying, I’d never use a heat pump, but I will take a lot of convincing.

5. Switching To Some New Form Of Electric Heating

I have seen two companies, which use the excess heat from a data centre to heat water for central heating and/or hot water for domestic needs.

  • heata is a spin out from Centrica, that provides hot water and saves you money on your utility bill.
  • thermify is a startup from Wales, that replaces the gas boiler, with an electric one.

There are probably other similar systems under development.

From my knowledge of computing and electrical engineering, I believe devices like this could be new form of cost-efficient electric heating.

Because my house has three-bedrooms, I would need a thermify, for both heating and hot water, but a heata working in tandem with my gas boiler could probably keep me in hot water.

I would feel that large blocks of flats or offices could have a data centre in the basement to provide heat for the building.

I would also suspect, that there are other devices out there, that work on different principles.

My Decision

I’m fitting a new boiler, as that should give me ten years’guarantee-backed and trouble free running and future-proof me for all possible government decisions, except saying that everybody must fit a heat pump.

When, this new boiler pops its clogs, i would hope, that some clever engineers have come up with a plug-compatible electric replacement for the new boiler I am about to have fitted.

September 8, 2025 Posted by | Computing, Hydrogen | , , , , , , , | 2 Comments

Do Vitamin B12 Injections Make You Drowsy?

For the last couple of days I’ve been feeling a bit drowsy.

  • The physio at my fitness class possibly noticed it on Friday.
  • I certainly had a good siesta on Friday afternoon.
  • This morning I went back to bed after the Ocado delivery at 06:30 and slept for an hour.

Google AI gave this answer to my question.

Cyanocobalamin is a form of vitamin B12 that is used to increase vitamin B12 levels. It is available in a variety of forms over the counter as a supplement and by prescription as an injection or nasal spray. Some common side effects may include headache, feeling weak or tired, and nausea.

I certainly didn’t have any headache or nausea. But then I rarely have the first and only have the second, when I see Donald Trump or Vladimir Putin on the television.

According to the BBC, we have been having unusually low atmospheric pressure for this time of year.

So I also asked Google AI if low atmospheric pressure can make you drowsy.

Google AI gave this answer to my question.

Yes, low atmospheric pressure can make you drowsy. This is because low pressure systems, often associated with stormy or cloudy weather, can lead to decreased sunlight exposure, which can disrupt the body’s natural sleep-wake cycle (circadian rhythm) and increase melatonin production, the hormone that promotes sleep. Additionally, low pressure can reduce oxygen saturation, potentially causing fatigue.

As my now-retired GP felt I was badly affected by low atmospheric pressure, I’ll go along with that!

As that GP and myself felt that low atmospheric pressure drew water out of my body and made me dehydrated, I asked Google a supplementary question – Does dehydration make you drowsy?

Google AI gave this answer to my question.

Yes, dehydration can definitely make you feel drowsy. When your body is dehydrated, it doesn’t have enough fluids to function optimally, which can lead to fatigue and drowsiness. Dehydration can also cause a drop in blood pressure, which can reduce blood flow to the brain, further contributing to feelings of tiredness and sleepiness, according to A.Vogel UK.

I’ll go along with that.

Conclusion

Did the combination of the B12 injection and the low atmospheric pressure combine to make me unusually drowsy?

It’s certainly a possibility.

The more I ask Dr. Google questions, that he passes to his computerised assistant, the more I like and trust the system.

 

 

August 2, 2025 Posted by | Computing, Health | , , , , , , , , , | 3 Comments