The Anonymous Widower

Great Yarmouth Terminal Set For Redevelopment Under Port Of East Anglia Name

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

The UK’s Peel Ports Group has decided to invest a further GBP 10 million (approximately EUR 11.3 million) into its Great Yarmouth site, which is being rebranded as the Port of East Anglia.

These four paragraphs add details to the story.

The newly announced GBP 10 million brings this year’s total investment to GBP 70 million across the site and will be used to redevelop the port’s Northern Terminal, helping to accommodate the next generation of offshore wind projects across the region, according to Peel Ports.

Earlier this year, a substantial investment into its Southern Terminal was announced by the port, which has earmarked GBP 60 million to transform capacity and improve efficiencies.

This involves ensuring the port can support multiple hydrogen, carbon capture, offshore wind, and nuclear projects for decades to come.

Its existing terminals service a variety of construction customers, including infrastructure projects such as Sizewell C and offshore energy projects based in the southern North Sea.

Note.

  1. In Yarmouth Harbour To Be ‘Completed’ In £60m Project, I talk about the work to be done on the Southern Terminal.
  2. The work on the Southern Terminal includes a roll-on roll-off (RORO) lift ramp and a large storage area.
  3. Start on the work on the Southern Terminal will start in 2026.

With all the construction work mentioned in the last two paragraphs, I suspect that the Port of Great Yarmouth will be busy?

These are some further thoughts.

Why Is The Port Of Great Yarmouth Being Renamed?

The article says this.

The new name, which will come into effect in early 2026, also aligns with the creation of a new combined authority for Suffolk and Norfolk, according to Peel Ports.

Peel Ports name change is fairly sensible, but as I was conceived in Suffolk and I’m an Ipswich Town supporter, I don’t feel that the two counties should be merged.

 

Does The Mention Of Hydrogen Mean That The Port Of Great Yarmouth Will Be Hosting A Hydrogen Electrolyser, To Fuel Trucks And Ships?

I asked Google AI, “If A Hydrogen Electrolyser is To Be Built In The Port Of Great Yarmouth?”, and received this answer.

While there are no current public plans for an immediate construction of a large-scale hydrogen electrolyser within the Port of Great Yarmouth, significant port expansion and infrastructure upgrades are underway to ensure it can support future hydrogen projects and related clean energy initiatives.

Note.

  1. If technology to handle hydrogen, is copied from North Sea gas, there is certainly a lot of proven technology that can be used again.
  2. There may even be depleted gas fields, where captured carbon dioxide, hydrogen or North Sea gas can be stored.

I find the most exciting thing, would be to send hydrogen to Germany.

Why Would Anybody Export Hydrogen To Germany?

I asked Google AI, the question in the title of this section and received this answer.

Countries would export hydrogen to Germany because Germany has a large, growing demand for hydrogen to power its heavily industrialised economy and achieve its decarbonisation goals, but lacks sufficient domestic renewable energy capacity to produce the required amounts.

Germany also, uses a lot of bloodstained Russian gas and indigenous polluting coal.

How Could Anybody Export Hydrogen To Germany?

  1. Wilhelmshaven is one of the main import ports for hydrogen in North West Germany.
  2. Great Yarmouth is probably the closest larger port to Germany.
  3. Great Yarmouth and Wilhelmshaven are probably about 300 miles apart, by the shortest route.
  4. Great Yarmouth would need to build infrastructure to export hydrogen.

The easiest way to transport the hydrogen from Great Yarmouth to Wilhelmshaven, is probably to use a gas tanker built especially for the route.

This Google Map shows the route between Great Yarmouth and Wilhelmshaven.

 

Note.

  1. The North-East corner of East Anglia with Great Yarmouth to the North of Lowestoft, is in the bottom-left corner of the map.
  2. Wilhelmshaven is a few miles inland in the top-right corner of the map.
  3. Could a coastal tanker go along the Dutch and German coasts to Wilhelmshaven?

I have no skills in boats, but would Great Yarmouth to Wilhelmshaven to take hydrogen to Germany?

RWE Are Developing Three Wind Farms To The North-East of Great Yarmouth

RWE are a large German Electricity company and the UK’s largest generator of electricity.

The company is developing three wind farms to the North-East of Great Yarmouth.

  • Norfolk Boreas – 1.2 GW – 45 miles offshore
  • Norfolk Vanguard West – 1.2 GW – 29 miles offshore
  • Norfolk Vanguard East – 1.2 GW – 28 miles offshore

Note.

  1. The electricity for all three wind farms is to be brought ashore at Happisburgh South, which is about 22 miles North of Great Yarmouth.
  2. The original plan was to take the electricity halfway across Norfolk to the Necton substation to connect to the grid.
  3. The natives will not be happy about a 4.2 GW overhead line between Happisburgh and Necton.
  4. RWE have built offshore electrolysers before in German waters.
  5. Could an electrical cable or a hydrogen pipe be laid in the sea between Happisburgh South and the Port of Great Yarmouth?
  6. The electrolyser could either be offshore at Happisburgh or onshore in the Port of Great Yarmouth.

As I don’t suspect these three wind farms will be the last connected to the Port of Great Yarmouth, I would expect that RWE will put the electrolyser offshore at Happisburgh  and connect it by a hydrogen pipeline to the Port of Great Yarmouth.

Could There Be A Connection To The Bacton Gas Terminal?

Consider.

The Bacton Gas Terminal, which feeds gas into the UK Gas Network, is only 4.2 miles up the coast from Happisburgh South.

Some climate scientists advocate blending hydrogen into the gas supply to reduce carbon emissions.

In Better Than A Kick In The Teeth – As C Would Say!, I disclosed that I now have a new hydrogen-ready boiler, so I’m not bothered, if I get changed to a hydrogen blend.

So could hydrogen from the Norfolk wind farms be fed into the grid to reduce carbon emissions?

Could The Port Of Great Yarmouth Become A Hydrogen Distribution Centre?

Thinking about it, the port could also become a distribution centre for green hydrogen.

Consider.

  • Hydrogen-powered ships, tugs and workboats could be refuelled.
  • Hydrogen-powered trucks could also be refuelled.
  • Tanker-trucks could distribute hydrogen, to truck and bus operators, farms and factories, that need it for their transport and operations.
  • I believe, that construction equipment will be increasingly hydrogen-powered.

In my life, I have lived at times in two country houses, that were heated by propane and there are about 200,000 off-grid houses in the UK, that are heated this way.

The two houses, where I lived would have been a nightmare to convert to heat pumps, but it would have been very easy to convert them to a hydrogen boiler and power it from a tank in the garden.

It should be noted, that the new boiler in my house in London is hydrogen-ready.

So the Port of Great Yarmouth could be the major centre for hydrogen distribution in Norfolk.

In the 1960s, I used to work in ICI’s hydrogen plant at Runcorn. If you ride in a hydrogen bus in England, it is likely that the hydrogen came from the same plant. Handled correctly, hydrogen is no less safe and reliable than natural gas or propane.

 

 

 

 

October 31, 2025 Posted by | Artificial Intelligence, Energy, Energy Storage | , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Investment in Grain LNG

The title of this post, is the same as that of this press release from Centrica.

This sub-heading outlines the deal.

Centrica plc (the “Company”, “Centrica”) is pleased to announce the acquisition of the Isle of Grain liquified natural gas terminal (“Grain LNG”) in partnership1 with Energy Capital Partners LLP (“ECP”) from National Grid group (“National Grid”) for an enterprise value of £1.5 billion. After taking into account approximately £1.1 billion of new non-recourse project finance debt, Centrica’s 50% share of the equity investment is approximately £200 million.

The press release lists these key points.

  • Grain LNG delivers vital energy security for the UK, providing critical LNG import/export, regasification and rapid response gas storage capacity to balance the energy system.
  • Aligned with Centrica’s strategy of investing in regulated and contracted assets supporting the energy transition, delivering predictable long-term, inflation-linked cash flows, with 100% of capacity contracted until 2029, >70% until 2038 and >50% until 2045.
  • Opportunities for efficiencies to create additional near-term value, and future development options including a combined heat and power plant, bunkering, hydrogen and ammonia.
  • Highly efficient funding structure, with Centrica’s equity investment of approximately £200 million alongside non-recourse project financing.
  • Strong life of asset returns aligned with Centrica’s financial framework, with an expected unlevered IRR2 of around 9% and an equity IRR2 of around 14%+
    Underpins delivery of £1.6 billion end-2028 EBITDA target3 – Centrica’s share of EBITDA expected to be approximately £100 million per annum and cash distributions expected to be around £20 million on average per annum for 2026-2028, representing an attractive yield on Centrica’s equity investment
  • Partnership with ECP (part of Bridgepoint Group plc), one of the largest private owners of natural gas generation and infrastructure assets in the U.S. with direct experience in supporting grid reliability.

This Google Map shows the various energy assets on the Isle of Grain.

 

Note.

  1. It appears that works for the 1, 400 MW NeuConnect interconnector to Wilhelmshaven in Germany, are taking place in the North-East corner of the map.
  2. Grain CHP powerstation is a 1,275MW CCGT power station, which is owned by German company; Uniper, that is in the South-East corner of the map, which can also supply up to 340MW of heat energy recovered from the steam condensation to run the vapourisers in the nearby liquefied natural gas terminal.
  3. The Grain LNG terminal is at the Western side of the map.
  4. In the Thames Estuary to the East of the Isle of Grain, I estimate that there are about 1,500 MW of wind turbines.

I find it interesting that two of the assets are German owned.

I have some thoughts.

It Is A Large Site With Space For Expansion

This Google Map shows the whole of the Isle of Grain.

Note.

  1. The Grain LNG terminal is around the label Wallend.
  2. The River Medway runs East-West at the bottom of the map.
  3. Gas tankers deliver and take on gas at jetties on the North Bank of the Medway.

There could be space to expand the terminal, if the RSPB would allow it.

As an example, I asked Google AI, if peregrine falcons nest on chemical plants and got this reply.

Yes, peregrine falcons do nest on chemical plants. They have adapted to using various urban and industrial structures, including chemical plants, for nesting. This is particularly true in areas where natural cliff habitats are scarce.

Peregrine falcons are known for their adaptability, and their population has seen a resurgence in recent decades, partly due to their ability to utilize man-made structures. These structures often mimic their natural cliffside nesting

Cliffs do seem scarce on the Isle of Grain. I also asked Google AI, if peregrine falcons ate small rodents, as several chemical and other plants, where I’ve worked, had a rodent problem. One plant had a cat problem, as there had been so many rats. This was the reply.

Yes, peregrine falcons do eat small rodents, though they primarily consume birds. While their diet mainly consists of other birds like pigeons, doves, and waterfowl, they will also hunt and eat small mammals, including rodents such as mice, rats, and voles. They are opportunistic hunters and will take advantage of readily available prey, including insects, amphibians, and even fish.

I’m sure if Centrica wanted to expand, they’d employ the best experts.

Who Are ECP?

One of the key points of the press release is that this deal is a partnership with ECP (part of Bridgepoint Group plc), one of the largest private owners of natural gas generation and infrastructure assets in the U.S. with direct experience in supporting grid reliability.

The Wikipedia entry for ECP or Energy Capital Partners has this first section.

Energy Capital Partners Management, LP (ECP) is an American investment firm headquartered in Summit, New Jersey. It focuses on investments in the energy sector. The firm has additional offices in New York City, Houston, San Diego, Fort Lauderdale and Seoul.

In August 2024, ECP merged with Bridgepoint Group to form a private assets investment platform.

The Wikipedia entry for the Bridgepoint Group has this first paragraph.

Bridgepoint Group plc is a British private investment company listed on the London Stock Exchange and is a constituent of the FTSE 250 Index.

The company had started as part of NatWest.

Are The Germans Going To Take Away Some Of Our Electricity?

Consider.

  • Germany has a big need to replace Russian gas and indigenous coal, and to decarbonise.
  • Neuconnect is a 1.4 GW interconnector between the Isle of Grain and Wilhelmshaven in Germany. It is scheduled to be completed in 2028.
  • The Grain CHP powerstation is a 1,275MW CCGT power station, which is owned by German company; Uniper, could almost keep NeuConnect working at full power on its own.
  • I said earlier, in the Thames Estuary to the East of the Isle of Grain, I estimate that there are about 1,500 MW of wind turbines. One of which is part German-owned.

The Germans are also building a large electrolyser at Wilhelshaven, which is described by Google AI like this.

The Wilhelmshaven Green Energy Hub will initially feature a 500MW electrolyzer, with plans to potentially expand to 1GW, according to Energy Monitor. The hub, a joint project between Tree Energy Solutions (TES) and EWE, aims to produce green hydrogen using renewable energy sources like offshore wind. The 500MW electrolyzer is scheduled to be operational by 2028.

I wouldn’t be surprised to see that the Wilhelmshaven electrolyser were to be powered by British-generated electricity flowing down NeuConnect.

Centrica Says Their Future Development Options Include A Combined Heat And Power Plant

This objective was set in one of the key points.

This is the first paragraph of the Wikipedia entry for the Grain LNG Terminal.

Grain LNG Terminal is a Liquefied Natural Gas (LNG) terminal on the Isle of Grain, 37 miles (60 km) east of London. It has facilities for the offloading and reloading of LNG from ships at two jetties on the River Medway; for storing and blending LNG; for truck loading; and regasifying and blending natural gas to meet UK specifications. The terminal can handle up to 15 million tonnes per annum of LNG, has a storage capacity for one million cubic metres of LNG, and is able to regasify up to 645 GWh per day (58 million cubic metres per day) for delivery into the high pressure gas National Transmission System (NTS). The facility is owned and operated by National Grid Grain LNG Ltd, a wholly owned subsidiary of National Grid.

Note.

  1. This paragraph was written before the Centrica takeover.
  2. The terminal also converts liquid natural gas into gas to be distributed around the UK.

The heat needed to convert the liquid natural gas to gas is provided by the Grain CHP power station.

  • Currently 340 MW of heat is provided.
  • If the Grain LNG terminal is expanded, it will probably need more heat.

I can see Centrica building a combined heat and power (CHP) power station, that can be expanded to meet the current and future needs of gasification at the Grain LNG terminal.

I wouldn’t be surprised to see the CHP power station fitted with carbon capture, as Kent is surely one county, where carbon dioxide can be used in food production, so we can generate our carbon dioxide and eat it.

 

 Centrica Says Their Future Development Options Include Hydrogen

This objective was set in one of the key points.

Consider.

  • Centrica are an investor in HiiROC, who have a unique method of generating affordable zero-carbon hydrogen called thermal plasma electrolysis, which uses a fifth of the electricity, that traditional electrolysis does.
  • HiiROC can use natural gas as a feedstock. Centrica won’t be short of that at Grain.
  • There is space to build a large HiiROC system at the Isle of Grain site.
  • The hydrogen could be taken away by tanker ships.

Like the electricity , which will use the 450 mile NeuConnect interconnector, the hydrogen could even be exported to Wilhelmshaven in Germany by pipeline.

Wilhelmshaven is being setup to be a major German hub to both generate, import and distribute hydrogen.

 

I asked Google AI, how much hydrogen a GWh would produce and received this answer.

A GWh of electricity can produce approximately 20-22 tonnes of hydrogen through electrolysis, depending on the efficiency of the electrolyzer. Modern commercial electrolyzers operate at an efficiency of roughly 70-80%, meaning they require about 50-55 kWh of electricity to produce 1 kg of hydrogen. A GWh (1 gigawatt-hour) is equal to 1,000,000 kWh, and 1 tonne of hydrogen contains roughly 33.33 MWh of energy. 

As it is claimed on the web that HiiROC is five times more efficient than traditional electrolysis, it could need around 10-11 kWh to produce one kg. of hydrogen.

1 GWh would produce between 90-100 tonnes of hydrogen.

 Centrica Says Their Future Development Options Include Ammonia

This objective was set in one of the key points.

I asked Google AI if ammonia can be produced from hydrogen and received this answer.

Yes, ammonia (NH3) can be produced from hydrogen (H2) through a process called the Haber-Bosch process. This process involves combining hydrogen with nitrogen (N2) from the air, under high temperature and pressure, in the presence of a catalyst.

Ammonia has a large number of uses, including making fertiliser and the powering of large ships.

I asked Google AI, if there are small Haber-Bosch processes to make ammonia from hydrogen and nitrogen and received this answer.

Yes, there are efforts to develop smaller-scale Haber-Bosch processes for ammonia production. While the traditional Haber-Bosch process is typically associated with large industrial plants, research and development are exploring ways to adapt it for smaller, distributed production, particularly for localized fertilizer or fuel applications.

I wondered if Centrica are involved in the efforts to develop smaller-scale Haber-Bosch processes for ammonia production.

Google AI gave me this quick answer.

Centrica is involved in research related to the Haber-Bosch process, particularly in the context of transitioning to a low-carbon energy future. They are exploring how to adapt the Haber-Bosch process, which is crucial for fertilizer production but also a significant source of CO2 emissions, to utilize renewable energy sources. This includes investigating the use of green hydrogen produced from water electrolysis and renewable electricity. Centrica is also involved in research related to using ammonia as a fuel, including potentially for power generation

That looks to be a very positive answer. Especially, as local low-carbon fertiliser production could be a very powerful concept.

Centrica Says Their Future Development Options Include Bunkering

This objective was set in one of the key points.

Bunkering is the process of refuelling ships.

I didn’t know much about bunkering, when I started to read Centrica’s press release, but the Wikipedia entry, was a good way to get some information.

This section in the Wikipedia entry is entitled Two Types Of Bunkering, where this is said.

The two most common types of bunkering procedure at sea are “ship to ship bunkering” (STSB), in which one ship acts as a terminal, while the other moors. The second type is “stern line bunkering” (SLB), which is the easiest method of transferring oil but can be risky during bad weather.

Over the years, I have found, that two zero-carbon fuels are under development, for powering ships; hydrogen and ammonia. Others are developing ships powered by naturalo gas.

I asked Google AI if hydrogen can power ships and received this answer.

Yes, hydrogen can power ships. It can be used as a fuel for fuel cells, which generate electricity to power the ship’s propulsion and other systems, or it can be burned in modified combustion engines. Hydrogen offers a zero-emission solution for shipping, with water vapor being the only byproduct when used in fuel cells.

Google AI also told me this.

The world’s first hydrogen-powered cruise ship, the “Viking Libra”, is currently under construction and is scheduled for delivery in late 2026. This innovative vessel, a collaboration between Viking Cruises and Italian shipbuilder Fincantieri, will utilize hydrogen for both propulsion and electricity generation, aiming for zero-emission operation.

I also asked Google AI if ammonia can power ships and received this answer.

Yes, ammonia can be used to power ships and is considered a promising alternative fuel for the maritime industry. Several companies and organizations are actively developing ammonia-powered ship designs and technologies. While challenges remain, particularly around safety and infrastructure, ammonia is seen as a key potential fuel for decarbonizing shipping.

Finally, I asked I asked Google AI if natural gas can power ships and received this answer.

Yes, ships can be powered by natural gas, specifically in the form of liquefied natural gas (LNG). LNG is increasingly used as a marine fuel, offering environmental benefits over traditional fuels like diesel.

It would seem to be a case of you pays your money and makes a choice between one of four technologies; ammonia, hydrogen fuel-cell, hydrogen-ICE and LNG.

I looks to me, that if Centrica provide bunkering services for ships, they have the means to cover most of the market by providing hydrogen and ammonia, in addition to natural gas.

Although, I don’t know much about bunkering, I do feel that the two current methods, that work for oil, could be made to work for these fuels.

This Google Map shows the Thames Estuary.

Note.

  1. The Port of Tilbury is in the South-West corner of the map.
  2. London Gateway is indicated by the red arrow.
  3. The Isle of Grain is in the South-East corner of the map.
  4. Other ports between Tilbury and the Isle of Grain include Barking, Dagenham, Dartford, Erith, Greenwich, Northfleet, Purfleet, Silvertown and Thurrock.

There was never a more true phrase than – “Location, Location and Location”. And the Isle of Grain would appear to be in the right place to send out a bunkering tanker to a passing ship, that was calling at a port in London or just passing through the Strait of Dover.

This Google Map shows the Thames between London Gateway and the Isle of Grain.

Note.

  1. London Gateway is indicated by the red arrow.
  2. The Isle of Grain is in the South-East corner of the map.

It seems to me, that a refuelling philosophy could easily be worked out.

How Large is The Bunkering Market?

I asked Google AI this question and received this answer.

The world bunker fuel market is a multi-billion dollar industry, with the market size valued at USD 150.93 billion in 2023. It is projected to reach USD 242.29 billion by 2032, growing at a CAGR of 5.4% according to SkyQuest Technology. In terms of volume, the global bunker demand was estimated at 233.1 million metric tons in 2023 according to the IMO.

The market is not small!

 

 

August 18, 2025 Posted by | Energy, Finance, Hydrogen, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

North Sea Oil Group Equinor Scales Back Investment In Renewables

The title of this post, is the same as that of this article in The Times.

This is the sub-heading.

Equinor, which is attempting to develop one of the largest untapped oilfields in UK waters, also raised its fossil fuel production targets

This is the first paragraph.

The Norwegian state-backed oil company that is attempting to develop one of the largest untapped oil fields in UK waters, has dramatically scaled back its investment in renewables and raised its fossil fuel production targets, becoming the latest of the world’s energy giants to row back on the push towards green power.

A quiet revolution is happening that will change our use of natural gas very much for the better.

  • In Rhodesia, which is a suburb of Worksop, a 24 MW Rolls-Royce mtu diesel peaker power plant, that runs on natural gas, but is also hydrogen-ready, has been installed to boost the electricity supply. The diesel engine is fitted with carbon capture and produces food-grade CO2, which is sold for food and engineering uses.
  • Most of the excellent British tomatoes and soft fruit, we have been eating this winter, is grown in greenhouses, heated by natural gas-powered combined heat and power units, where the CO2 produced is captured and fed to the plants.
  • HiiROC is a start-up from Hull, who are backed by Centrica, who use a plasma process to split any hydrocarbon gas including waste gas from a chemical plant, biomethane from a sewage works or natural gas into pure hydrogen and carbon black, which is needed to manufacture tyres and other products, and also to improve soil.
  • In the last few months, a HiiROC device has been installed at Brigg power station, to generate zero-carbon electricity from natural gas.
  • Imagine a housing or factory estate, a farm or perhaps a large country house, that wants to decarbonise. The gas feed to the property would be fitted with a HiiROC device and all gas appliances and boilers would be converted to hydrogen.
  • I also believe that houses and other premises could have their own hydrogen pumps to fill up cars, ride-on mowers and other vehicles.
  • Avnos is a company from the US, that captures CO2 from the air. What makes Avnos unique is that for every ton of CO2 it captures, it captures five tons of pure water.

More ideas like these are being developed.

What is wrong in using natural gas, to generate heat and electricity, if it doesn’t emit any CO2 into the atmosphere?

 

I suspect, that Equinor believe there will be a market for natural gas for years, as more and more clever ways to use it and turn it into hydrogen are developed.

February 7, 2025 Posted by | Energy, Food, Hydrogen | , , , , , , , , , , , | Leave a comment

I’ve Just Come Across Avnos

I feel we should take into account any possibilities of second use of oil or gas structures, that once held hydrocarbons.

An article in a magazine called Carbon Herald pointed me to a company called Avnos, who are developing Direct Air Capture of carbon dioxide out of the atmosphere. If systems like that of Avnos do work, we may need somewhere to put the carbon dioxide.

 

Centrica are storing the hydrogen in the Rough gas field, which was previously used for storing natural gas and now some depleted gas fields are being used to store captured carbon dioxide.

 

On the subject of carbon capture, Avnos do it differently, in that for every tonne of CO2, they capture from the air, they capture five tonnes of distilled water. And they do it without using any heat.

This is their web site.

This is their mission statement on the front page of the web site. There is also a video.

Carbon Negative. Water Positive

Avnos is commercializing the most advanced technology in the Direct Air Capture of CO2

Our proprietary Hybrid Direct Air Capture (HDAC) solution inverts the water paradigm in DAC, producing water, eliminating heat consumption and reducing costs compared to other forms of DAC.

It sounds too good to be true!

But I have experience of the positive financial results of fluid dynamics in this area.

Thirty years ago, two guys approached me with an idea for an aerosol valve that used nitrogen as a propellant.

At the time, I lived in the house, where Osborne Reynolds, the great Victorian fluid dynamicist of Reynold’s number fame had been brought up.

The guys succeeded and the device was sold on to J & J.

They were then asked to develop a metered dose inhaler for asthma drugs, which is now sold as Respimat, which is sold by Boehringer Ingelheim.

Afterwards, I researched Reynolds at Manchester University, where he was the first Professor of Engineering and I found that he had done some marvelous things with fluids. He was a true genius and undergraduates are still taught on his Victorian apparatus.

I suspect that Avnos may have been exploring in the same area and are using another of Reynold’s useful properties.

February 3, 2025 Posted by | Energy | , , , , , , , , , , , | Leave a comment

Energy In – Hydrogen And Carbon Dioxide Out

This article was inspired by this article in the Sunday Times, which is entitled ‘It’s A Slog’: Life Inside Britain’s Last Coal Power Station.

The article is about Ratcliffe-on-Soar power station, which is next to East Midlands Parkway station.

This is the first paragraph of the station’s Wikipedia entry.

Ratcliffe-on-Soar Power Station is a coal-fired power station owned and operated by Uniper at Ratcliffe-on-Soar in Nottinghamshire, England. Commissioned in 1968 by the Central Electricity Generating Board, the station has a capacity of 2,000 MW. It is the last remaining operational coal-fired power station in the UK, and is scheduled to close in September 2024.

I took these pictures of the power station in 2019.

Ratcliffe-on-Soar is the last of a number of large coal-fired power stations, that were built in the area, mainly along the River Trent.

  • Rugeley – 600 MW – 1961
  • Drakelow – 1630 MW – 1964
  • Willington – 800 MW – 1962
  • Castle Donington – 600 MW – 1958
  • Ratcliffe-on-Soar – 2000 MW – 1968
  • High Marnham – 1000 MW – 1959
  • Cottam – 2000 MW – 1968
  • West Burton – 2000 MW – 1968

Note.

  1. The date is the commissioning date.
  2. That is 10,630 MW of electricity.
  3. There are also a few large gas-fired power stations along the river, that are still operating.
  4. Both coal and gas-fired stations use the water from the River Trent for cooling.

At the mouth of the river, there is the Keadby cluster of gas-fired power stations.

  • Keadby 1 – 734 MW – 1996
  • Keadby 2 – 849 MW – 2023
  • Keadby 3 – 910 MW – 2027
  • Keadby Hydrogen – 900 MW – 2030

Note.

  1. The date is the commissioning date.
  2. That is 3,393 MW of electricity.
  3. Keadby 2 is the most efficient CCGT in the world.
  4. Keadby 3 will be fitted with carbon capture.
  5. Keadby 2 has been designed to be retrofitted with carbon capture.
  6. Keadby Hydrogen will be fuelled by zero-carbon hydrogen.

As the years progress, I can see the Keadby cluster of power stations becoming a large zero-carbon power station to back-up wind farms in the North Sea.

  • Hydrogen power stations will emit no carbon dioxide.
  • Carbon dioxide from all gas-fired stations will be captured.
  • Some carbon dioxide will be sold on, to companies who can use it, in industries like construction, agriculture and chemical manufacture.
  • The remaining carbon dioxide will be stored in depleted gas fields.

As technology improves, more carbon dioxide will be used rather than stored.

Other Power Sources In The Humberside Area

In the next few sub-sections, I will list the other major power sources in the Humberside area.

Drax Power Station

Drax power station is a shadow of its former self, when it was one of the power stations fed by the newly discovered Selby coalfield.

These days it is a 2,595 MW biomass-fired power station.

Eastern Green Link 2

Eastern Green Link 2 will be a 2 GW interconnector between Peterhead in Scotland and Drax.

It is shown in this map.

Note.

  1. Most of the route is underwater.
  2. It is funded by National Grid.
  3. Contracts have been signed, as I talk about in Contracts Signed For Eastern Green Link 2 Cable And Converter Stations.
  4. It is scheduled to be completed by 2029.

This interconnector will bring up to 2 GW of Scottish wind-generated electricity to Drax and Humberside.

Drax has the substations and other electrical gubbins to distribute the electricity efficiently to where it is needed.

2 GW could also reduce the amount of biomass used at Drax.

In the long term, if the concept of the four Eastern Green Links is successful, I could see another Eastern Green Link to Drax to replace imported biomass at Drax.

I also, don’t see why a smaller Drax can’t be run on locally-sourced biomass.

Solar Farms And Batteries Along The River Trent

As the coal-fired power stations along the River Trent are demolished, solar farm developers have moved in to develop large solar farms.

Salt End Power Station And Chemical Works

These two paragraphs from the Wikipedia entry for Salt End describes the hamlet and its power station and chemical works.

Salt End or Saltend is a hamlet in the East Riding of Yorkshire, England, in an area known as Holderness. It is situated on the north bank of the Humber Estuary just outside the Hull eastern boundary on the A1033 road. It forms part of the civil parish of Preston.

Salt End is dominated by a chemical park owned by PX group, and a gas-fired power station owned by Triton Power. Chemicals produced at Salt End include acetic acid, acetic anhydride, ammonia, bio-butanol, bio-ethanol, ethyl acetate (ETAC) and ethylene-vinyl alcohol copolymer (EVOH) with animal feed also being produced on site.

I wonder, if running the complex on hydrogen would give cost and marketing advantages.

Aldbrough Hydrogen Storage Facility

This page on the SSE Thermal web site is entitled Plans For World-Leading Hydrogen Storage Facility At Aldbrough.

This is the most significant paragraph of the page, that is definitely a must-read.

With an initial expected capacity of at least 320GWh, Aldbrough Hydrogen Storage would be significantly larger than any hydrogen storage facility in operation in the world today. The Aldbrough site is ideally located to store the low-carbon hydrogen set to be produced and used in the Humber region.

This is a hydrogen storage facility for a much wider area than Humberside.

Rough Gas Storage Facility

This is the first paragraph of the Wikipedia entry for the Rough Gas Storage Facility.

Rough is a natural gas storage facility under the North Sea off the east coast of England. It is capable of storing 100 billion cubic feet of gas, nearly double the storage capacities in operation in Great Britain in 2021.

In Wood To Optimise Hydrogen Storage For Centrica’s Rough Field, I describe Centrica’s plans to convert the Rough gas storage into a massive hydrogen storage.

The Location Of Aldbrough Gas Storage, Rough Gas Storage, Salt End And Easington Gas Terminal

This Google Map shows between Salt End and the coast.

Note.

  1. The river crossing the South-West corner of the map is the Humber.
  2. Salt End with its power station and chemical works is on the North Bank of the Humber, where the river leaves the map.
  3. Aldbrough Gas Storage is marked by the red arrow at the top of the map.
  4. Easington Gas Terminal is in the South-East corner of the map.
  5. According to Wikipedia, gas flows into and out of the Rough Gas Storage are managed from Easington.

Looking at the map, I feel that the following should be possible.

  • The two gas storage sites could be run together.
  • Salt End power station and the related chemical works could run on hydrogen.
  • Salt End will always have a reliable source of hydrogen.
  • This hydrogen could be green if required.

All the chemical works at Salt End, could be run on a zero-carbon basis. Would this mean premium product prices? Just like organic does?

Enter The Germans

The Germans have a huge decarbonisation problem, with all their coal-fired power stations and other industry.

Three massive projects will convert much of the country and industry to hydrogen.

These would appear to be three of Europe’s largest hydrogen projects, that few have ever heard of.

AquaVentus And The UK

This video shows the structure of AquaVentus.

I clipped this map from the video.

Note.

  1. The thick white line running North-West/South-East is the spine of AquaVentus, that delivers hydrogen to Germany.
  2. There is a link to Denmark.
  3. There appears to be an undeveloped link to Norway.
  4. There appears to be an undeveloped  link to Peterhead in Scotland.
  5. There appears to be a link to just North of the Humber in England.
  6. Just North of the Humber are the two massive gas storage sites of Aldbrough owned by SSE and Brough owned by Centrica.
  7. There appear to be small ships sailing up and down the East Coast of the UK. Are these small coastal tankers, that are distributing the hydrogen to where it is needed?

In the last century, the oil industry, built a substantial oil and gas network in the North Sea.

It appears now the Germans are leading the building of a substantial hydrogen network in the North Sea.

These are my thoughts about development of the AquaVentus network.

Hydrogen Production And AquaVentus

This RWE graphic shows the layout of the wind farms feeding AquaVentus.

Note.

  1. There is a total of 10.3 GW.
  2. Is one of the 2 GW web sites on the UK-side of AquaVentus, the 3 GW Dogger Bank South wind farm, which is being developed by RWE?
  3. Is the 0.3 GW wind farm, RWE’s Norfolk wind farm cluster, which is also being developed by RWE?

Connecting wind farms using hydrogen pipelines to Europe, must surely mitigate the pylon opposition problem from Nimbys in the East of England.

As the AquaVentus spine pipeline could eventually connect to Peterhead, there will be other opportunities to add more hydrogen to AquaVentus.

Hydrogen Storage And AquaVentus

For AquaVentus to work efficiently and supply a large continuous flow of hydrogen to all users, there would need to be storage built into the system.

As AquaVentus is around 200 kilometres in length and natural gas pipelines can be up to 150 centimetres in diameter, don’t underestimate how much hydrogen can be stored in the pipeline system itself.

This page on the Uniper web site is entitled Green Wilhelmshaven: To New Horizons.

This is a sentence on the page.

Access to local hydrogen underground storage at the Etzel salt cavern site.

An Internet search gives the information, that Etzel gas storage could be developed to hold 1 TWh of hydrogen.

That would be enough hydrogen to supply 10 GW for a hundred hours.

Note that the UK branch of AquaVentus reaches the UK, just to the South of the massive hydrogen storage facilities at Aldbrough and Rough.

It would appear that both Germany and the UK are connected to AquaVentus through substantial storage.

I am certain, that all country connections to AquaVentus will have substantial storage at the country’s hydrogen terminal.

AquaDuctus

This would appear to be the first part of the AquaVentus network and has its own web site.

The web site is entitled Nucleus Of A Offshore Hydrogen Backbone.

These are the first two paragraphs.

The project partners are focusing on a scalable, demand-driven infrastructure: By 2030, AquaDuctus will connect the first large hydrogen wind farm site, SEN-1, with a generation capacity of approximately one gigawatt. SEN-1 is located in the German EEZ in the northwest of Helgoland. The pipeline will transport at a length of approx. 200 km green hydrogen produced from offshore wind to the German mainland and from there to European consumers via the onshore hydrogen infrastructure.

In the next project stage, AquaDuctus will be extended to the remote areas of the German exclusive economic zone towards the tip of the so-called duck’s bill. By that, additional future hydrogen wind farm sites will be connected. Along its way AquaDuctus will provide interconnection points with the opportunity for linking of adjacent national offshore hydrogen infrastructures originating from Denmark, Norway, the Netherlands, Belgium and United Kingdom which opens the door for Europe-wide offshore hydrogen transport by pipeline.

There is also an interactive map, that gives more details.

This paragraph explains, why the Germans have chosen to bring the energy ashore using hydrogen, rather than traditional cables.

Recent studies show that offshore hydrogen production and transport via pipelines is faster, cheaper, and more environmentally friendly than onshore electrolysis with a corresponding connection of offshore wind turbines via power cables. The German federal government has also recognized this advantage and has clearly expressed its intention to promote offshore hydrogen production in the North Sea.

I suspect, that some UK offshore wind farms will use the same techniques.

Hydrogen Production For The UK

Electrolysers will probably be built along the East Coast between Peterhead and Humberside and these will feed hydrogen into the network.

  • Some electrolysers will be offshore and others onshore.
  • Turning off windfarms will become a thing of the past, as all surplus electricity will be used to make hydrogen for the UK or export to Europe.
  • Until needed the hydrogen will be stored in Albrough and Rough.

Backup for wind farms, will be provided using hydrogen-fired power stations like Keadby Hydrogen power station.

Financial Implications

I reported on Rishi Sunak’s Manifesto Speech, which he made on June 11th. This is an extract

This document on the Policy Mogul web site is entitled Rishi Sunak – Conservative Party Manifesto Speech – Jun 11.

These are three paragraphs from the speech.

We don’t just need military and border security. As Putin’s invasion of Ukraine has shown, we need energy security too. It is only by having reliable, home-grown sources of energy that we can deny dictators the ability to send our bills soaring. So, in our approach to energy policy we will put security and your family finances ahead of unaffordable eco zealotry.

Unlike Labour we don’t believe that we will achieve that energy security via a state-controlled energy company that doesn’t in fact produce any energy. That will only increase costs, and as Penny said on Friday there’s only one thing that GB in Starmer and Miliband’s GB Energy stands for, and that’s giant bills.

Our clear plan is to achieve energy security through new gas-powered stations, trebling our offshore wind capacity and by having new fleets of small modular reactors. These will make the UK a net exporter of electricity, giving us greater energy independence and security from the aggressive actions of dictators . Now let me just reiterate that, with our plan, we will produce enough electricity to both meet our domestic needs and export to our neighbours. Look at that. A clear, Conservative plan not only generating security, but also prosperity for our country.

I can’t remember any reports about an energy security policy, which he outlined in the last paragraph of my extract from his speech.

He also said we would have sufficient electricity to export to our neighbours. As I said earlier some of this energy will be in the form of hydrogen, which has been created by offshore electrolysers.

If we are exporting electricity and hydrogen to Europe, this is likely to have three effects.

  • An improvement in Europe’s energy security.
  • H2ercules will improve and decarbonise German industry, using UK hydrogen.
  • The finances of UK plc will improve.

It looks like there would be winners all round.

Rishi Sunak had the cards and he played them very badly.

It is now up to Keir Starmer, Great British Energy and Jürgen Maier to play those cards to link the energy systems of the UK and Germany to ensure security and prosperity for Europe.

 

August 5, 2024 Posted by | Energy, Finance, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

C-Capture Launches Innovative Carbon Capture Trial For Cement Industry 

The title of this post, is the same as that of this news item from C-Capture.

This is the sub-heading.

C-Capture, developers of next generation technology for carbon dioxide removal, has launched a new carbon capture trial in the cement manufacturing sector in partnership with Heidelberg Materials.

This is the first paragraph.

The trial, which utilises C-Capture’s innovative solution for industrial decarbonisation, is taking place at Heidelberg Material’s cement manufacturing plant in Ketton. It forms part of C-Capture’s national project, ‘XLR8 CCS – Accelerating the Deployment of a Low-Cost Carbon Capture Solution for Hard-to-Abate Industries’. Working with project partners across the UK, C-Capture’s XLR8 CCS project will demonstrate that a low-cost carbon capture solution is a reality for difficult-to-decarbonise industries in the race to net zero.

I wrote about C-Capture’s technology in Could Drax Power Station Solve The Carbon Dioxide Shortage?

The technology appears to have been spun out of Leeds University.

BP and Drax are investors.

This page on the C-Capture web site is called Technology and has a very neat interactive guide to how the technology works.

Conclusion

I have high hopes for this company and its technology.

May 11, 2024 Posted by | Energy | , , , , , , | Leave a comment

Consultation On Plans For Keadby Hydrogen Power Station To Begin

The title of this post, is the same as that of this press release from SSE.

These four paragraphs outline the project

SSE and Equinor will consult on plans for a new hydrogen-fired power station in North Lincolnshire which would provide vital new reliable and flexible capacity to the electricity system.

Keadby Hydrogen Power Station is a proposed 900MW plant which could be operational from 2030 – bolstering security of supply and supporting the UK’s long-term decarbonisation by providing back-up low-carbon power to variable renewable generation.

The project will enter environmental scoping in April before SSE and Equinor launch a public consultation ahead of a full planning application being made in due course.

Under plans, the new power station will be designed to run on 100% hydrogen. The ambition is that this would be the case from inception, with Government already committed to deploying low-carbon infrastructure in the Humber – the UK’s most carbon intensive cluster.

Note.

  1. The hydrogen for this power station will be produced by electrolysis or one of the new turquoise methods.
  2. It will be stored in Aldborough or Rough gas storage.
  3. This will be the fourth power station at Keadby after Keadby 1 (734 MW), Keadby 2 (893 MW) and Keadby 3 (910 MW)
  4. Keadby 3 will be fitted with carbon capture.
  5. These total up to 3.4 GW.

The Keadby cluster of power stations will make good backup to the wind farms in the North Sea.

March 16, 2024 Posted by | Energy | , , , , , , | 2 Comments

The Most Important Words In The Budget

Jeremy Hunt said it once and I didn’t believe it! But then he said.

Carbon Capture, Use And Storage

Again!

Politicians usually forget to mention use and never put it before storage.

Use is something positive, which creates something humanity needs, whereas storage is like putting plastic bags or lengths of string in a drawer, in case you need them.

Well done Jeremy!

March 15, 2023 Posted by | Energy | , | 3 Comments

SSE Thermal Outlines Its Vision For The UK’s Net Zero Transition

The title of this post is the same as that of this news item from SSE Thermal.

This is the opening statement.

SSE Thermal, part of SSE plc, is calling on government to turbocharge the delivery of low-carbon technologies to help deliver a net zero power system by 2035.

Two paragraphs then outline what the company is doing.

The low-carbon developer is bringing forward multiple low-carbon projects across the UK. This includes Keadby 3 Carbon Capture Power Station in the Humber – which is being developed in collaboration with Equinor and recently became the first power CCS project in the country to receive planning permission – and Aldbrough Hydrogen Pathfinder, which would unite hydrogen production, storage and power generation in one location by the middle of this decade.

These projects would form part of SSE’s £24bn investment programme in the UK, and in addition to supporting the decarbonisation of industrial heartlands and powering a low-carbon future, they would also help to secure a just transition for workers and communities.

The news item then talks about the future.

Now, SSE Thermal has published ‘A vision for the UK’s net zero transition’ which outlines the need for these low-carbon technologies and the potential of carbon capture and hydrogen in providing flexible back-up to renewables.

It also outlines the steps Government should take to facilitate this:

  • Progress the deployment of carbon capture and storage (CCS) and hydrogen infrastructure in a minimum of four industrial areas by 2030.
  • Support first-of-a-kind carbon capture and storage and hydrogen projects to investment decisions before the end of next year.
  • Increase its ambition for power CCS to 7-9GW by 2030, with regular auctions for Dispatchable Power Agreements.
  • Set out a policy ambition for hydrogen in the power sector and a strategy for delivering at least 8GW of hydrogen-capable power stations by 2030.
  • Accelerate the delivery of business models for hydrogen transport and storage infrastructure, to kickstart the hydrogen economy.

These are my thoughts.

Carbon Capture And Use

There is no mention of Carbon Capture And Use, which in my view, should go hand in hand with Carbon Capture And Storage.

  • Sensible uses for carbon dioxide include.
  • Feeding it to plants like tomatoes, flowers, salad vegetables, soft fruit and herbs in greenhouses.
  • Mineral Carbonation International can convert a dirty carbon dioxide stream into building products like blocks and plasterboard.
  • Deep Branch, which is a spin-out from Nottingham University, can use the carbon dioxide to make animal feed.
  • Companies like CarbonCure add controlled amounts of carbon dioxide to ready-mixed concrete to make better concrete and bury carbon dioxide for ever.

Surely, the more carbon dioxide that can be used, the less that needs to be moved to expensive storage.

Note.

  1. There is a lot of carbon dioxide produced in Lincolnshire, where there are a lot of greenhouses.
  2. At least three of these ideas have been developed by quality research in Universities, in the UK, Australia and Canada.
  3. I believe that in the future more uses for carbon dioxide will be developed.

The Government should do the following.

  • Support research on carbon capture.
  • Support Research on finding more uses for carbon dioxide.

Should there be a disposal premium or tax credit paid to companies, for every tonne of carbon dioxide used in their processes? It might accelerate some innovative ideas!

Can We Increase Power CCS to 7-9GW by 2030?

That figure of 7-9 GW, means that around a GW of CCS must be added to power stations every year.

Consider.

If we develop more ways of using the carbon dioxide, this will at least cut the cost of storage.

Can We Deliver At Least 8GW Of Hydrogen-Capable Power Stations By 2030?

Do SSE Thermal mean that these power stations will always run on hydrogen, or that they are gas-fired power stations, that can run on either natural gas of hydrogen?

In ‘A vision for the UK’s net zero transition’, this is said about the hydrogen power stations.

Using low-carbon hydrogen with zero carbon emissions at point of combustion, or blending hydrogen into existing stations.

So if these power stations were fitted with carbon capture and could run on any blend of fuel composed of hydrogen and/or natural gas, they would satisfy our needs for baseload gas-fired power generation.

Hydrogen Production And Storage

SSE’s vision document says this about Hydrogen Production.

Using excess renewables to create carbon-free hydrogen, alongside other forms of low-carbon hydrogen, which can then be stored and used to provide energy when needed.

SSE’s vision document also says this about Hydrogen Storage.

Converting existing underground salt caverns or creating new purpose-built caverns to store hydrogen and underpin the hydrogen economy.

This page on the SSE Thermal web site is entitled Aldbrough Has Storage, where this is said about storing hydrogen at Aldbrough.

In July 2021, SSE Thermal and Equinor announced plans to develop one of the world’s largest hydrogen storage facilities at the Aldbrough site. The facility could be storing low-carbon hydrogen as early as 2028.

With an initial expected capacity of at least 320GWh, Aldbrough Hydrogen Storage would be significantly larger than any hydrogen storage facility in operation in the world today. The Aldbrough site is ideally located to store the low-carbon hydrogen set to be produced and used in the Humber region.

From my own experience, I know there is a similar salt structure in Cheshire, which has also been used to store gas.

Earlier, I said, that one of the things, that SSE would like the Government to do is.

Progress the deployment of carbon capture and storage (CCS) and hydrogen infrastructure in a minimum of four industrial areas by 2030.

If Cheshire and Humberside are two sites, where are the other two?

Deciding What Fuel To Use

If you take the Humberside site, it can provide electricity to the grid in three ways.

  • Direct from the offshore and onshore wind farms.
  • Using natural gas in the gas-fired power stations.
  • Using hydrogen in the gas-fired power stations.

SSE might even add a battery to give them a fourth source of power.

In the 1970s, I used dynamic programming with Allied Mills to get the flour mix right in their bread, with respect to quality, cost and what flour was available.

Finance For SSE Thermal Plans

The news item says this.

These projects would form part of SSE’s £24bn investment programme in the UK.

£24bn is not the sort of money you can realise solely from profits or in sock drawers or down sofas, but provided the numbers add up, these sorts of sums can be raised from City institutions.

Conclusion

I like SSE Thermal’s plans.

 

March 8, 2023 Posted by | Energy, Energy Storage | , , , , , , , , , , | Leave a comment

‘Czech Sphinx’ Power Plant Intended To Keep Lights On

The title of this post, is the same as that of this article on The Times.

This is the first paragraph.

The businessman known as the “Czech Sphinx” is set to expand his position in Britain’s energy market after securing subsidy contracts to build a new gas-fired power plant and battery storage project.

As I needed to find the answers to particular questions, I looked for and found the original press release on the EP Holdings web site, which is entitled EPH Will Build A New Gas-Fired Power Plant And Battery Storage Facility In The UK At A Cost Of More Than £1 billion.

These statements describe the project.

  • It will be a 1700MW high efficiency H-class CCGT power project and a 299MW 2-hour battery storage project
  • The power station will be built on the site of the former Eggborough coal station in East Yorkshire.

I find this to be the most significant paragraph.

The high efficiency H-class CCGT project will be the single largest flexible generation asset to be commissioned in the UK since 2012, whilst the battery project will also be one of the largest to be built in the UK to date. Given the site’s close proximity to existing National Grid infrastructure and a number of proposed CCUS and hydrogen pipeline routes, under EPUKI’s plans these projects will make a significant contribution to the UK’s energy transition and security for years to come.

This map from OpenRailwayMap, shows the relationship between the Eggborough site and the nearby Drax power station.

Note.

  1. The Eggborough power station site  is in the South-West corner of the map and is identified by the rail loop. which was used to deliver the coal.
  2. The Drax power station site is in the North-East corner of the map and is similarly identified by a rail loop.
  3. There is a high voltage transmission line connecting the two power stations.
  4. As the crow flies is about eight miles between Eggborough and Drax.

This Google Map shows the Eggborough power station site.

Note.

  1. The remains of the eight cooling towers are visible at the North of the site.
  2. The large circular black area in the middle is the coal yard with its rail loop.
  3. It is a large site.

I have looked in detail at the cleared area in the North-West of the site and the pylons of the connection to Drax are still visible.

So it looks like there is still an electrical connection of some sort to the site.

According to Wikipedia, the original coal-fired power station had a nameplate capacity of 1960 MW, so I suspect that a modernised electricity connection to handle the maximum near 2,000 MW of the new station would be possible.

This map shows the Zero Carbon Humber pipeline layout.

Note.

  1. The orange line is a proposed carbon dioxide pipeline
  2. The black line alongside it, is a proposed hydrogen pipeline.
  3. Drax, Keadby and Saltend are power stations.
  4. Keadby and Saltend are gas-fired power stations.
  5. Easington gas terminal is connected to around twenty gas fields in the North Sea.
  6. The terminal imports natural gas from Norway using the Langeled pipeline.
  7. The Rough field has been converted to gas storage and can hold four days supply of natural gas for the UK.
  8. To the North of Hull is the Aldbrough Gas Storage site, which SSE plan to convert to hydrogen storage.

The Eggborough power station site is about eight miles to the South-West of Drax.

I don’t suspect that connecting the Eggborough site to the carbon dioxide, gas and hydrogen pipelines will not be the most challenging of tasks.

So when the press release says.

Given the site’s close proximity to existing National Grid infrastructure and a number of proposed CCUS and hydrogen pipeline routes, under EPUKI’s plans these projects will make a significant contribution to the UK’s energy transition and security for years to come.

The company is not exaggerating.

It appears that carbon dioxide, gas and hydrogen pipelines can be developed and National Grid connections can be reinstated.

Eggborough Will Not Be Alone

From the EP Holdings press release, it appears that the Eggborough power station will be fitted with carbon-capture and will be hydrogen-ready.

This will make it the second power-station in the area to be fitted out in this way, after SSE’s planned Keadby 3, which is described in this page on the SSE web site in this document, which is entitled Keadby 3 Carbon Capture Power Station.

They could also be joined by Keadby Hydrogen power station.

This would mean that zero-carbon power stations in the area could include.

  • Eggborough Gas/Hydrogen – 1700 MW
  • Eggborough Battery – 299 MW
  • Keadby 3 Gas/Hydrogen – 910 MW
  • Keadby Hydrogen – 1800 MW – According to this Equinor press release.

Note.

  1. The Eggborough Battery pushes the total zero-carbon capacity over 4500 MW or 4.5 GW.
  2. The various Dogger Bank wind farms are to have a total capacity of 8 GW within ten years.
  3. The various Hornsea wind farms are to have a total capacity of 5.5 GW in a few years.

I would expect that the zero-carbon power stations would make a good fist of making up the shortfall, when the wind isn’t blowing.

Drax, Keadby 1 And Keadby 2 Power Stations

Consider.

  • Drax has a nameplate capacity of 3.9 GW, of which 2.6 GW is from biomass and the rest is from coal.
  • Keadby 1 has a nameplate capacity of 734 MW.
  • Keadby 2 has a nameplate capacity of 734 MW.

How much of this capacity will be fitted with carbon capture, to provide extra zero-carbon backup to the wind farms?

Green Hydrogen From Surplus Wind Power

At times, there will be an excess of renewable energy.

I suspect, an order for a large electrolyser will be placed soon, so that surplus renewable energy can be used to create green hydrogen.

This will be stored in the two storage facilities, that are being developed in the area; Aldbrough and Rough.

Controlling The Fleet

I am by training a Control Engineer and this fleet can be controlled to provide the electricity output required, so that the carbon-dioxide produced is minimised and the cost is at a level to the agreement of producers and users.

Conclusion

It looks like in excess of 20 GW of reliable zero-carbon energy could be available on Humberside.

I’m sure British Steel would like to by a lot of GWhs to make some green steel at Scunthorpe.

 

 

February 24, 2023 Posted by | Energy, Energy Storage | , , , , , , , , , , , , , | Leave a comment