The Anonymous Widower

Electrifying Wales

I would not be surprised to learn that Wales wants to decarbonise their railways.

At present, Wales only has the following electrified railways either in operation or under construction.

  • The South Wales Main Line between the Severn Tunnel and Cardiff.
  • The South Wales Metro based on local railways around Cardiff and Newport is being created and will be run by electric trains.

There is no more electrification planned in the future.

Hitachi’s Specification For Battery Electric Trains

Recently, Hitachi have released this infographic for their Regional Battery Train.

This gives all the information about the train and a definitive range of 90 km or 56 miles.

The Welsh Rail Network

If you look at the network of services that are run by Transport for Wales Rail Services, they connect a series of hub stations.

Major hubs include the following stations.

  • Cardiff Central – Electrified
  • Chester
  • Hereford
  • Shrewsbury
  • Swansea

Smaller hubs and termini include the following stations.

  • Aberystwyth
  • Birmingham International – Electrified
  • Birmingham New Street – Electrified
  • Blaenau Ffestiniog
  • Carmarthen
  • Crewe – Electrified
  • Fishguard Harbour
  • Hereford
  • Holyhead
  • Llandudno Junction
  • Manchester Airport – Electrified
  • Manchester Piccadilly – Electrified
  • Machynlleth
  • Milford Haven
  • Newport – Electrified
  • Pembroke Dock

Running Welsh Routes With Electric Trains

These routes make up the Welsh rail network.

Chester And Crewe

Consider.

  • The route between Chester and Crewe is without electrification.
  • Crewe and Chester are 21 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Crewe with full batteries, that it will be possible to run between Chester and Crewe stations.

Chester And Holyhead via Llandudno Junction

Consider.

  • All services between Llandudno Junction and England call at Chester.
  • All services running to and from Holyhead call at Llandudno Junction.
  • The route between Chester and Holyhead is without electrification.
  • Chester and Llandudno Junction are 54 miles apart.
  • Llandudno Junction and Holyhead are 40 miles apart.

I believe that if a battery-electric train with a range of 56 miles can leave Chester, Llandudno Junction and Holyhead with full batteries, that it will be possible to run between Chester and Holyhead stations.

Chester And Liverpool Lime Street

Consider.

  • The route between Runcorn and Liverpool Lime Street is electrified.
  • The route between Chester and Runcorn is without electrification.
  • Chester and Runcorn are 14 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Runcorn with full batteries, that it will be possible to run between Chester and Liverpool Lime Street stations.

Chester And Manchester Airport

Consider.

  • The route between Warrington Bank Quay and Manchester Airport is electrified.
  • The route between Chester and Warrington Bank Quay is without electrification.
  • Chester and Warrington Bank Quay are 18 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Warrington Bank Quay with full batteries, that it will be possible to run between Chester and Manchester Airport stations.

Chester And Shrewsbury

Consider.

  • The route between Chester and Shrewsbury is without electrification.
  • Chester and Shrewsbury are 42 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Shrewsbury and Chester with full batteries, that it will be possible to run between Chester and Shrewsbury stations.

Llandudno And Blaenau Ffestiniog

Consider.

  • The route between Llandudno and Blaenau Ffestiniog is without electrification.
  • Llandudno and Blaenau Ffestiniog are 31 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Llandudno and Blaenau Ffestiniog with full batteries, that it will be possible to run between Llandudno and Blaenau Ffestiniog stations.

Machynlleth And Aberystwyth

Consider.

  • The route between Machynlleth and Aberystwyth is without electrification.
  • Machynlleth and Aberystwyth are 21 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Machynlleth and Aberystwyth with full batteries, that it will be possible to run between Machynlleth and Aberystwyth stations.

Machynlleth And Pwllheli

Consider.

  • The route between Machynlleth and Pwllheli is without electrification.
  • Machynlleth and Pwllheli are 58 miles apart.

I believe that if a battery-electric train with a range of upwards of 58 miles, can leave Machynlleth and Pwllheli with full batteries, that it will be possible to run between Machynlleth and Pwllheli stations.

Machynlleth And Shrewsbury

Consider.

  • The route between Machynlleth and Shrewsbury is without electrification.
  • Machynlleth and Shrewsbury are 61 miles apart.

I believe that if a battery-electric train with a range of upwards of 61 miles, can leave Machynlleth and Shrewsbury with full batteries, that it will be possible to run between Machynlleth and Shrewsbury stations.

Shrewsbury and Birmingham International

Consider.

  • The route between Birmingham International and Wolverhampton is electrified.
  • The route between Shrewsbury and Wolverhampton is without electrification.
  • Shrewsbury and Wolverhampton are 30 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury and Wolverhampton with full batteries, that it will be possible to run between Shrewsbury and Birmingham International stations.

 Shrewsbury And Cardiff Central via Hereford

Consider.

  • All services between Cardiff Central and Shrewsbury call at Hereford.
  • The route between Cardiff Central and Newport is electrified.
  • The route between Newport and Shrewsbury is without electrification.
  • Shrewsbury and Hereford are 51 miles apart.
  • Hereford and Newport are 44 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury, Hereford and Newport with full batteries, that it will be possible to run between Shrewsbury and Cardiff Central stations.

Shrewsbury And Crewe

  • The route between Shrewsbury and Crewe is without electrification.
  • Shrewsbury and Crewe are 33 miles apart.

I believe that if a battery-electric train with a range of upwards of 61 miles, can leave Shrewsbury and Crewe with full batteries, that it will be possible to run between Shrewsbury and Crewe stations.

Shrewsbury and Swansea

Consider.

  • The Heart of Wales Line between Shrewsbury and Swansea is without electrification.
  • Shrewsbury and Swansea are 122 miles apart.
  • Trains cross at Llandrindod and wait for up to eleven minutes, so there could be time for a charge.
  • Shrewsbury and Llandrindod are 52 miles apart.
  • Swansea and Llandrindod are 70 miles apart.

It appears that another charging station between Swansea and Llandrindod is needed

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury, Swansea and the other charging station, with full batteries, that it will be possible to run between Shrewsbury and Swansea stations.

Swansea And Cardiff Central

Consider.

  • The route between Swansea and Cardiff Central is without electrification.
  • Swansea and Cardiff Central are 46 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea and Cardiff Central with full batteries, that it will be possible to run between Swansea and Cardiff Central stations.

Swansea And Carmarthen

Consider.

  • The route between Swansea and Carmarthen is without electrification.
  • Swansea and Carmarthen are 31 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea and Carmarthen with full batteries, that it will be possible to run between Swansea and Carmarthen stations.

Swansea And Fishguard Harbour

Consider.

  • The route between Swansea and Fishguard Harbour is without electrification.
  • Swansea and Fishguard Harbour are 73 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Fishguard Harbour are 42 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Fishguard Harbour with full batteries, that it will be possible to run between Swansea and Fishguard Harbour stations.

Swansea And Milford Haven

Consider.

  • The route between Swansea and Milford Haven is without electrification.
  • Swansea and Milford Haven are 72 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Milford Haven are 41 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Milford Haven with full batteries, that it will be possible to run between Swansea and Milford Haven stations.

Swansea And Pembroke Dock

Consider.

  • The route between Swansea and Pembroke Dock is without electrification.
  • Swansea and Pembroke Dock are 73 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Pembroke Dock are 42 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Pembroke Dock with full batteries, that it will be possible to run between Swansea and Pembroke Dock stations.

Other Routes

I have not covered these routes.

  • Borderlands Line
  • Cardiff Valley Lines, that will be part of the South Wales Metro
  • Routes on the electrified South Wales Main Line, that are to the East of Cardiff.

The first will run between Chester and the electrified Merseyrail system and the others will be electrified, except for short stretches.

Stations Where Trains Would Be Charged

These stations will need charging facilities.

Aberystwyth

Aberystwyth station only has a single terminal platform.

I’ve not been to the station, but looking at pictures on the Internet, I suspect that fitting a charging facility into the station, wouldn’t be the most difficult of engineering problems.

Birmingham International

Birmingham International station is fully-electrified and ready for battery-electric trains.

Blaenau Fflestiniog

Blaenau Ffestiniog station has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Cardiff

Cardiff station is fully-electrified and ready for battery-electric trains.

Chester

Chester station has two through platforms and one bay platform, that are used by Trains for Wales.

  • The through platforms are bi-directional.
  • The bay platform is used by services from Liverpool Lime Street and Manchester Airport and Piccadilly.
  • The station is a terminus for Merseyrail’s electric trains, which use 750 VDC third-rail electrification.
  • Some through services stop for up to seven minutes in the station.

This Google Map shows the station.

There is plenty of space.

The simplest way to charge trains at Chester would be to electrify the two through platforms 3 and 4 and the bay platform 1.

I would use 750 VDC third-rail, rather than 25 KVAC overhead electrification.

  • I’m an engineer, who deals in scientifically-correct solutions, not politically-correct ones, devised by jobsworths.
  • Maintenance staff at the station will be familiar with the technology.
  • Station staff and passengers will know about the dangers of third-rail electrification.
  • Trains connect and disconnect automatically to third-rail electrification.
  • Trains don’t have to stop to connect and disconnect, so passing trains can be topped-up.
  • Hitachi with the Class 395 train and Alstom with the Class 373 train, have shown even trains capable of 140 mph can be fitted with third-rail shoes to work safely at slower speeds on lines electrified using third-rail.
  • Modern control systems can control the electricity to the third-rail, so it is only switched on, when the train completes the circuit.

I have a vague recollection, that there is an avoiding line at Chester station, so trains can go straight through. Perhaps that should be electrified too.

Carmarthen

Carmarthen station is a two platform station, with a rather unusual layout, that I wrote about in Changing Trains At Carmarthen Station.

I took these pictures when I passed through in 2016.

Note the unusual step-free crossing of the tracks.

This Google Map shows the layout at the station.

I believe it is another station, where third-rail electrification could be the solution.

  • Most trains seem to reverse at the station, which gives time for a full charge.
  • Others terminate here.

but would they still allow passengers to cross the line as they do now, whilst trains are being charged?

Crewe

Crewe station is fully-electrified.

  • Trains for Wales seem to use Platform 6 for through trains and the bay Platform 9 for terminating trains.
  • Both platforms appear to be electrified.
  • Terminating trains appear to wait at least 9-11 minutes before leaving.

It does appear that Crewe station is ready for battery-electric trains.

Fishguard Harbour

Fishguard Harbour station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Hereford

Hereford station has four through platforms.

This Google Map shows the station.

There is plenty of space.

As with Chester, I would electrify this station with 750 VDC third-rail equipment.

But the electrification wouldn’t be just for train services in Wales.

  • West Midlands Trains, run an hourly service to Birmingham New Street and there is only a forty-one mile gap in the electrification between Hereford and Bromsgrove.
  • Great Western Railway’s service to London, has a massive ninety-six mile run to the electrification at Didcot Junction, which could be bridged by installing charging facilities at Worcestershire Parkway and/or Honeybourne stations.

Both services have generous turnround times at Hereford, so would be able to leave fully-charged.

Distances from Hereford station are as follows.

  • Abergavenny – 24 miles
  • Bromsgrove – 41 miles
  • Great Malvern – 21 miles
  • Honeybourne – 48 miles
  • Ludlow – 13 miles
  • Newport – 44 miles
  • Shrewsbury – 51 miles
  • Worcester Parkway – 33 miles

Hereford station could be a serious battery-electric train hub.

Holyhead

Holyhead station has three terminals platforms.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Liverpool Lime Street

Liverpool Lime Street station is fully-electrified and ready for battery-electric trains.

Llandrindod

Llandrindod station has two through platforms.

I took these pictures at the station as I passed through in 2016.

The Heart of Wales Line is certainly a route, that would benefit from larger trains. Zero-carbon battery-electric trains would surely fit well in the area.

This Google Map shows the station.

It would appear that, it is another station, that could be fitted with third-rail electrification to charge the trains.

Distances from Llandrindod station are as follows.

  • Shrewsbury – 52 miles
  • Llandovery – 27 miles
  • Llanelli – 59 miles
  • Swansea – 70 miles

It would appear that a second station with charging facilities or bigger batteries are needed.

Llandudno Junction

Llandudno Junction station has four platforms.

This Google Map shows the station.

There is plenty of space.

As at Chester, the simple solution would be to electrify the platforms used by trains, that will need charging.

Butb there may also be a wider plan.

Llandudno Junction station is at the Western end of a string of five closely-spaced stations with Prestatyn station in the East.

  • Llandudno Junction and Prestatyn are eight miles apart.
  • Trains take twenty-three minutes to pass through this section.
  • Some trains do a detour to Llandudno station before continuing.
  • For part of the route, the railway lies between the dual-carriageway A55 road and the sea.

So why not electrify this section of railway between Llandudno Junction and Prestatyn stations?

  • Either 750 VDC this-rail or 25 KVAC overhead electrification could be used.
  • Prestatyn and Chester are 46 miles apart.
  • Llandudno Junction and Holyhead are 40 miles apart.

If third-rail electrification were to be used, it might be advantageous to electrify to Llandudno station.

  • It would be less intrusive.
  • It would be quieter in an urban area.
  • It would give the trains to Blaenau Ffestiniog trains a good charge.

But above all third-rail electrification might cost a bit less and cause less disruption to install.

Machynlleth

Machynlleth station is where the Aberystwyth and Pwllheli services split and join.

This Google Map shows the station.

Consider.

  • There is a train depot by the station.
  • Will there be a good power supply at the station to charge the trains?
  • Machnylleth and Pwllhelli are 58 miles apart.
  • Machynlleth and Shrewsbury are 61 miles apart.

I think that Machynlleth might be pushing things too far, without extra stations with charging facilities.

One solution might be to develop the Riding Sunbeams concept and electrify the route between Newtown and Dovey Junction via Machynlleth, using third-rail technology powered-by solar or wind power.

Another solution would be batteries with a larger capacity.

Manchester Airport

Manchester Airport station is fully-electrified and ready for battery-electric trains.

Manchester Piccadilly

Manchester Piccadilly station is fully-electrified and ready for battery-electric trains.

Milford Haven

Milford Haven station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Pembroke Dock

Pembroke Dock station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Pwllheli

Pwhelli station is a only has a single terminal platform.

This Google Map shows the location of the station.

The stsation is at the North West corner of the bay.

My first reaction, when I saw this was that I have to go.

So I took a closer look at the station instead.

I suspect that fitting a charging facility into the station, wouldn’t be the most difficult of engineering problems. Although, there might be a problem getting a good enough connection to the National Grid.

Shewsbury

Shrewsbury station is a five-platform station.

This Google Map shows the station’s unusual location over the River Severn.

It must be one of few stations in the world, where trains enter the station from three different directions.

  • From Crewe and Chester to the North.
  • From Hereford and Wales to the South.
  • From Birmingham and Wolverhampton in the East.

Adding electrification to all or selected platforms should allow trains to recharge and be on their way.

  • Under current timetables, dwell times in Shrewsbury are up to eight minutes.
  • I would suspect the train times could be adjusted, so that trains left the station with full batteries.

With battery-electric services to Aberystwyth, Birmingham International, Birmingham New Street, Cardiff Central, Chester, Crewe, Hereford, Holyhead, London Euston, Manchester, Pwllheli and Swansea, it will be a very important station.

Swansea

Swansea station has four terminal platforms.

A charging facility could be added to an appropriate number of platforms.

Or perhaps, the last few miles of track into the station should be electrified, so trains could charge on the way in, charge in the station and charge on the way out.

Third Rail Electrification

I have suggested in this post, that 750 VDC third-rail electrification could be used in several places.

I will repeat what I said earlier, when discussing Chester station.

  • I’m an engineer, who deals in scientifically-correct solutions, not politically-correct ones, devised by jobsworths.
  • Maintenance staff at the station will be familiar with the technology.
  • Station staff and passengers will know about the dangers of third-rail electrification.
  • Trains connect and disconnect automatically to third-rail electrification.
  • Trains don’t have to stop to connect and disconnect, so passing trains can be topped-up.
  • Hitachi with the Class 395 train and Alstom with the Class 373 train, have shown even trains capable of 140 mph can be fitted with third-rail shoes to work safely at slower speeds on lines electrified using third-rail.
  • Modern control systems can control the electricity to the third-rail, so it is only switched on, when the train completes the circuit.

Third-rail electrification should be seriously considered.

A Standardised Terminal Solution

In this post, I mentioned that the following stations could be powered by a scandalised solution, as they are all one platform, terminal stations.

  • Aberystwyth
  • Blaenau Ffestiniog
  • Fishguard Harbour
  • Holyhead
  • Milford Haven
  • Pembroke Dock
  • Pwllheli

The system might also be applicable at Carmarthen and Swansea.

My view is that Vivarail’s Fast Track charging based on third-rail technology would be ideal. I discussed this technology in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

Conclusion

With a bit of ingenuity, all train services run by Transport for Wales, can be run with battery-electric trains.

 

July 9, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Could High Speed Two Trains Serve Chester?

This may seem a slightly outrageous proposal to run High Speed Two trains to Chester.

  • The city is a major tourist destination.
  • Despite its closeness to Crewe it is a major rail hub, with services across Wales to Cardiff, Holyhead and Llandudno and along the border between England and Wales to Shrewsbury and Newport.
  • Merseyrail serves the city and the station can be considered to be part of Liverpool’s extensive commuting area. This service is likely to be more reliable and faster with the delivery of new Class 777 trains.
  • For parts of Merseyside, travelling to London or Manchester Airport, is easier via Chester than Liverpool Lime Street or Liverpool South Parkway.

If the promoters of High Speed Two are serious about creating a railway for the whole country, then I feel that running trains direct to and from Chester could be very beneficial for the towns and cities, that can be served by the current network at Chester.

Current And Possible Timings

Currently, trains take two minutes over two hours between Euston and Chester.

When Avanti West Coast introduces the new Hitachi AT-300 trains on the route, the following times will be possible.

  • Euston to Crewe via West Coast Main Line – 90 minutes – Fastest Pendelino
  • Crewe and Chester – 24 minutes – Current timing

This would give a time of one hour and 54 minutes, which is a saving of 8 minutes. But a lot of carbon would not be emitted.

I estimate, that with High Speed Two Phase 2a completed, the following timings will be possible.

  • Euston to Crewe via HS2 – 55 minutes – HS2 website
  • Crewe and Chester – 24 minutes – Current timing

This would give a time of one hour and 19 minutes, which is a saving of 43 minutes.

Infrastructure Needed

There will need to be some infrastructure changes.

Platform Lengthening At Chester Station

The station would probably be served by two-hundred metre long classic-compatible, which might need some platform lengthening.

This Google Map shows the station.

It looks to me, that there is plenty of space.

Will Chester And Crewe Be Electrified?

We know little about the capabilities of the trains proposed by the various manufacturers.

But, I wouldn’t be surprised that one or more of the proposals use batteries for one of the following purposes.

  • Regenerate braking.
  • Emergency power.
  • Range extension for up to perhaps sixty miles.

As Chester and Crewe stations are only twenty-one miles apart with no intermediate stations, which will be run at an average speed of only 52 mph I don’t think it will be impossible to extend the service to Chester on battery power.

If electrification is required I wrote about it in Hitachi Trains For Avanti.

As it is only just over twenty miles, I don’t think it will be the most challenging of projects, although there does seem to be a lot of bridges.

Electrification would also allow Avanti West Coast’s Hitachi trains to run on electricity to Chester.

What About Holyhead?

Holyhead could become a more important destination in the next few years.

It is probably the best alternative to avoid flying and driving between Great Britain and the Island of Ireland.

And who can accurately predict, what effect Brexit and thinking about global warming will have?

I have a feeling that after electrification to Chester, using on-board energy storage could be used West of Chester.

It is very difficult to predict battery ranges in the future, but I can see a two hundred metre long classic-compatible train on High Speed Two being able to reach Holyhead on battery power, with or without some limited extra electrification.

I estimate that with some track improvements, that it will be possible to travel between Euston and Holyhead in around three hours.

Conclusion

It looks to me, that when High Speed Two, think about adding extra destinations, Chester could be on the list.

I also suspect that if it can be run without full electrification, Euston and Holyhead could be a valuable route for Avanti West Coast.

January 21, 2020 Posted by | Transport | , , , , , , , , , | 4 Comments

Should Phase One Of High Speed Two Go To Birmingham Or Crewe?

The important Crewe station is currently planned to be reached from London in Phase 2a of High Speed Two, with the first train scheduled for 2027, according to Wikipedia.

There have been changes over the years and the delivery of the line at Crewe was brought forward by a few years, so that now it is just twelve months after the line opened to Birmingham.

So is it better that Phase 1 of High Speed Two goes to Birmingham or Crewe?

The Route Of High Speed Two Between Birmingham And Crewe

This map clipped from the High Speed Two web site, shows the route between Birmingham and Crewe.

Note.

  1. Phase 1 is shown in dark blue
  2. Phase 2a is shown in a lighter blue.
  3. Phase 2b is shown in orange.
  4. Crewe is in the North-West corner of the map.
  5. Of the two routes in the middle Phase 2a is to the East with the West Coast Main Line to the West.
  6. Birmingham is in the South-East Corner of the map, where two stations are shown; Birmingham Curzon Street in the West and Birmingham Interchange slightly to the South.

This second map, shows High Speed Two to the East of Birmingham.

Note.

  1. The colours are the same.
  2. The Eastern leg to Nottingham and Leeds, which is shown in orange, goes off to the North-East.

This third map shows the route around Lichfield.

Note.

  1. Phase 1 is shown in dark blue
  2. Phase 2a to Crewe is the branch going North and is shown in a lighter blue.
  3. The other branch going to the North West is the existing West Coast Main Line.

This fourth map shows the routes between Lichfield and Crewe

Note

  1. The colours are the same.
  2. Phase 2a of High Speed Two is the straighter route to the East.
  3. The more curvy route is the existing West Coast Main Line.

This fifth map shows the section of the route through Crewe.

Note.

  1. At the North of the map, the blue line is the West Coast Main Line and the orange line is the High Speed Two route to Manchester.
  2. Through Crewe the two lines share a route and may even share tracks.
  3. At the South of the map the High Speed Two route is on the East, with the West Coast Main Line to the West.

Click here to access High Speed Two’s interactive map, that I used to obtain these maps.

 

Phase One Services

Currently the following services are planned for Phase One of High Speed Two.

  • Three trains per hour (tph) – Birmingham Curzon Street, via Old Oak Common (OOC) and Birmingham Interchange.
  • Three tph – Birmingham Interchange via OOC.
  • Two tph – Liverpool Lime Street via OOC, Stafford (1tph), Crewe (1tph) and Runcorn
  • Three tph – Manchester Piccadilly via OOC, Wilmslow (1tph) and Stockport
  • One tph – Preston via OOC, Crewe, Warrington Bank Quay and Wigan North Western
  • One tph – Glasgow Central via OOC and Preston

Summing these up, the following totals are calculated.

  • 6 tph – Birmingham Interchange
  • 2 tph – Crewe
  • 2 tph – Preston

Most other stations get two tph or less.

Birmingham Or Crewe?

In the following sections I will discuss various points.

Service Between Euston And Stafford

There is an interesting point shown up by the maps and the proposed services for Phase One.

Trains using High Speed Two won’t be able to call at Stafford unless they take a diversion along the West Coast Main Line. So after Phase 2a has been built between Lichfield and Crewe, Stafford could lose its High Speed Two service, unless they use the classic route.

Birmingham Interchange Station

Birmingham Interchange station will be unaffected by the decision of the terminus of Phase 1 of High Speed Two.

  • It will be a Parkway station, with probably lots of parking.
  • It will be connected to the National Exhibition Centre, Birmingham International station and Birmingham Airport by means of a people mover.
  • All High Speed Two services go through the station and six tph are proposed to stop in Phase 1.
  • The West Midlands Metro could serve the station.
  • It will be thirty-eight minutes from London. Stansted Airport is fifty and Gatwick is around thirty!

I suspect that the time to and from London and a four-hundred metre long train every ten minutes, will mean that this will be a very busy station.

  • Will Londoners treat Birmingham Airport, as a London Airport?
  • Motorways to the East of Birmingham could mean the West Midlands treats the station as a Park-and-Ride station for London.
  • Birmingham International station is a well-connected station with five platforms.

This station could become the busiest in the UK.

Birmingham Curzon Street Station

Birmingham Curzon Street station will be an unusual station for the UK, in that will be a city-centre terminal station running East-West, with services going both North and South, using a junction with the main High Speed Two.

  • It will have seven platforms.
  • It will be a short walk to Birmingham Moor Street station.
  • It will have a stop on the West Midlands Metro line between Digbeth and Grand Central

Birmingham are hoping the station will be a catalyst for redevelopment of the area around the station.

After Phase 2 of High Speed Two services to the South are planned to include.

  • Three tph – Euston via Birmingham Interchange and OOC.
  • One tph – Birmingham Interchange direct

The hourly shuttle between the two stations makes up the service between them to a Turn-Up-And-Go frequency of four tph.

After Phase 2 of High Speed Two services to the North are planned to include.

  • One tph – Stafford or Crewe direct
  • One tph – Manchester Piccadilly via Crewe and Manchester Interchange
  • Two trains per day – Preston via Crewe, Manchester Interchange and Wigan North Western
  • Two trains per day – Carlisle via Manchester Interchange, Wigan North Western and Preston.
  • One tph – Glasgow via Warrington Bank Quay, Wigan North Western, Preston and Carlisle.
  • One tph – Edinburgh via Crewe, Warrington Bank Quay, Wigan North Western, Preston and Carlisle.
  • One tph – Leeds via East Midlands Hub
  • One tph – York via East Midlands Hub and Sheffield
  • One tph – Newcastle via York

Summing up four tph go via the Western leg and Crewe to the North and three tph go via the Eastern leg and East Midlands Hub.

I suspect it is all about balancing the services between the three legs of High Speed Two.

  • London and Birmingham
  • Birmingham and North West England and Scotland
  • Birmingham and North East England.

High Speed Two has been designed for fifteen tph running into Euston, so if all parts of the route can handle that number of trains, there must be a lot of scope to add extra services.

Birmingham Curzon Street with its seven platforms would balance all the services and probably help to sort things out in times of disruption.

Between Birmingham International Station And Lichfield

The maps show that this section must be built to connect High Speed Two to the West Coast Main Line just to the North of Lichfield Trent Valley station on the Trent Valley Line, as there is no other possible connection between the two routes.

This map clipped from the High Speed Two map, shows where the two lines join.

It is obviously designed for speed.

I estimate that the distance between Birmingham Interchange and this junction is not far short of twenty miles.

Between Lichfield And Crewe Station

Along the West Coast Main Line, the distance is around forty-two miles, but the straighter route proposed for High Speed Two could be a few miles shorter and several minutes faster.

If Phase 1 of High Speed Two were not to be built, trains would have to share the West Coast Main Line through Stafford station.

Currently, Stafford station can have as many as fifteen tph through the station.

Phase 1 of High Speed Two will have these trains going North of Birmingham Interchange station.

  • Two tph – Liverpool Lime Street
  • Three tph – Manchester Piccadilly
  • One tph – Preston
  • One tph – Glasgow Central

Which is a total of seven tph, with one tph stopping at Stafford.

I doubt they could all be squeezed through Stafford.

There would certainly be no space for any trains starting at Birmingham Curzon Street.

This is a very simple example of the capacity problems on the West Coast Main Line, which can only be solved by extra tracks to the North.

Crewe Station

Consider these points about Crewe station.

  • It is not of a design that reflects its status.
  • Currently, it handles 23 tph, that go all over the North West and much further.
  • Phase 1 of High Speed Two would add another seven tph
  • New services are planned.
  • A rebuilding of the station would surely improve both capacity and operational efficiency.
  • Looking at the fifth of the maps, it appears that the West Coast Main Line and High Speed Two share a corridor , if not tracks, through Crewe station.

For all these reasons, I am convinced that if High Speed Two passes through, then the station will need a rebuild.

So it looks like whether High Speed Two goes ahead or not, Crewe station will need an expensive rebuild.

Extra High Speed Two Services Through Crewe

Once Phase 2a has been completed, this will allow some extra Phase 2 services to be run along the route from Euston.

  • Two tph from one tph – Glasgow Central via OOC, Birmingham Interchange (1tph), Preston and Carstairs
  • Two tph – Edinburgh via OOC, Birmingham Interchange (1tph), Preston, Carstairs and Edinburgh Haymarket

I suspect these might run as a pair of trains as far as Carstairs and split and join there.

There will also be extra services between Birmingham Curzon Street, Crewe and Stafford to Edinburgh, Glasgow, Liverpool Lime Street, Manchester Piccadilly and Preston.

It is worth noting, that when all the services going North from Birmingham are summarised, you get the following.

  • Four tph – Manchester Piccadilly
  • Three tph – Liverpool Lime Street
  • One tph – Preston
  • Four tph – Glasgow/Edinburgh
  • One tph – Stafford or Crewe

It looks a bit complicated North of Crewe, but it will create a frequent service between Crewe and Scotland.

High Speed To Chester

It should also be noted, that if between Crewe and Chester were to electrified, High Speed Two trains could serve Chester.

  • Chester is a major rail interchange for the Border areas between England and Wales, North Wales and the Wirral.
  • It is also connected to Merseyrail.
  • Chester is an important tourist destination, with the city centre close to the station.

Electrification might also allow battery-electric versions of Avanti’s new Hitachi trains to serve some of their routes, without using diesel.

This simple example of Chester, says to me that opening High Speed Two to Crewe could allow extra services to be developed.

Conclusion

It appears from this analysis, that the only advantage of not building Phase 2a is that about forty miles of line between Lichfield and Crewe can be pushed back for a few years.

 

 

 

 

 

January 20, 2020 Posted by | Transport | , , , , , , | 2 Comments

Hitachi Trains For Avanti

The title of this post is the same as that of an article in the January 2020 Edition of Modern Railways.

The Bi-Mode Trains

Some more details of the thirteen bi-mode and ten electric Hitachi AT 300 trains are given.

Engine Size and Batteries

This is an extract from the article.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

I do wonder if my speculation in Will Future Hitachi AT-300 Trains Have MTU Hybrid PowerPacks? is possible.

After all, why do all the hard work to develop a hybrid drive system, when your engine supplier has done it for you?

Would Avanti West Coast need a train that will do 125 mph on diesel?

The only place, they will be able to run at 125 mph or even higher will be on the West Coast Main Line, where they will be running under electric power from the pantograph.

If I were designing a bi-mode for 90 mph on diesel and 125 mph on electric, I would have batteries on the train for the following purposes.

  • Handle regenerative braking.
  • Provide hotel power in stations or when stationery.
  • Provide an acceleration boost, if required, when running on diesel.
  • Provide emergency power, if the wires go down in electric mode.

I’m sure MTU could work out a suitable size of diesel engine and batteries in an MTU PowerPack, that would meet the required performance.

Or maybe a smaller diesel could be used. An LNER Class 800 train has 1680 kW of installed power to maintain 125 mph. But the Great Western Railway versions have 2100 kW or twenty-five percent more, as their routes are more challenging with steeper gradients.

For the less challenging routes at a maximum of 90 mph between Crewe, Chester, Shrewsbury and North Wales, I wonder what level of power is needed.

A very rough estimate based on the speed required could put the power requirement as low as 1200-1500 kW.

As the diesel engines are only electrical generators, it would not effect the ability of the train to do 125 mph between Crewe and London.

There looks to be a virtuous circle at work here.

  • Lower maximum speed on diesel means smaller diesel engines.
  • Smaller diesel engines means lighter diesel engines and less fuel to carry.
  • Less weight to accelerate needs less installed power.
  • Less power probably means a more affordable train, that uses less diesel.

It looks to me, that Hitachi have designed a train, that will work Avanti West Coast’s routes efficiently.

The Asymmetric Bi-Mode Train

It looks to me that the bi-mode train  that Avanti West Coast are buying has very different performance depending on the power source and signalling

  • 90 mph or perhaps up to 100 mph on diesel.
  • 125 mph on electric power.with current signalling.
  • Up to 140 mph on electric power with in-cab digital signalling.

This compares with the current Class 221 trains, which can do 125 mph on all tracks, with a high enough operating speed.

The new trains’ different performance on diesel and electric power means they could be called asymmetric bi-modes.

Surely, creating an asymmetric bi-mode train, with on-board power; battery, diesel or hydrogen, sized to the route, means less weight, greater efficiency, less cost and in the case of diesel, higher carbon efficiency.

Carbon Emissions

Does the improvement in powertrain efficiency with smaller engines running the train at slower speeds help to explain this statement from the Modern Railways article?

Significant emissions reduction are promised from the elimination of diesel operation on electrified sections as currently seen with the Voyagers, with an expected reduction in CO2 emissions across the franchise of around two-thirds.

That is a large reduction, which is why I feel, that efficiency and batteries must play a part.

Battery-Electric Conversion

In my quote earlier from the Modern Railways article, I said this.

These (the diesel engines) would be replaceable by batteries in future if specified.

In Thoughts On The Next Generation Of Hitachi High Speed Trains, I looked at routes that could be run by a battery-electric version of Hitachi AT-300 trains.

I first estimated how far an AT-300 train could go on batteries.

How far will an AT-300 train go on battery power?

  • I don’t think it is unreasonable to be able to have 150 kWh of batteries per car, especially if the train only has one diesel engine, rather than the current three in a five-car train.
  • I feel with better aerodynamics and other improvements based on experience with the current trains, that an energy consumption of 2.5 kWh per vehicle mile is possible, as compared to the 3.5 kWh per vehicle mile of the current trains.

Doing the calculation gives a range of sixty miles for an AT-300 train with batteries.

As train efficiency improves and batteries are able to store more energy for a given volume, this range can only get better.

I then said this about routes that will be part of Avanti West Coast’s network.

With a range of sixty miles on batteries, the following is possible.

  • Chester, Gobowen, Shrewsbury And Wrexham Central stations could be reached on battery power from the nearest electrification.
  • Charging would only be needed at Shrewsbury to ensure a return to Crewe.

Gobowen is probably at the limit of battery range, so was it chosen as a destination for this reason.

The original post was based on trains running faster than the 90 mph that is the maximum possible on the lines without electrification, so my sixty mile battery range could be an underestimate.

These distances should be noted.

  • Crewe and Chester – 21 miles
  • Chester and Shrewsbury – 42 miles
  • Chester and Llandudno – 47 miles
  • Chester and Holyhead – 84 miles

Could electrification between Crewe and Chester make it possible for Avanti West Coast’s new trains to go all the way between Chester and Holyhead on battery power in a few years?

I feel that trains with a sixty mile battery range would make operations easier for Avanti West Coast.

Eighty miles would almost get them all the way to Holyhead, where they could recharge!

Rlectrification Between Chester And Crewe

I feel that this twenty-odd miles of electrification could be key to enabling battery-electric trains for the routes to the West of Chester to Shrewsbury, Llandudno and Holyhead.

How difficult would it be to electrify between Chester and Crewe?

  • It is not a long distance to electrify.
  • There doesn’t appear to be difficult viaducts or cuttings.
  • It is electrified at Crewe, so power is not a problem.
  • There are no intermediate stations.

But there does seem to be a very large number of bridges. I counted forty-four overbridges and six underbridges. At least some of the bridges are new and appear to have been built with the correct clearance.

Perhaps it would be simpler to develop fast charging for the trains and install it at Chester station.

Conclusion On The Bi-Mode Trains

It appears to me that Avanti West Coast, Hitachi and Rock Rail, who are financing the trains have done a very good job in devising the specification for a fleet of trains that will offer a good service and gradually move towards being able to deliver that service in a carbon-free manner.

  • The initial bi-mode trains will give a big improvement in performance and reduction in emission on the current Voyagers, as they will be able to make use of the existing electrification between Crewe and London.
  • The trains could be designed for 125 mph on electric power and only 90-100 mph on diesel, as no route requires over 100 mph on diesel. This must save operating costs and reduce carbon emissions.
  • They could use MTU Hybrid PowerPacks instead of conventional diesel engines to further reduce emissions and save energy
  • It also appears that Hitachi might be able to convert the trains to battery operation in a few years.
  • The only new infrastructure would be a few charging stations for the batteries and possible electrification between Chester and Crewe.

I don’t think Avanti West Coast’s ambition of a two-thirds reduction in CO2 is unreasonable and feel it could even be exceeded.

Other Routes For Asymetric Bi-Mode Trains

I like the concept of an asymetric bi-mode train, where the train has the following performance.

  • Up to 100 mph on battery, diesel or hydrogen.
  • Up to 100 mph on electrified slower-speed lines.
  • 125 mph on electrified high-speed lines, with current signalling.
  • Up to 140 mph on electrified high-speed lines, with in-cab digital signalling.

I am very sure that Hitachi can now tailor an AT-300 train to a particular company’s needs. Certainly, in the case of Avanti West Coast, this seems to have happened, when Avanti West Coast, Hitachi, Network Rail and Rock Rail had some serious negotiation.

LNER At Leeds

As an example consider the rumoured splitting and joining of trains at Leeds to provide direct services between London and Bradford, Harrogate, Huddersfield, Ilkley, Skipton and other places, that I wrote about in Dancing Azumas At Leeds.

In the related post, I gave some possible destinations.

  • Bradford – 13 miles – 25 minutes – Electrified
  • Harrogate – 18 miles – 30 minutes
  • Huddersfield – 17 miles – 35 minutes
  • Hull – 20 miles – 60 minutes
  • Ilkley – 16 miles – 26 minutes – Electrified
  • Skipton – 26 miles – 43 minutes – Electrified
  • York – 25 miles – 30 minutes

Note, that the extended services would have the following characteristics.

They would be run by one five-car train.

  1. Services to Bradford, Ilkley and Skipton would be electric
  2. Electrification is planned from Leeds to Huddersfield and York, so these services could be electric in a few years.
  3. All other services would need independent power; battery, diesel or hydrogen to and from Leeds.
  4. Two trains would join at Leeds and run fast to London on the electrified line.
  5. Services would probably have a frequency of six trains per day, which works out at a around a train every two hours and makes London and back very possible in a day.
  6. They would stop at most intermediate stations to boost services to and from Leeds and give a direct service to and from London.

As there are thirty trains per day between London and Leeds in each direction, there are a lot of possible services that could be provided.

Currently, LNER are only serving Harrogate via Leeds.

  • LNER are using either a nine-car train or a pair of five-car trains.
  • The trains reverse in Platforms 6 or 8 at Leeds, both of which can handle full-length trains.
  • LNER allow for a generous time for the reverse, which would allow the required splitting and joining.
  • All trains going to Harrogate are Class 800 bi-mode trains.

Note that the Class 800 trains are capable of 125 mph on diesel, whereas the average speed between Harrogate and Leeds is just 35 mph. Obviously, some of this slow speed is due to the route, but surely a train with a maximum speed of 90-100 mph, with an appropriate total amount of diesel power, would be the following.

  • Lighter in weight.
  • More efficient.
  • Emit less pollution.
  • Still capable of high speed on electrified lines.
  • Bi-mode and electric versions could run in pairs between Leeds and London.

LNER would probably save on track access charges and diesel fuel.

LNER To Other Places

Could LNER split and join in a similar way to other places?

  • Doncaster for Hull and Sheffield
  • Edinburgh for Aberdeen and Inverness
  • Newark for Lincoln and Nottingham
  • York for Middlesbrough and Scarborough.

It should be noted that many of the extended routes are quite short, so I suspect some train diagrams will be arranged, so that trains are only filled up with diesel overnight,

GWR

Great Western Railway are another First Group company and I’m sure some of their routes could benefit, from similar planning to that of Avanti West Coast.

Splitting and joining might take place at Reading, Swindon, Bristol and Swansea.

South Western Railway

South Western Railway will need to replace the three-car Class 159 trains to Exeter, that generally work in pairs with a total number of around 400 seats, in the next few years.

These could be replaced with a fleet of third-rail Hitachi trains of appropriate length.

  • Seven cars sating 420 passengers?
  • They would remove diesel trains from Waterloo station.
  • All South Western Railway Trains running between Waterloo and Basingstoke would be 100 mph trains.

I wonder, if in-cab digital signalling on the route, would increase the capacity? It is sorely needed!

Southeastern

Southeastern need bi-mode trains to run the promised service to Hastings.

  • Trains would need a third-rail capability.
  • Trains need to be capable of 140 mph for High Speed One.
  • Trains need to be able to travel the 25 miles between Ashford International and Ore stations.
  • Trains would preferably be battery-electric for working into St. Pancras International station.

Would the trains be made up from six twenty-metre cars, like the Class 395 trains?

The Simple All-Electric Train

The Modern Railways article, also says this about the ten all-electric AT-300 trains for Birmingham, Blackpool and Liverpool services.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It strikes me as strange, that Hitachi are throwing out one of their design criteria, which is the ability of the train to rescue itself, when the overhead wires fail.

In Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?, I published this extract from this document on the Hitachi Rail web site.

The system can select the appropriate power source from either the main transformer or the GUs. Also, the size and weight of the system were minimized by designing the power supply converter to be able to work with both power sources. To ensure that the Class 800 and 801 are able to adapt to future changes in operating practices, they both have the same traction system and the rolling stock can be operated as either class by simply adding or removing GUs. On the Class 800, which is intended to run on both electrified and non-electrified track, each traction system has its own GU. On the other hand, the Class 801 is designed only for electrified lines and has one or two GUs depending on the length of the trainset (one GU for trainsets of five to nine cars, two GUs for trainsets of 10 to 12 cars). These GUs supply emergency traction power and auxiliary power in the event of a power outage on the catenary, and as an auxiliary power supply on non-electrified lines where the Class 801 is in service and pulled by a locomotive. This allows the Class 801 to operate on lines it would otherwise not be able to use and provides a backup in the event of a catenary power outage or other problem on the ground systems as well as non-electrified routes in loco-hauled mode.

This is a very comprehensive power system, with a backup in case of power or catenary failure.

So why does it look like Hitachi are throwing that capability out on the trains for Avanti West Coast.

There are several possibilities.

  • The reliability of the trains and the overhead wire is such, that the ability of a train to rescue itself is not needed.
  • The auxiliary generator has never been used for rescuing the train.
  • The West Coast Main Line is well-provided with Thunderbird locomotives for rescuing Pendelinos, as these trains have no auxiliary generator or batteries.
  • Removal of the excess weight of the auxiliary engine and batteries, enables the Hitachi AT-300 trains to match the performance of the Pendelinos, when they are using tilt.

Obviously, Hitachi have a lot of train performance statistics, from the what must be around a hundred trains in service.

It looks like Hitachi are creating a lightweight all-electric train, that has the performance or better of a Pendelino, that it achieves without using tilt.

  • No tilt means less weight and more interior space.
  • No auxiliary generator or batteries means less weight.
  • Wikipedia indicates, that Hitachi coaches are around 41 tonnes and Pendelino coaches are perhaps up to ten tonnes heavier.
  • Less weight means fast acceleration and deceleration.
  • Less weight means less electricity generated under regenerative braking.
  • Pendelinos use regenerative braking, through the catenary.
  • Will the new Hitachi trains do the same instead of the complex system they now use?

If the train fails and needs to be rescued, it uses the same Thunderbird system, that the Pendelinos use when they fail.

Will The New Hitachi Trains Be Less Costly To Run?

These trains will be lighter in weight than the Pendelinos and will not require the track to allow tilting.

Does this mean, that Avanti West Coast will pay lower track access charges for their new trains?

They should also pay less on a particular trip for the electricity, as the lighter trains will need less electricity to accelerate them to line speed.

Are Avanti West Coast Going To Keep The Fleets Apart?

Under a heading of Only South Of Preston, the Modern Railways article says this.

Unlike the current West Coast fleet, the Hitachi trains will not be able to tilt. Bid Director Caroline Donaldson told Modern Railways this will be compensated for by their improved acceleration and deceleration characteristics and that the operator is also working with Network Rail to look at opportunities to improve the linespeed for non-tilting trains.

The routes on which the Hitachi trains will operate have been chosen with the lack of tilt capability in mind, with this having the greatest impact north of Preston, where only Class 390 Pendelinos, which continue to make use of their tilting capability will be used.

Avanti West Coast have said that the Hitachi trains will run from London to Birmingham, Blackpool and Liverpool.

All of these places are on fully-electrified branches running West from the West Coast Main Line, so it looks like there will be separation.

Will The New Hitachi Trains Be Faster To Birmingham, Blackpool And Liverpool?

Using data from Real Time Trains, I find the following data about the current services.

  • Birmingham and Coventry is 19 miles and takes 20 minutes at an average speed of 57 mph
  • Blackpool and Preston is 16.5 miles and takes 21 minutes at an average speed of 47 mph
  • Liverpool and Runcorn is 3.15 miles and takes 15 minutes at an average speed of 52 mph

All the final legs when approaching the terminus seem to be at similar speeds, so I doubt there are much savings to be made away from the West Coast Main Line.

Most savings will be on the West Coast Main Line, where hopefully modern in-cab digital signalling will allow faster running at up to the design speed of both the Hitachi and Pendelino trains of 140 mph.

As an illustration of what might be possible, London to Liverpool takes two hours and thirteen minutes.

The distance is 203 miles, which means that including stops the average speed is 91.6 mph.

If the average speed could be raised to 100 mph, this would mean a journey time of two hours and two minutes.

As much of the journey between London and Liverpool is spent at 125 mph, which is the limit set by the signalling, raising that to 135 mph could bring substantial benefits.

To achieve the journey in two hours would require an overall average speed of 101.5 mph.

As the proportion of track on which faster speeds, than the current 125 mph increase over the next few years, I can see Hitachi’s lightweight all-electric expresses breaking the two hour barrier between London and Liverpool.

What About The Pendelinos And Digital Signalling?

The January 2020 Edition of Modern Railways also has an article entitled Pendolino Refurb Planned.

These improvements are mentioned.

  • Better standard class seats! (Hallelujah!)
  • Refreshed First Class.
  • Revamped shop.

Nothing is mentioned about any preparation for the installation of the equipment to enable faster running using digital in-cab signalling, when it is installed on the West Coast Main Line.

Surely, the trains will be updated to be ready to use digital signalling, as soon as they can.

Just as the new Hitachi trains will be able to take advantage of the digital signalling, when it is installed, the Pendellinos will be able to as well.

Looking at London and Glasgow, the distance is 400 miles and it takes four hours and thirty minutes.

This is an average speed of 89 mph, which compares well with the 91.6 mph between London and Liverpool.

Raise the average speed to 100 mph with the installation of digital in-cab signalling on the route, that will allow running at over 125 mph for long sections and the journey time will be around four hours.

This is a table of average speeds and journey times.

  • 100 mph – four hours
  • 105 mph – three hours and forty-eight minutes
  • 110 mph – three hours and thirty-eight minutes
  • 115 mph – three hours and twenty-eight minutes
  • 120 mph – three hours and twenty minutes
  • 125 mph – three hours and twelve minutes
  • 130 mph – three hours and four minutes

I think that I’m still young enough at 72 to be able to see Pendelinos running regularly between London and Glasgow in three hours twenty minutes.

The paragraph is from the Wikipedia entry for the Advanced Passenger Train.

The APT is acknowledged as a milestone in the development of the current generation of tilting high speed trains. 25 years later on an upgraded infrastructure the Class 390 Pendolinos now match the APT’s scheduled timings. The London to Glasgow route by APT (1980/81 timetable) was 4hrs 10min, the same time as the fastest Pendolino timing (December 2008 timetable). In 2006, on a one off non-stop run for charity, a Pendolino completed the Glasgow to London journey in 3hrs 55min, whereas the APT completed the opposite London to Glasgow journey in 3hrs 52min in 1984.

I think it’s a case of give the Pendelinos the modern digital in-cab signalling they need and let them see what they can do.

It is also possible to give an estimate for a possible time to and from Manchester.

An average speed of 120 mph on the route would deliver a time of under one hour and forty minutes.

Is it possible? I suspect someone is working on it!

Conclusion

I certainly think, that Avanti West Coast, Hitachi and Network Rail, have been seriously thinking how to maximise capacity and speed on the West Coast Main Line.

I also think, that they have an ultimate objective to make Avanti West Coast an operator, that only uses diesel fuel in an emergency.

 

 

January 1, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , | 5 Comments

Manchester Victoria To Chester

On Saturday, I went between Manchester Victoria and Chester on the new hourly Northern Connect service between Chester and Leeds.

Note.

  1. The train was a Class 158 train, with a Class 153 train acting as a capacity enhancer.
  2. The train was only doing 60 mph on the West Coast Main Line.
  3. The service was fairly busy.
  4. The route is electrified between Manchester Victoria and Warrington Bank Quay stations.

On this Saturday morning, it appeared to me that a better train is needed.

In Northern Connect Between Chester And Leeds To Start In May, I did report a rumour that Class 769 trains might be running between Chester and Leeds.

In my view Class 769 trains are ideal for the route between Chester and Leeds.

  • They are four-car trains.
  • They can do 100 mph, where electrification is available.
  • They are 90 mph trains on diesel.

There main problem, is not their age, but since they were proposed, train interiors have moved on. Passengers and train operating companies want more tables and comfortable seats. Even some refurbishments of forty-year-old trains have tables. In What Train Is This?, I described a high class refurbishment of a Class 150 train. Here’s a picture.

The Chester and Leeds route and probably many other routes in the UK need a train with the following characteristics.

  • 100 mph using either 25 KVAC overhead or 750 VDC third-rail electrification.
  • 100 mph on secondary power like diesel, battery or hydrogen.
  • two hundred mile range without refuelling.
  • Four or five cars.
  • Comfortable interior with tables, wi-fi, power points and everything else passengers want.

Train operating companies would probably like a 125 mph version.

Hitachi already have a train with this specification in the Class 800 train. In Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires, I detail, Hitachi’s plans for Class 385 trains. Could these be stretched to perhaps do 100 miles on batteries.

Bombardier are offering a High Speed Bi-Mode Aventra with batteries and Stadler are introducing the Class 755 train for Greater Anglia.

Conclusion

It looks to me, that Northern need to get themselves some new 100 mph hybrid trains. The diesels they have on order are so Twentieth Century and late!

June 3, 2019 Posted by | Transport | , , , , , , | 5 Comments

Chester To Liverpool Via Runcorn

This new service between Chester and Liverpool Lime Street stations via Runcorn station and the Halton Curve, started a couple of weeks ago.

I took these pictures of the journey.

Note.

  1. The service was busy, as everybody seemed to be going to Liverpool to prepare for the evening’s match.
  2. The Class 150 train kept up a good speed, which indicates that Network Rail didn’t cut quality on the link.
  3. Runcorn is about the halfway point of the journey.
  4. The route is electrified between Runcorn and Liverpool Lime Street stations.
  5. The Class 150 train was a bit tired.

I wouldn’t be surprised to see a hybrid train working this route.

Operation would be as follows.

  • All these trains work be capable of 100 mph using 25 KVAC overhead electrification between Liverpool Lime Street and Runcorn stations.
  • Power changeover would be at Runcorn station.
  • Between Runcorn to Chester stations is only about fourteen miles.. This will be well within battery range in a few years.

Transport for Wales will be obtaining trains from a crowded market.

More Halton Curve Services

Under Planned Improvements in the Wikipedia entry for Transport for Wales, this is said.

Introduction of a new hourly Liverpool to Llandudno and Shrewsbury service, and a new two-hourly Liverpool to Cardiff Central service from December 2022.

Adding these to the current hourly service, this would mean that two trains per hour (tph) would normally run between Liverpool Lime Street and Chester stations, with three trains in every alternate hour.

I think that, there would be a marketing advantage in running hybrid trains on these routes. Hydrogen would be ideal, as these would not need recharging like battery trains after a long trip.

To go through the single-track Halton Curve appears to take trains about five minutes, so up to eight tph could probably be feasible, which would mean four tph between Liverpool and Chester via Runcorn in both directions.

If Trains for Wales are going to compete with the Merseyrail electric services, they need a four tph frequency in both directions.

Flexible Ticketing

Currently, if you want to buy a ticket between the Chester and Liverpool Lime Street, you have to buy an appropriate ticket for your chosen route.

Surely, tourists and others might like to do the out and back journeys by a different route.

If London Underground and some train companies can share ticketing, then surely Merseyrail and other train companies can do the same.

Conclusion

This new service will be surprisingly well-used and needs an iconic hybrid train.

  • Diesel is not appropriate for the long term, although in Northern Connect Between Chester And Leeds To Start In May, I did report a rumour that Class 769 trains might be running between Chester and Leeds.
  • Hydrogen is non-polluting and has a longer range, that could make services between Liverpool and Holyhead possible.
  • Battery will probably need a charging infrastructure.

My money is on hydrogen power.

 

 

June 2, 2019 Posted by | Transport | , , , , , , , , , , , | 2 Comments

Liverpool Lime Street And Chester Services Via Halton Curve Start In May

This page on the National Rail web site is entitled Changes to the National Rail Timetable.

Under Transport for Wales, this is said.

New services will run between Liverpool Lime Street and Chester via Runcorn. An hourly service will run, with peak time extensions to Wrexham General.

This sounds like the Halton Curve service to me.

Timing On The Route

Timing on the sections of route are as follows.

  • Liverpool Lime Street and Runcorn – 21 minutes – West Midland Class 350 train, with a stop at Liverpool South Parkway.
  • Runcorn and Chester – 17 minutes – Parliamentary service as given on Wikipedia.
  • Chester and Wrexham General – 14 minutes – Trains for Wales

This gives timings as follows.

  • Liverpool Lime Street and Chester – 38 minutes
  • Liverpool Lime Street and Wrexham General – 52 minutes

It looks to me that a round trip would be under two hours to both destinations, so two trains would be enough to provide an hourly service.

If Trains for Wales should decide to run a half-hourly service, then four trains would be needed.

Trains On The Route

The Crewe-Liverpool Line has fast services between Liverpool Lime Street and Crewe, so I suspect that it has a speed limit of at least 100 mph.

For this reason along, I suspect that all operators and Network Rail, would hope that Trains for Wales will use a train capable of running at up to 100 mph between Liverpool Lime Street and Runcorn.

The operating speed of trains owned or planned by Trains for Wales are.

It seems to me for various reasons that the Class 769 trains would be ideal for this route.

  • They could use the electrification between Liverpool Lime Street and Runcorn.
  • They are four-car high-capacity trains, that meet all the regulations.
  • They are 100 mph trains on electrification.
  • They will be straight from the factory with new interiors.
  • Northern will have servicing facilities for these trains at Allerton TMD.
  • They would give the service some publicity.

They probably won’t be delivered in time for May 2019, but they could replace whatever is used for the initial service.

 

 

March 10, 2019 Posted by | Transport | , , , , | 11 Comments

Northern Connect Between Chester And Leeds To Start In May

This article on the BBC is entitled New Rail Services Aim To Ease Overcrowding.

This is an extract.

Northern will be adding direct services between Chester and Leeds.

I think this will be the proposed Northern Connect service.

  • The route is via Warrington Bank Quay, Manchester Victoria, Rochdale, Halifax and Bradford Interchange stations.
  • Only the twenty-two miles between Warrington Bank Quay and Manchester Victoria stations is electrified.
  • Wikipedia says that the service will be run using a Class 195 train.

Looking at the current timetable, these times are achieved.

  • Chester and Newton-le-Willows – 38 minutes
  • Newton-le-Willows and Manchester Victoria – 18 minutes
  • Manchester Victoria and Leeds – 75 minutes

This totals up to two hours and eleven minutes.

The Class 195 train is a 100 mph diesel multiple unit and may knock a few minutes from this time.

On my trip to Wigan last month, I heard a rumour from a driver, that the Chester and Leeds service would be run by Class 769 trains.

  • These trains could use electrification between Warrington Bank Quay and Manchester Victoria stations.
  • They would be slightly slower, than the new Spanish trains on diesel.

It will be interesting to see, which trains Northern use for the service.

March 8, 2019 Posted by | Transport | , , , , | 20 Comments