The Anonymous Widower

Northern Powerhouse Rail – A New Line Between Manchester And Leeds Via The Centre Of Bradford

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is a new rail line between Manchester and Leeds via the centre of Bradford.

I shall look at a few of the possibilities for various sections of the route.

Current And Proposed Timings Between Manchester And Leeds

These are the current typical timings between Manchester Victoria and Leeds stations.

  • 55 minutes for 43 miles, which is an average speed of 47 mph.

With Northern Powerhouse Rail, a time of 25 minutes is the objective, which is an average speed of 103.2 mph.

  • As my helicopter flies it is just 35.7 miles, so a 25 minutes journey time would require an average speed of 85.7 mph.

It is obvious that a new much straighter line is needed with an operating speed of at least 100 mph.

One of the best 100 mph lines in the UK  is the Great Eastern Main Line between Liverpool Street and Norwich.

  • It is generally only double-track.
  • The fastest services take 90 minutes for the 115 miles, which is an average speed of 77 mph.
  • It is a busy line with lots of suburban services closer to London and freight trains to and from Felixstowe.

But even a line built to the standard of the Great Eastern Main Line wouldn’t be good enough for Northern Powerhouse Rail’s objective of 25 minutes.

The mathematics tell me, that a new line is needed, built as straight as possible between Manchester and Leeds.

High Speed Two’s Approach To Manchester

This map clipped from High Speed Two’s interactive map, shows the route of High Speed Two as it approaches Manchester Piccadilly station.

The colours of High Speed Two indicate the type of construction.

  • Black is a bored tunnel. Only in the South East corner, where it continues to Manchester Airport.
  • Purple is a tunnel portal.
  • Brown is a track between retaining walls. Used through Manchester Interchange or Airport station.
  • Red is a viaduct.
  • Orange is a box structure

This Google Map shows a similar area.

Are High Speed Two serious about demolishing a large area of Manchester to the North and East of Manchester Piccadilly station?

  • It will cause massive disruption all over the centre of Manchester.
  • How many businesses will be ruined by this plan?
  • How many residents are there in the area?
  • How will trains from the new platforms at Piccadilly station continue to Bradford, Huddersfield, Leeds and Sheffield?
  • Mrs. Merton could have said “Let’s all have a reverse!” And she’d have been joking!
  • You can’t go through the new platforms, as that would mean demolishing most of Manchester City Centre.

What High Speed Two are proposing is complete and utter rubbish!

In Whither HS2 And HS3?, which I wrote in May 2015, I said this.

I do think though that our designs for HS2 are rather dated and don’t take things that are happening or have happened into account.

Crossrail in London has shown that putting a large twin rail tunnel under a major city, is not the problem it once was. Crossrail have also been very innovative in creating stations with the minimum disturbance to existing infrastructure. As an example, the new Whitechapel station for Crossrail has also used a technique called uphill excavation, where you create escalator and lift shafts upwards from the tunnels, rather than traditionally from the surface, which is much more disruptive.

These techniques can revolutionise the construction of HS2.

Take cities like Birmingham, Leeds, Manchester, Newcastle and Sheffield, which have developed and are continually developing extensive local rail, tram and bus networks. So why are we in Birmingham still talking about creating an HS2 station at Curzon Street? Surely, we just dig a very deep pair of HS2 tunnels under the city and then uphill excavate into not only New Street, but Moor Street and Snow Hill as well. The tunnels would be only made as long as necessary, although the underground station could be very large. But it probably wouldn’t be much bigger than the enormous double-ended Liverpool Street/Moorgate station being created for Crossrail.

The great advantage of this method of construction is that you can continue to develop your network of local trains, trams and other transport links, untroubled by the construction of the new station deep below. Anybody, who thinks this is not possible, should spend half-an-hour walking around Whitechapel station, where the Hammersmith and City, District and East London Lines are passing untroubled over the giant hole and through the building site for the new station.

To some the example of Crossrail in London, would not be a good one, as Crossrail is years late. But the tunnelling under London and the excavations for the stations have gone well and were delivered on time.

In the related post, I went on to propose a double-ended underground station in Manchester with connections to both Piccadilly and Victoria stations. It could even have other connections to locations in the City Centre like Piccadilly Gardens.

There’s certainly space for a stylish entrance at the busy tram and bus interchange.

By applying the lessons learned in the building of Crossrail and other projects like Stuttgart 21, which I wrote about in Stuttgart Hauptbahnhof, I’m sure that a massive underground station in Manchester could be built successfully, on time and on budget.

I am not alone in thinking this way. In The Rival Plans For Piccadilly Station, That Architects Say Will ‘Save Millions’, I write about a plan from world-class architects Weston Williamson, who designed the superb new London Bridge station.

This visualisation from Weston Williamson, shows their proposed station.

Note.

  1. In the visualisation, you are observing the station from the East.
  2. The existing railway lines into Piccadilly station are shown in red.
  3. Stockport and Manchester Airport are to the left, which is to the South.
  4. Note the dreaded Castlefield Corridor in red going off into the distance to Oxford Road and Deansgate stations.
  5. The new high speed lines are shown in blue.
  6. To the left they go to Manchester Airport and then on to London, Birmingham and the South, Warrington and Liverpool and Wigan, Preston, Blackpool, Barrow-in-Furness, the North and Scotland.
  7. To the right, they go to Huddersfield, Bradford, Leeds, Hull and the North East, and Sheffield, Doncaster and the East.
  8. Between it looks like  a low-level High Speed station with at least four tracks and six platforms.
  9. The Manchester Mretrolink is shown in yellow.
  10. The potential for over-site development is immense. If the Station Square Tower was residential, the penthouses would be some of the most desirable places to live in the North.

This station would enable improvements to rail services in the North and Scotland.

  • It would be a through station, to allow East to West services, like Liverpool and Hull.
  • Fewer services would have to reverse.
  • All services using the underground station, that went to the West would serve Manchester Airport.
  • TransPennine services like Liverpool and Edinburgh and Liverpool and Scarborough, would use the station and also call at Manchester Airport.
  • TransPennine services like Glasgow and Manchester Airport could be extended to Leeds and Hull.
  • TransPennine services would not need to use the overcrowded Castlefield Corridor.
  • All existing services to the main section of the existing Piccadilly station, could continue operation as now, during the construction and operation of the underground station. Some would eventually be replaced by high speed services using the underground station.

Manchester Airport would have one of the best train services of any airport in the world. It would certainly be on a par with Schiphol.

Careful alignment of the tunnels under Manchester, could also ease the building of the new line between Manchester and Leeds.

Huddersfield And Westtown (Dewsbury)

The only part of an upgraded TransPennine route between Manchester and Leeds, that is in the planning and design phase and visible to the public, is the upgrade between Huddersfield to Westtown (Dewsbury), which is described on this page of the Network Rail web site. This is the introductory paragraph.

We’re proposing an upgrade to a section of railway between Huddersfield and Westtown (Dewsbury) to deliver passenger benefits along the TransPennine railway.

Network Rail provide this very useful map.

This article on Rail Technology Magazine is entitled Network Rail Reveals Detailed £2.9bn Upgrade Plans For TransPennine Route, which gives the major details of the upgrade.

  • Improvement between Huddersfield and Westtown
  • Grade separation or a tunnel at Ravensthorpe
  • Rebuilding and electrification of eight miles of track.
  • Possible doubling the number of tracks from two to four.
  • Improved stations at Huddersfield, Deighton, Mirfield and Ravensthorpe.

This project would be a major improvement to the Huddersfield Line, but I have one problem with this project. – It doesn’t go anywhere near Bradford.

This Google Map shows Bradford, Leeds, Brighouse and Dewsbury.

Note.

  1. Bradford is in the North-West corner of the map, with the red arrow marking Bradford Royal Infirmary.
  2. Leeds is in the North-East corner of the map.
  3. Brighouse is in the South-West corner  of the map.
  4. The red arrow at the bottom of the map marks Dewsbury and District Hospital, with the towns of Morley and Dewsbury to the East.

The route Network rail are improving goes South-Westerly from Leeds and through both Morley and Leeds, before turning to the West and then going South to Huddersfield.

I am left with the conclusion, that Network Rail’s plans may do wonders for travel between Leeds and Huddersfield, but they don’t do anything for Bradford.

But the plans will have positive effects on travellers between Leeds and Manchester.

Eight Miles Of Electrification

Eight miles of electrification may not seem much, but to a Hitachi Regional Battery train, travelling at speed it is a few minutes to add some charge to the batteries, especially if the train stops at Dewsbury and/or Huddersfield stations.

This Hitachi infographic gives the specification for the Hitachi Regional Battery train.

Note.

  1. It has a range of 90 km or 56 miles on battery power.
  2. It can travel at up to 100 mph on battery power.
  3. TransPennine’s Class 802 trains can be converted to Regional Battery trains, by simply swapping the diesel engines for battery packs.

If these trains fully-charged their batteries on the eight miles of electrification, they could do the following.

  • Going East they could easily reach Leeds, which is under ten miles from Dewsbury station. At a pinch they could even reach York, which is thirty-five miles from Dewsbury.
  • Going West they could reach Manchester, which is twenty-six miles from Huddersfield station. At a pinch, they could just about reach Liverpool, which is fifty-seven miles from Huddersfield.

Note that North of York and West of Manchester are both fully electrified.

This eight miles of electrification would enable the following.

  • Several of TransPennine Express services run by Class 802 trains to become all-electric services.
  • Other operators like Northern could use battery electric trains for stopping services along the route.
  • It might even enable some freight trains to run through the area, with hybrid power.

It looks to me, that Network Rail have chosen this section to electrify, so that it gives a lot of benefit to battery electric trains.

Will Services Be Faster Between Huddersfield And Leeds?

I estimate the the straightened track, the better acceleration of electric trains and other improvements would save up to perhaps ten minutes.

Timings between Manchester and Leeds, would probably be around 45 minutes, which is nowhere near Northern Powerhouse Rail’s objective of 25 minutes

The Problem Of Bradford

Bradford has two central stations; Bradford Interchange and Bradford Forster Square. which have no connection between them.

This Google Map shows the two stations.

It is an area crowded with buildings between the two stations.

There is a Wikipedia entry called Bradford Crossrail, where this is said about the reasons for the two stations.

These stations were built in the nineteenth century by different railway companies with an individual, rather than a comprehensive plan for rail development in the city.

The Wikipedia entry also says this about Northern Powerhouse Rail and the city.

The Northern Powerhouse Rail project has also mooted a project to link Leeds and Manchester with a through route at Bradford. Whilst this would either involve a bypass line south of the city and a parkway station at Low Moor or a new route tunnelling through the city centre, neither option mentions connecting the lines from both north and south of the city together.

I will look at the two solutions to connect Northern Powerhouse Rail to the City.

Low Moor Station

The diagram shows the connections between Bradford Interchange, Bradford Low Moor, Huddersfield and Leeds stations.

It would appear that if a connection were to be made between Low Moor and New Pudsey stations. that could be a solution.

This Google Map shows where the lines to Huddersfield and Leeds join outside Bradford Interchange station.

Note,

  1. Bradford Interchange station is to the North.
  2. Bradford Low Moor station is to the South.
  3. New Pudsey station is to the East.

I suspect it would be possible to create a curve that allowed trains to go between  Bradford Low Moor and New Pudsey stations, but I doubt it would be a fast route.

A Bradford Tunnel

This would be the bold option, where all sorts of routes could be possible.

  • It could go under the City Centre in such a way, that it had pedestrian connections to both current stations and important places with a large number of visitors.
  • It could connect to Huddersfield in the West and Leeds in the East.
  • It might even loop under the City Centre, as the Wirral Line does under Liverpool.

A tunnel under the City, would be my preferred solution.

A Tunnel Between Manchester And Leeds

So far, various people or organisations have advocated the following tunnels on the route.

  • High Speed Two are proposing a tunnel between Manchester Airport and Manchester City Centre.
  • Weston Williamson are proposing a Manchester High Speed station underneath Manchester Piccadilly station.
  • A tunnel has been proposed to connect to Bradford City Centre.

I feel strongly, that a tunnel can be built under the Pennines to link Manchester and Leeds.

Rail Tunnels through the Pennines have been dug before, notably at Standedge, Totley and Woodhead.

I answered the question in detail in Will HS2 And Northern Powerhouse Rail Go For The Big Bore? and this was the conclusion of that post.

I believe that my naïve analysis in this post shows that a TransPennine tunnel is possible.

But I believe that the right tunnel could have one big advantage.

Suppose it was built to handle the following.

    • A capacity of eighteen tph, which is the same as High Speed Two.
    • An operating speed of 140 mph or more. The Gotthard Base Tunnel has a maximum operating speed of 160 mph.
    • High Speed Two’s Full-Size trains.
    • The largest freight trains

It would be future proofed for longer than anybody could envisage.

There are also other smaller advantages.

    • It would by-pass a lot of difficult areas.
    • It would cause very little aural and visual disruption.
    • IIf it were designed with care, it would not affect the flora and fauna.
    • As with the Swiss tunnel, it could be dug level, which would save energy and allow trains to run faster.
    • It could be running twelve tph between Leeds and Manchester Airport via Bradford, Huddersfield and Manchester Piccadilly.
    • Existing surface railways at the Eastern end could serve Cleethorpes, Darlington, Doncaster, Edinburgh, Hull, Middlesbrough, Newcastle, Scarborough, Sheffield and York
    • Existing surface railways at the Western end could serve Barrow, Blackpool, Carlisle, Chester, Glasgow, Liverpool. North Wales, Preston and Wigan.

It would be more like Thameslink for the North turned on its side, rather than Crossrail for the North.

Would such a TransPennine tunnel be realisable?

Consider.

  • 3D design software has improved tremendously over the last decade.
  • The Swiss have shown that these long tunnels can be built through solid rock.
  • There is plenty of space to put the tunnel.
  • It doesn’t have to be one continuous tunnel.
  • It might be possible to built it as a base tunnel, which would be low down and level between two valleys on either side of the Pennines.

I think there could be a lot of flexibility on how the tunnel would be designed and built.

Conclusion

A Manchester and Leeds tunnel via Bradford, could be one of the boldest projects ever undertaken in the UK.

I believe that we have the capabilities to build it.

 

November 22, 2020 Posted by | Transport | , , , , , , , , , | 13 Comments

Northern Powerhouse Rail – A New Line Between Liverpool And Manchester Via The Centre Of Warrington

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is a new rail line between Liverpool and Manchester via the centre of Warrington.

I shall look at a few of the possibilities for various sections of the line starting at the Manchester end.

High Speed Two And Northern Powerhouse Rail Between Warrington/Lymm And Manchester Airport

This map clipped from High Speed Two’s interactive map, shows the route of High Speed Two in the area between Lymm and Manchester Airport.

Note.

  1. High Speed Two is shown in orange
  2. The blue dot is Manchester Interchange station at Manchester Airport.
  3. High Speed Two goes North to Wigan North Western station.
  4. High Speed Two goes South to Crewe station.
  5. High Speed Two goes East to Manchester and the East.
  6. The East-West Motorway is the M56 with Junction 7/8 in the middle of the map and Junction 9 with the M6, at the Western edge of the map.

This enlarged map shows High Speed Two between Manchester Airport and Junction 7/8 of the M56.

 

The colours of High Speed Two indicate the type of construction.

  • Black is a bored tunnel. Only in the North East corner, where it continues to Manchester.
  • Brown is a track between retaining walls. Used through Manchester Interchange or Airport station.
  • Red is a viaduct.
  • Yellow is a cutting.

This Google Map shows a similar area.

High Speed Two’s tracks will be on the South side of the Motorway and will be shared with Northern Powerhouse Rail.

  • There is likely to be up to twelve trains per hour (tph) in both directions.
  • I would think, that with modern signalling that the trains would be running at 140 mph or more.
  • Between Manchester Airport and Warrington could be a line as between St. Pancras and Ebbsfleet on High Speed One.

This map clipped from High Speed Two’s interactive map, shows the M56 and High Speed Two around Junction 7/8 of the M56.

The colours are as before.

  • The obvious way to build a new rail line between Manchester and Warrington, would surely be to create a rail junction just South of the Motorway junction.
  • A line to Warrington could run along the South side of the Motorway.
  • I also believe that there should be a connection between the High Speed Two lines to Manchester and Wigan North Western, to allow high speed services between Manchester and Barrow, Blackpool, Preston, Windermere and Scotland.

Building the rail junctions around the Motorway junctions would be a good idea for environmental and visual reasons.

Northern Powerhouse Rail would then continue to Junction 9 of the M56 Motorway.

This Google Map, shows the M56 around Junction 9 with the M6.

Note.

  1. The M56 running East-West.
  2. The M6 running North-South.
  3. Lymm services to the North-West of the junction.
  4. Lymm is to the North-East and Warrington is to the North-West of the junction.

Would it be possible for to run South of the M56 and then turn North to run along the Western side of the M6 towards Warrington?

I very much feel, that with modern 3D software, an engineer with expertise in extreme knitting could thread a double-track line through to take a North-Western route towards Warrington.

The Bridge Across The Mersey

If you look at maps of the area, there is a big problem of water between Junction 9 of the M56 and Warrington town centre, with its two stations of Warrington Bank Quay and Warrington Central, both of which have services to Liverpool Lime Street station.

The problem is the Manchester Ship Canal.

I then noticed a bridge to the South East of the town centre, which is shown in this Google Map.

It may look like it has got more than a touch of the dreaded iron moths, but it certainly looks like it was once a double track rail line.

The bridge was on the Warrington and Altrincham Junction Railway, which did what you would expect from the name.

This Google Map shows the track of the railway either side of the bridge.

Note the bridge in the centre of the map and the green scar of the former railway running East-West across the map.

To the East the green scar of the railway can be picked out all the way to M6.

Note.

  1. The bridge is at the West over the Manchester Ship Canal.
  2. The green scar of the Warrington and Altrincham Junction Railway can be followed all the way to the M6,
  3. I think the track is now a footpath, as it is marked on the map with a dotted white line.

I would be interested to know, if it could take a modern double track railway.

This Google Map shows an enlarged view of where the green scar of the Warrington and Altrincham Junction Railway goes under the M6.

Note the dotted white line marking the railway, towards the top of the map.

Would it be possible to design a track layout, where Northern Powerhouse Rail came up the Western side of the M6 and was able to connect to Warrington?

I certainly believe it’s a possibility.

Warrington Bank Quay Station

To the West of the bridge over the Manchester Ship Canal, the Warrington and Altrincham Junction Railway ran through low-level platforms at Warrington Bank Quay station.

This Google Map shows Warrington Bank Quay station.

This picture shows a freight train passing under Warrington Bank Quay station.

Note.

  1. There are four North-South platforms on the West Coast Main Line.
  2. The Warrington and Altrincham Junction Railway passes East-West under the four main platforms.
  3. Low levels platforms used to handle passengers on the East-West lines.
  4. I was looking to the East in the picture.
  5. The tracks continue to the West on the route of the former St. Helens Railway, which is now a freight route.
  6. The map shows the tracks curving sharply round one of the meanders of the River Mersey.

Warrington Bank Quay station is on a congested and tight site, but by using some of the spare railway land, I feel it could rebuilt to be an excellent station for Warrington.

Warrington Bank Quay Station As An Interchange

Warrington Bank Quay station could be an excellent and efficient interchange between High Speed Two and Northern Powerhouse Rail.

There are also local services from the station, which could be useful for some travellers.

Between Warrington Bank Quay Station And Widnes

This Google Map shows the Mersey estuary between Warrington Bank Quay station and Widnes.

Note.

  1. Warrington is in the North-East corner of the map, with Warrington Bank Quay station shown by a red station symbol.
  2. The new Mersey Gateway bridge is in the South-West corner of the map.
  3. The River Mersey meanders between the bridge and Warrington.
  4. Fiddlers Ferry power station can be picked out in the nearest meander of the Mersey to the bridge.
  5. The dark straight line below the river is the Manchester Ship Canal.
  6. There is currently a freight line on the North bank of the river.

This Google Map shows Fiddlers Ferry power station, with the railway between the now-decommissioned power station and the River Mersey.

Note.

  1. Fiddlers Ferry will become an employment site.
  2. It could even be a good place for a depot for Northern Powerhouse Rail.
  3. I think there’s scope to increase the operating speed of the railway along the Mersey.

Could it even be an electrified high speed line with a 125 mph operating speed?

Between Widnes And Liverpool Lime Street

The trains coming from Warrington could join the Liverpool Branch of the West Coast Main Line at Ditton East Junction.

The route between Ditton East Junction and Liverpool Lime Street has the following characteristics.

  • It has four tracks.
  • It is 10.6 miles long.
  • Avanti West Coast’s expresses typically take twelve minutes for the trip without stopping.
  • The stations on the route; Liverpool South Parkway; West Allerton, Mossley Hill and Edge Hill, all have one platform per line.
  • It is fully electrified.
  • Lime Street station has recently been updated with longer platforms and a higher capacity approach to the station.
  • Some local services have already been moved to Merseyrail’s Northern Line.
  • Stopping services on the route have their own platforms.

I believe that with the installation of full digital signalling and a degree of automatic train control, as far as Crewe and Warrington Bank Quay stations, that the following services could be handled.

  • Six tph – Northern Powerhouse Rail – Liverpool and Manchester Airport and Manchester Piccadilly
  • One tph – East Midlands Railway – Liverpool and Nottingham
  • Three tph – High Speed Two – Liverpool and London Euston
  • One tph – High Speed Two – Liverpool and Birmingham Curzon Street
  • Two tph – London North Western – Liverpool and Birmingham and London Euston

Note.

  1. This is only 13 tph.
  2. Avanti West Coast services would be replaced by High Speed Two.
  3. TransPennine Express services would be replaced by Northern Powerhouse Rail
  4. The Liverpool and Nottingham service may or may not go via Ditton East junction.

If the capacity on this branch could be raised to 15 tph, that would be only be a train every four minutes, or half the frequency, that will eventually be operational on Crossrail and Thameslink. It would also be less than the 18 tph frequency of High Speed Two.

Conclusion

This simple exercise has proven to me, that a high speed line could be built between Manchester Airport and Liverpool Lime Street station.

  • Several sections of the route could have an operating speed of 125 mph or more.
  • By running the tracks along the M56 and M6, visual and aural intrusion could be minimised.
  • The line along the Mersey through Warrington could be a valuable part of the route.
  • West of Warrington, much of the infrastructure needed, appears to be in place and it would only need to be upgraded.

There was a large and extremely pleasant surprise at the Liverpool end.

The approach to Liverpool Lime Street is two fast and two slow lines, and I believe, that this section of the route could handle up to say 15 fast trains and six stopping trains per hour, with full digital signalling.

Unlike London and Manchester, I doubt that Liverpool will need a tunnel to access the City Centre.

I also believe that after its refurbishment of the last couple of years, Lime Street could be substantially ready for High Speed Two and Northern Powerhouse Rail.

 

 

November 20, 2020 Posted by | Transport | , , , , , , , , , , , | 1 Comment

How Many Trains Are Needed To Run A Full Service On High Speed Two?

The latest High Speed Two schedule was published in the June 2020 Edition of Modern Railways.

The Two Train Classes

Two separate train classes have been proposed for High Speed Two.

Full-Size – Wider and taller trains built to a European loading gauge, which would be confined to the high-speed network (including HS1 and HS2) and other lines cleared to their loading gauge.

Classic-Compatible – Conventional trains, capable of high speed but built to a British loading gauge, permitting them to leave the high speed track to join conventional routes such as the West Coast Main Line, Midland Main Line and East Coast Main Line.

The Wikipedia entry for High Speed Two has a section entitled Rolling Stock, where this is said about the design.

Both types of train would have a maximum speed of at least 360 km/h (225 mph) and a length of 200 metres (660 ft); two units could be joined together for a 400-metre (1,300 ft) train. It has been reported that these longer trains would have approximately 1,100 seats.

These are some of my thoughts.

Seating Density

I would assume that this means that a single 200 metre train, will have a capacity of approximately 550 seats or a density of 2.75 seats per metre. How does that compare with other trains?

  • 9-car Class 801 train – 234 metres – 611 seats – 2.61 seats/metre
  • 7-car Class 807 train – 182 metres – 453 seats – 2.49 seats/metre
  • 9-car Class 390 train  – 217.5 metres – 469 seats – 2.16 seats/metre
  • 11-car Class 390 train  – 265.3 metres – 589 seats – 2.22 seats/metre
  • 12-car Class 745/1 train – 236.6 metres – 767 seats – 3.24 seats/metre
  • 16-car Class 374 train – 390 metres – 902 seats – 2.31 seats/metre

What I find strange with these figures, is that I feel most crowded and cramped in a Class 390 train. Could this be because the Pendelino trains are eighteen years old and train interior design has moved on?

But I always prefer to travel in a Hitachi Class 80x train or a Stadler Class 745 train.

I very much feel that a seating density of 2.75 seats per metre, designed using some of the best modern practice, could create a train, where travelling is a very pleasant experience.

Step-Free Access

I have travelled in high speed trains all over Europe and have yet to travel in one with step-free access.

Surely, if Stadler can give their trains step-free access everybody can.

The pictures shows step-free access on Stadler Class 745 and Class 755 trains.

If I turned up pushing a friend in a wheelchair, would I be able to push them in easily? Or better still will they be able to wheel themselves in?

A Greater Anglia driver once said to me, that they never have to wait anymore for wheelchairs to be loaded.

So surely, it is in the train operator’s interest to have step-free access, if it means less train delays.

Double-Deck Trains

In my view double-deck trains only have one only good feature and that is the ability to see everything, if you have a well-designed window seat.

I may be seventy-three, but I am reasonably fit and only ever travel on trains with airline-sized hand baggage. So I don’t find any problem travelling upstairs on a double-deck bus or train!

But it could have been, so very different, if my stroke had been a bit worse and left me blind or in a wheelchair for life.

I have seen incidents on the Continent, which have been caused by double-deck trains.

  • A lady of about eighteen in trying to get down with a heavy case dropped it. Luckily it only caused the guy she was travelling with, to roll unhurt down the stairs.
  • Luggage is often a problem on Continental trains because of the step-up into the train and access is worse on double deck trains.
  • I also remember on a train at Leipzig, when several passengers helped me lift a guy and his wheelchair out of the lower deck of a double-deck train, which was lower than the platform, as they often are with double-deck trains.

I am not totally against double-deck trains, but they must be designed properly.

Consider.

  • High Speed Two’s Full-Size trains will only use London Euston, Old Oak Common, Birmingham Interchange, Birmingham Curzon Street, Manchester Airport, Manchester Piccadilly, East Midlands Hub and Leeds stations.
  • All stations used by Full-Size trains will be brand-new or substantially rebuilt stations.
  • Someone sitting in a wheelchair surely has the same right to a view from the top-deck of a double-deck train as anybody else.
  • Jumbo jets seemed to do very well without a full-length top-deck.
  • The A 380 Superjumbo has been designed so that entry and exit on both decks is possible.

I feel if High Speed Two want to run double-deck trains, an elegant solution can surely be found.

A Crude Estimate On The Number Of Trains

This is my crude estimate to find out how many trains, High Speed Two will need.

Western Leg

These are the services for the Western Leg between London , Birmingham, Liverpool, Manchester, Edinburgh and Glasgow.

  • Train 1 – London Euston and Birmingham Curzon Street – 400 metre Full-Size – 45 minutes – 2 hour Round Trip – 4 trains
  • Train 2 – London Euston and Birmingham Curzon Street – 400 metre Full-Size – 45 minutes – 2 hour Round Trip – 4 trains
  • Train 3 – London Euston and Birmingham Curzon Street – 400 metre Full-Size – 45 minutes – 2 hour Round Trip – 4 trains
  • Train 4 – London Euston and Lancaster – Classic Compatible – 2 hours 3 minutes – 5 hour Round Trip – 5 trains
  • Train 4 – London Euston and Liverpool – Classic Compatible – 1 hours 34 minutes – 4 hour Round Trip – 4 trains
  • Train 5 – London Euston and Liverpool – Classic Compatible – 1 hours 34 minutes – 4 hour Round Trip – 4 trains
  • Train 6 – London Euston and Macclesfield – Classic Compatible – 1 hours 30 minutes – 4 hour Round Trip – 4 trains
  • Train 7 – London Euston and Manchester – 400 metre Full-Size – 1 hour and 11 minutes – 3 hour Round Trip – 6 trains
  • Train 8 – London Euston and Manchester – 400 metre Full-Size – 1 hour and 11 minutes – 3 hour Round Trip – 6 trains
  • Train 9 – London Euston and Manchester – 400 metre Full-Size – 1 hour and 11 minutes – 3 hour Round Trip – 6 trains
  • Train 10 – London Euston and Edinburgh – Classic Compatible – 3 hours 48 minutes – 8 hour Round Trip – 8 trains
  • Train 10 – London Euston and Glasgow – Classic Compatible – 3 hours 40 minutes – 8 hour Round Trip – 8 trains
  • Train 11 – London Euston and Edinburgh – Classic Compatible – 3 hours 48 minutes – 8 hour Round Trip – 8 trains
  • Train 11 – London Euston and Glasgow – Classic Compatible – 3 hours 40 minutes – 8 hour Round Trip – 8 trains
  • Train 12 – Birmingham Curzon Street and Edinburgh or Glasgow – Classic Compatible – 3 hours 20 minutes – 7 hour Round Trip – 7 trains
  • Train 13 – Birmingham Curzon Street and Manchester – 200 metre Full-Size – 41 minutes – 2 hour Round Trip – 2 trains
  • Train 14 – Birmingham Curzon Street and Manchester – 200 metre Full-Size – 41 minutes – 2 hour Round Trip – 2 trains

Note.

  1. I have assumed 400 metre Full-Size trains will be a pair of 200 metre trains.
  2. I think that trains 4 and 5 work an intricate dance with appropriate splitting and joining at Crewe.
  3. The full schedule will need 34 Full-Size trains and 56 Classic-Compatible trains

According to Wikipedia, the first order will be for 54 Classic-Compatible trains, so I would assume, that more trains will be ordered.

Eastern Leg

These are the services for the Eastern Leg between London , Birmingham, East Midlands Hub, Leeds, Sheffield, York and Newcastle.

  • Train 15 – Birmingham Curzon Street and Leeds – 200 metre Full-Size – 49 minutes – 2 hour Round Trip – 2 trains
  • Train 16 – Birmingham Curzon Street and Leeds – 200 metre Full-Size – 49 minutes – 2 hour Round Trip – 2 trains
  • Train 17 – Birmingham Curzon Street and Newcastle – Classic Compatible – 1 hour 57 minutes – 5 hour Round Trip – 5 trains
  • Train 18 – London Euston and Sheffield – Classic Compatible – 1 hour 27 minutes – 4 hour Round Trip – 4 trains
  • Train 18 – London Euston and Leeds – Classic Compatible – 1 hour 21 minutes – 3 hour Round Trip – 3 trains
  • Train 19 – London Euston and Leeds – 400 metre Full-Size – 1 hour and 21 minutes – 3 hour Round Trip – 6 trains
  • Train 20 – London Euston and Leeds – 400 metre Full-Size – 1 hour and 21 minutes – 3 hour Round Trip – 6 trains
  • Train 21 – London Euston and Sheffield – Classic Compatible – 1 hour 27 minutes – 4 hour Round Trip – 4 trains
  • Train 21 – London Euston and York – Classic Compatible – 1 hour 24 minutes – 3 hour Round Trip – 3 trains
  • Train 22 – London Euston and Newcastle – Classic Compatible – 2 hour 17 minutes – 5 hour Round Trip – 5 trains
  • Train 23 – London Euston and Newcastle – Classic Compatible – 2 hour 17 minutes – 5 hour Round Trip – 5 trains

Note.

  1. I have assumed 400 metre Full-Size trains will be a pair of 200 metre trains.
  2. Trains 15 and 16 work as a pair
  3. I think that trains 18 and 21 work an intricate dance with appropriate splitting and joining at East Midlands Hub.
  4. The full schedule will need 16 Full-Size trains and 29 Classic-Compatible trains

Adding the two legs together and I estimate that 50 Full-Size trains and 85 Classic-Compatible trains, will be needed to run a full schedule.

Trains Per Hour On Each Section

It is possible to make a table of how many trains run on each section of the High Speed Two network in trains per hour (tph)

  • London Euston (stops) – 1-11, 18-23 – 17 tph
  • London Euston and Old Oak Common – 1-11, 18-23 – 17 tph
  • Old Oak Common (stops) – 1-11, 18-23 – 17 tph
  • Old Oak Common and Birmingham Interchange – 1-11, 18-23 – 17 tph
  • Birmingham Interchange (stops) – 2, 3, 7, 11, 20 – 5 tph
  • Birmingham Curzon Street (stops) – 1-3, 12-14, 15-17 – 9 tph
  • Birmingham and Crewe – 4,5, 7-9, 10-14 – 10 tph
  • Crewe (stops) – 4,5 – 2 tph
  • Crewe and Liverpool – 4,5 – 2 tph
  • Crewe and Lancaster – 4, 10-12 – 4 tph
  • Crewe and Manchester – 7-9, 13, 14 – 5 tph
  • Crewe and Wigan via Warrington – 4 – 1 tph
  • Crewe and Wigan via High Speed Two (new route) – 10-12 – 3 tph
  • Lancaster (stops) 4 – 1 tph
  • Lancaster and Carlisle  – 10-12 – 3 tph
  • Carlisle and Edinburgh – 10-12 – 2.5 tph
  • Carlisle and Glasgow – 10-12 – 2.5 tph
  • Birmingham and Stoke – 6 – 1 tph
  • Stoke (stops) – 6 – 1 tph
  • Stoke and Macclesfield – 6 – 1 tph
  • Macclesfield (stops) – 6 – 1 tph
  • Birmingham and East Midlands Hub – 15-17, 18-20, 21-23 – 9 tph
  • East Midlands Hub (stops) – 15-17, 18-20, 21 – 7 tph
  • East Midlands Hub and Sheffield – 18, 21 – 2 tph
  • Sheffield (stops) – 18, 21 – 2 tph
  • Midlands Hub and Leeds – 15, 16, 18-20 – 5 tph
  • Leeds (stops) – 15, 16, 18-20 – 5 tph
  • East Midlands Hub and York – 17, 21-23 – 4 tph
  • York (stops) – 17, 21-23 – 4 tph
  • York and Newcastle – 17, 22, 23 – 3 tph
  • Newcastle (stops) – 17, 22, 23 – 3 tph

These are a few thoughts.

Capacity Of The Southern Leg

The busiest section is between London Euston and Birmingham Interchange, which handles 17 tph.

As the maximum capacity of High Speed Two is laid down in the Phase One Act as 18 tph, this gives a path for recovery, according to the article.

Trains Serving Euston

The following train types serve London Euston station.

  • Full-Size – 8 tph
  • 400 metre Classic-Compatible – 5 tph
  • 200 metre Classic-Compatible – 4 tph

As a 200 metre long train needs the same track and platform resources as a 400 metre long train, by splitting and joining, it would appear that extra destinations could be served.

Platform Use At Euston

This page on the High Speed Two web site, gives details of Euston High Speed Two station.

HS2 will deliver eleven new 400m long platforms, a new concourse and improved connections to Euston and Euston Square Underground stations. Our design teams are also looking at the opportunity to create a new northerly entrance facing Camden Town as well as new east-west links across the whole station site.

So how will the eleven platforms be used?

Destinations served from London are planned to be as follows.

  • Birmingham Curzon Street – Full-Size – 3 tph
  • Edinburgh/Glasgow – Classic-Compatible – 2 tph
  • Lancaster – Classic-Compatible – 1 tph
  • Leeds – Full-Size – 2 tph – Classic-Compatible – 1 tph

Liverpool – Classic-Compatible – 2 tph

  • Macclesfield – Classic-Compatible – 1 tph
  • Manchester Piccadilly – Full-Size – 3 tph
  • Newcastle – Classic-Compatible – 2 tph
  • Sheffield – Classic-Compatible – 2 tph
  • York – Classic-Compatible – 1 tph

That is ten destinations and there will be eleven platforms.

I like it! Lack of resources is often the reason systems don’t work well and there are certainly enough platforms.

Could platforms be allocated something like this?

  • Birmingham Curzon Street – Full-Size
  • Edinburgh/Glasgow – Classic-Compatible
  • Leeds – Full-Size
  • Liverpool – Classic-Compatible – Also serves Lancaster
  • Macclesfield – Classic-Compatible
  • Manchester Piccadilly – Full-Size
  • Newcastle – Classic-Compatible
  • Sheffield – Classic-Compatible – Also serves Leeds and York

Note.

  1. No  platform handles more than three tph.
  2. There are three spare platforms.
  3. Each platform would only be normally used by one train type.
  4. Only Birmingham Interchange, East Midlands Hub, Leeds, Preston and York are not always served from the same platform.

Platform arrangements could be very passenger- and operator-friendly.

Platform Use At Birmingham Curzon Street

Birmingham Curzon Street station has been designed to have seven platforms.

Destinations served from Birmingham Curzon Street station are planned to be as follows.

  • Edinburgh/Glasgow – Classic-Compatible – 1 tph
  • Leeds – Full-Size – 2 tph
  • London Euston – Full-Size – 3 tph
  • Manchester Piccadilly – Full-Size – 2 tph
  • Newcastle – Classic-Compatible – 1 tph
  • Nottingham – Classic-Compatible – 1 tph

Note.

  1. The Nottingham service has been proposed by Midlands Engine Rail, but will be running High Speed Two Classic Compatible trains.
  2. That is six destinations and there will be seven platforms.

I like it! For the same reason as London Euston.

Could platforms be allocated something like this?

  • Edinburgh/Glasgow – Classic-Compatible
  • Leeds – Full-Size
  • London Euston – Full-Size
  • Manchester Piccadilly – Full-Size
  • Newcastle/Nottingham – Classic-Compatible

Note.

  1. No  platform handles more than three tph.
  2. There are two spare platforms.
  3. Each platform would only be normally used by one train type.
  4. Only East Midlands Hub is not always served from the same platform.

Platform arrangements could be very passenger- and operator-friendly.

Back-to-Back Services via Birmingham Curzon Street

The current plan for High Speed Two envisages the following services between the main terminals served by Full-Size trains.

  • London Euston and Birmingham Curzon Street – 3 tph – 45 minutes
  • London Euston and Leeds – 2 tph – 81 minutes
  • London Euston and Manchester Piccadilly – 3 tph – 71 minutes
  • Birmingham Curzon Street and Leeds – 2 tph – 40 minutes
  • Birmingham Curzon Street and Manchester Piccadilly – 2 tph – 41 minutes

Suppose a traveller wanted to go between East Midlands Hub and Manchester Airport stations.

Wouldn’t it be convenient if the Leeds to Birmingham Curzon Street train, stopped in Birmingham Curzon Street alongside the train to Manchester Airport and Piccadilly, so passengers could just walk across?

Or the two services could be run Back-to-Back with a reverse in Birmingham Curzon Street station?

Note.

  1. The current fastest times between Nottingham and Manchester Airport stations are around two-and-a-half hours, with two changes.
  2. With High Speed Two, it looks like the time could be under the hour, even allowing up to eight minutes for the change at Birmingham Curzon Street.

The design of the track and stations for High Speed Two, has some interesting features that will be exploited by the train operator, to provide better services.

Capacity Of The Western Leg Between Birmingham And Crewe

The section is between Birmingham and Crewe, will be running 10 tph.

As the maximum capacity of High Speed Two is laid down in the Phase One Act as 18 tph, this gives plenty of room for more trains.

But where will they come from?

High Speed One copes well with a few interlopers in the shape of Southeastern’s Class 395 trains, which run at 140 mph, between the Eurostars.

High Speed Two is faster, but what is to stop an operator running their own Classic-Compatible trains on the following routes.

  • Birmingham Curzon Street and Liverpool via Crewe, Runcorn and Liverpool South Parkway.
  • Birmingham Curzon Street and Holyhead via Crewe, Chester and an electrified North Wales Coast Line.
  • Birmingham Curzon Street and Blackpool via Crewe, Warrington Bank Quay, Wigan North Western and Preston.
  • Birmingham Curzon Street and Blackburn and Burnley via Crewe, Warrington Bank Quay, Wigan North Western and Preston.

Note.

  1. If these trains were say 130 metres long, they could call at all stations, without any platform lengthening.
  2. I’m sure that the clever engineers at Hitachi and Hyperdrive Innovation could come up with battery electric Classic-Compatible train, that could run at 225 mph on High Speed Two and had a battery range to reach Holyhead, with a small amount of electrification.
  3. A pair of trains, could work the last two services with a Split/Join at Preston.

The advantages of terminating these service in Birmingham Curzon Street would be as follows.

  • A lot more places get a fast connection to the High Speed Two network.
  • Passengers can reach London with an easy change at Birmingham Curzon Street station.
  • They can also walk easily between the three Birmingham stations.

But the big advantage is the trains don’t use valuable paths on High Speed Two between Birmingham Curzon Street and London Euston.

Crewe Station

In the current Avanti West Coast timetable, the following trains pass through Crewe.

  • London Euston and Blackpool – 4 trains per day (tpd)
  • London Euston and Chester – 1 tph
  • London Euston and Edinburgh/Glasgow – 2 tph
  • London Euston and Liverpool – 1 tph
  • London Euston and Manchester Piccadilly – 1 tph

Most trains stop at Crewe.

In the proposed High Speed Two timetable, the following trains will pass through Crewe.

  • London Euston and Edinburgh/Glasgow – 2 tph
  • London Euston and Lancaster/Liverpool – 2 tph
  • London Euston and Manchester – 3 tph
  • Birmingham Curzon Street and Edinburgh/Glasgow  -1 tph
  • Birmingham Curzon Street and Manchester – 2 tph

Note.

  1. Only the Lancaster and Liverpool trains stop at Crewe station.
  2. North of Crewe there will be a three-way split of High Speed Two routes to Liverpool, Wigan and the North and Manchester Airport and Piccadilly.
  3. High Speed Two will loop to the East and then join the West Coast Main Line to the South of Wigan.
  4. High Speed Two trains will use the West Coast Main Line to the North of Wigan North Western station.

This map of High Speed Two in North West England was captured from the interactive map on the High Speed Two web site.

 

 

Note.

  1. The current West Coast Main Line (WCML) and Phase 2a of High Speed Two are shown in blue.
  2. Phase 2b of High Speed Two is shown in orange.
  3. The main North-South route, which is shown in blue, is the WCML passing through Crewe, Warrington Bank Quay and Wigan North Western as it goes North.
  4. The Western Branch, which is shown in blue, is the Liverpool Branch of the WCML, which serves Runcorn and Liverpool.
  5. High Speed Two, which is shown in orange, takes a faster route between Crewe and Wigan North Western.
  6. The Eastern Branch, which is shown in orange, is the Manchester Branch of High Speed Two, which serves Manchester Airport and Manchester Piccadilly.
  7. The route in the East, which is shown in blue, is the Macclesfield Branch of High Speed Two, which serves Stafford, Stoke-on-Trent and Macclesfield.

The route of Northern Powerhouse Rail between Manchester Airport and Liverpool has still to be finalised.

Liverpool Branch

Consider.

  • The Liverpool Branch will take  two tph between London Euston and Liverpool.
  • In the future it could take up to 6 tph on Northern Powerhouse Rail between Liverpool and Manchester Piccadilly via Manchester Airport.

I believe that Liverpool Lime Street station, after the recent updating can handle all these trains.

Manchester Branch

This document on the Government web site is entitled HS2 Phase 2b Western Leg Design Refinement Consultation.

It indicates two important recently-made changes to the design of the Manchester Branch of High Speed Two.

  • Manchester Airport station will have four High Speed platforms instead of two.
  • Manchester Piccadilly station will have six High Speed platforms instead of four.

These changes will help the use of these stations by Northern Powerhouse Rail..

Consider.

  • The Manchester Branch will be new high speed track, which will probably be built in a tunnel serving Manchester Airport and Manchester Piccadilly stations.
  • The Manchester Branch will terminate in new platforms.
  • The Manchester Branch will take  five tph between Birmingham Curzon Street or London Euston and Manchester Airport and Manchester Piccadilly.
  • In the future it could take up to six tph on Northern Powerhouse Rail between Liverpool and Manchester Piccadilly via Manchester Airport.
  • London Euston and Old Oak Common will be new stations on a tunnelled approach to London and will handle 18 tph.

If London Euston and Old Oak Common can handle 18 tph, I can’t see why Manchester Airport and Piccadilly stations can’t handle somewhere near a similar number of trains.

At the moment eleven tph have been allocated to the Manchester Branch.

I believe that if infrastructure for Northern Powerhouse Rail was designed so that as well as connecting to Manchester and Liverpool, it connected Manchester and the West Coast Main Line running North to Preston, Carlisle and Scotland, services to the following destinations would be possible.

  • Barrow
  • Blackburn
  • Blackpool
  • Edinburgh
  • Glasgow
  • Windermere

Note.

  1. Edinburgh and Glasgow would probably be a service that would alternate the destination, as it is proposed for High Speed Two’s Birmingham and Scotland service.
  2. There would probably be a need for a North Wales and Manchester service via Chester.
  3. All trains would be Classic-Compatible.

If the Manchester Branch were to be built to handle 18 tph, there would be more than enough capacity.

Crewe, Wigan And Manchester

My summing up earlier gave the number of trains between Crewe, Wigan and Manchester as follows.

  • Crewe and Manchester – 5 tph
  • Crewe and Wigan via Warrington  – 1 tph
  • Crewe and Wigan via High Speed Two (new route) – 3 tph

This map of High Speed Two where the Manchester Branch leaves the new High Speed Two route between Crewe and Wigan was captured from the interactive map on the High Speed Two web site.

Note.

  1. The Manchester Branch runs to the South of the M56,
  2. The large blue dot indicates Manchester Airport station.
  3. Wigan is to the North.
  4. Crewe is to the South.
  5. Manchester Piccadilly is to the North East.

I believe this junction will be turned into a full triangular junction, to connect Wigan directly to Manchester Airport and Manchester Piccadilly.

  • Barrow, Blackburn, Blackpool, Preston and Windermere could all have high speed connections to Manchester Airport and Manchester Piccadilly. Trains could be shorter Classic-Compatible trains.
  • A Manchester and Scotland service would take the same route.

Another pair of tracks could leave the junction to the West to create a direct route between Manchester Airport and Liverpool for Northern Powerhouse Rail, by sneaking along the  M56.

Suppose extra services were as follows.

  • Manchester and Barrow – 1 tph
  • Manchester and Blackburn – 1 tph
  • Manchester and Blackpool – 1 tph
  • Manchester and Liverpool – 6 tph
  • Manchester and Scotland – 1 tph
  • Manchester and Windermere – 1 tph

The frequencies from the junction would be as follows.

  • To and from Crewe – High Speed Two (Manchester) – 5 tph – High Speed Two (North) – 3 tph = 8 tph
  • To and from Liverpool – Northern Powerhouse Rail – 6 tph = 6 tph
  • To and from Manchester – High Speed Two – 5 tph – Northern Powerhouse Rail – 6 tph – Local – 4 tph – Scotland – 1 tph = 16 tph
  • To and from Wigan – High Speed Two – 3 tph – Local – 4 tph – Scotland – 1 tph = 8 tph.

Only the Manchester Branch would be working hard.

The Liverpool Connection

I indicated that another pair of tracks would need to extend the Manchester Branch towards Liverpool in the West for Northern Powerhouse Rail.

  • Would these tracks have a station at Warrington?
  • Would there be a connection to allow services between Liverpool and the North and Scotland?

It might even be possible to design a Liverpool connection, that avoided using the current Liverpool Branch and increased the capacity and efficiency of all trains to Liverpool.

Capacity Of The Western Leg Between Wigan And Scotland

The sections between  Crewe and Carlisle, will be running at the following frequencies.

  • Wigan and Lancaster – 4 tph
  • Lancaster and Carlisle  – 3 tph
  • Carlisle and Edinburgh  – 2.5 tph
  • Carlisle and Glasgow – 2.5 tph

Note.

  1. The unusual Scottish frequencies are caused by splitting and joining at Carlisle and alternate services to Edinburgh and Glasgow.
  2. Any local high speed services and a Scotland service from Manchester, will increase the frequencies.

Over this section the services will be running on an improved West Coast Main Line.

But in some cases the trains will be replacing current services, so the increase in total frequencies will be less than it first appears.

Avanti West Coast currently run the following Scottish services.

  • One tph – London Euston and Glasgow via the most direct route.
  • One tph – London Euston and alternately Edinburgh and Glasgow via Birmingham.

This means that effectively Glasgow has 1.5 tph and Edinburgh 0.5 tph from London Euston.

The capacity of the current eleven-car Class 390 trains is 145 First and 444 Standard Class seats, which compares closely with the 500-600 seats given in Wikipedia for High Speed Two trains. So the capacity of the two trains is not that different.

But High Speed Two will be running 2.5 tph Between London Euston and both Edinburgh and Glasgow.

I would expect, that Class 390 services to Scotland will be discontinued and replaced by High Speed Two services.

Capacity Of The Eastern Leg Between Birmingham And East Midlands Hub

The section is between Birmingham and East Midlands Hub, will be running 9 tph

As the maximum capacity of High Speed Two is laid down in the Phase One Act as 18 tph, this gives plenty of room for more trains.

But where will they come from?

Midlands Engine Rail is proposing a service between Birmingham Curzon Street and Nottingham.

  • It will have a frequency of one tph.
  • It will be run by High Speed Two Classic-Compatible trains.
  • The journey will take 33 minutes.
  • It will run on High Speed Two infrastructure between Birmingham Curzon Street and East Midlands Hub.

If High Speed Two has been designed with this service in mind, I doubt it will be a difficult service to setup.

  • There might be enough capacity on High Speed Two  for two tph on the route,
  • It could possibly be extended to Lincoln.

It will also depend on the service timing being consistent with an efficient use of trains and platforms.

  • Thirty-three minutes is not a good timing, as it means twenty-seven minutes wait in a platform to get a round trip time, that suits clock-face time-tabling.
  • The current Lincoln and Nottingham service takes 56 minutes for 34 miles.
  • LNER’s London Kings Cross and Lincoln service travels the 16 miles between Lincoln and Newark in 25 minutes.
  • I estimate that after track improvements,  with a single stop at Newark Castle station, that Nottingham and Lincoln could be achieved in several minutes under fifty minutes.
  • This would enable a sub-ninety minute journey time between Birmingham Curzon Street and Lincoln, with enough time to properly turn the trains at both ends of the route.
  • The three hour round trip would mean that an hourly service would need three trains.

This is probably just one of several efficient time-tabling possibilities.

Are there any other similar services?

The obvious one is surely Cambridge and Birmingham

  • It would run via Peterborough, Grantham, Nottingham and East Midlands Hub.
  • It would connect the three big science, engineering and medical centres in the Midlands and the East.
  • It could be run by High Speed Two Classic-Compatible trains.

It might even be a replacement for CrossCountry’s Stansted Airport and Birmingham service.

Capacity Of The Eastern Leg Between East Midlands Hub And Sheffield

The section between East Midlands Hub and Sheffield, will be running 2 tph

As the maximum capacity of High Speed Two is laid down in the Phase One Act as 18 tph, this gives plenty of room for more trains.

But where will they come from?

This map of High Speed Two where the Sheffield Branch leaves the new High Speed Two route between East Midlands Hub and Leeds was captured from the interactive map on the High Speed Two web site.

Note.

  1. The main route of High Speed Two between East Midlands Hub, is shown in orange and follows the route of the M1 Motorway, towards the East of the map.
  2. The Sheffield Branch is new track to Clay Cross, where is takes over the Midland Main Line to Sheffield, which is shown in blue.
  3. The line going South in the middle of the map is the Erewash Valley Line, which goes through Langley Mill and Ilkeston stations.

I suspect Clay Cross to Sheffield will be an electrified high speed line, with a maximum speed of at least 140 mph.

Could the Erewash Valley Line have been used as an alternative route to Sheffield?

This map of High Speed Two captured from their interactive map, shows the connection of High Speed Two and the Erewash Valley Line to East Midlands Hub.

Note.

  1. East Midlands Hub is shown by the big blue dot.
  2. High Speed Two is shown in orange.
  3. The route to Leeds vaguely follows the M1 Motorway.
  4. The Erewash Valley Line goes North to the East of Ilkeston.

Would have been quicker and easier to electrify the Erewash Valley Line, as the High Speed Two route to Chesterfield and Sheffield?

  • Network Rail updated the route a few years ago.
  • It does not have the problems of electrification, through a World Heritage Site, as does the route through Derby.
  • It could surely handle two tph, even if they were High Speed Two Classic Compatible trains.
  • Sheffield will be just under ninety minutes from London by High Speed Two, as opposed to two hours now.

I suspect that it all comes down to saving a few minutes to Sheffield and the civic pride of having a High Speed Two connection.

So it looks like we’ll have the following capacity between East Midlands Hub and Sheffield.

  • Between East Midlands Hub and Clay Cross, there will be the High Speed Two capacity of 18 tph.
  • Between Clay Cross and Sheffield, there will probably be an upgraded capacity of perhaps 8-10 tph.

It seems a lot of capacity for just two tph.

Consider.

  • High Speed Two is planning to run three tph between Birmingham Curzon Street and East Midlands Hub
  • Midlands Rail Engine is planning to run one tph between Birmingham Curzon Street and East Midlands Hub
  • Four tph is considered a Turn-Up-And-Go service, and could exist between Birmingham Curzon Street and East Midlands Hub.
  • Sheffield and Leeds, both probably need a Turn-Up-And-Go service, to and from East Midlands Hub.
  • Semi-fast services between Sheffield and East Midlands Hub, calling at Chesterfield, Alfreton, Langley Mill and Ilkeston would be possible, by using the Erewash Valley Line.
  • The Maid Marian Line will join the Robin Hood Line in adding extra connectivity to East Midlands Hub Station.
  • Leeds and East Midlands Hub could have a six tph service courtesy of High Speed Two and Midlands Rail Engine.

Using High Speed Two’s web site, the following times should be possible.

  • Sheffield and East Midlands Hub – 27 minutes
  • Sheffield and Birmingham Curzon Street – 47 minutes.

Both services allow time for an efficient service.

There are certainly many options to create a Turn-Up-And-Go service between Sheffield and East Midlands Hub and also improve connections to other locations across the area.

Capacity Of The Eastern Leg Between East Midlands Hub And Leeds

The section is between East Midlands Hub and Leeds, will be running 5 tph

High Speed Two between Midlands Hub and Leeds is a totally new high speed line.

  • As the maximum capacity of High Speed Two is laid down in the Phase One Act as 18 tph, this gives plenty of room for more trains.
  • The Southern section of the leg closely follows the M1 Motorway.
  • Leeds, York and Newcastle will be 27, 36 and 93 minutes from East Midlands Hub, respectively.

This map of High Speed Two, which shows the route of the line in Yorkshire, was captured from the interactive map on the High Speed Two web site.

Note.

  1. Sheffield is marked by the blue dot in the South.
  2. Leeds is marked by the blue dot in the North West.
  3. York is marked by the blue dot in the North East.
  4. New routes are shown in orange.
  5. Upgraded routes are shown in blue.

The route seems to open up several possibilities for extra routes.

Leeds and Sheffield will be used by Northern Powerhouse Rail and there will be four tph, taking 28 minutes.

Leeds and Bedford via East Midlands Hub has been proposed by Midlands Rail Engine.

Services between Sheffield and the North via York must be a possibility.

This map of High Speed Two, which shows the routes to the East of Leeds, was captured from High Speed Two’s interactive map.

I think that two things might be missing.

  • A full triangular junction would surely allow services between Leeds and the North via York.
  • A high speed connection to Hull.

We shall see in the future.

Capacity Of The Eastern Leg Between York And Newcastle

The section between  York and Newcastle, will be running at a frequency of 3 tph.

Over this section the services will be running on an improved East Coast Main Line.

Conclusion

I shall split the conclusions into various sections.

Route And Track Layout

I think there may be places, where the route and track layout might need to be improved.

  • The Manchester Branch probably needs a triangular junction with the Western Leg of High Speed Two.
  • How Liverpool is served by Northern Powerhouse Rail needs to be decided.
  • The approach to Leeds probably needs a triangular junction with the Eastern Leg of High Speed Two.
  • It is not clear how services will reach Hull.

Hopefully, these issues will become clear in the next year or so.

Capacity

The sections with the highest levels of capacity would appear to be the following.

  • London Euston and Birmingham Interchange.
  • The Manchester Branch
  • The section shared with the East Coast Main Line between York and Newcastle.
  • The section shared with the West Coast Main Line between Wigan and Scotland.

But on these sections extra trains can be run.

  • Birmingham and North West England
  • Birmingham and East Midlands Hub
  • East Midlands Hub and Leeds
  • East Midlands Hub and Sheffield
  • East Midlands Hub and York

I can see, this capacity being filled by high speed local services, like those proposed by Midlands Rail Engine.

Rolling Stock

The only comment, I will make, is that there could be a need for a shorter Classic-Compatible train to work local services.

 

 

 

October 22, 2020 Posted by | Design, Transport | , , , , , , , , , , , , , , , , , | 5 Comments

High Speed Two To Build Stabling Facility In Scotland

High Speed Two has announced the intension to build a stabling facility for trains at Annandale in Dumfries and Galloway.

This document on the Government web site is entitled HS2 Phase 2b Western Leg Design Refinement Consultation.

Details of the Annandale Depot, start on Page 43.

This is the introductory paragraph.

Phase 2b will provide an increased number of services to Scotland and North West England compared to Phase 2a or Phase One of HS2, with two 400m trains running from Euston each hour and splitting at Carlisle into two 200m trains to serve Glasgow and Edinburgh. HS2 trains will also serve Scotland from Birmingham. New HS2 trains serving Scotland and the north west of England will need overnight stabling and light maintenance in this area, near to where trains finish and start service. It would not be operationally efficient for these trains to run empty to the next closest HS2 depot north of Crewe, approximately 150 miles away.

Note the services are as laid out in the June 2020 Edition of Modern Railways, which was obviously the thinking at the time on High Speed Two.

If you ignore the splitting and joining and assume that they are two separate trains, the Anglo-Scottish services on High Speed Two are as follows.

  • One train per hour (tph) – London Euston and Edinburgh Waverley via Old Oak Common, Preston, Carlisle and Edinburgh Haymarket.
  • One tph – London Euston and Edinburgh Waverley via Old Oak Common, Birmingham Interchange, Preston, Carlisle and Edinburgh Haymarket.
  • One tph – London Euston and Glasgow Central via Old Oak Common, Preston and Carlisle.
  • One tph – London Euston and Glasgow Central via Old Oak Common, Birmingham Interchange, Preston and Carlisle.
  • One train per two hours (tp2h) – Birmingham Curzon Street and Edinburgh Waverley via Wigan North Western, Preston, Lancaster, Oxenholme, Penrith, Carlisle. Lockerbie and Edinburgh Haymarket
  • One tp2h – Birmingham Curzon Street and Glasgow Central via Wigan North Western, Preston, Lancaster, Oxenholme, Penrith, Carlisle. Lockerbie and Motherwell

Note.

  1. Oxenholme and Penrith might not be served by both Birmingham trains.
  2. All services would be run by High Speed Two’s Classic-Compatible trains.
  3. The two Birmingham services effectively provide a one tph service between Birmingham and Scotland.
  4. All services will be single  200 metre long trains to the North of Carlisle, as pairs will split and join at Carlisle station.
  5. There would appear to be a fairly consistent five tph between Carlisle and Carstairs, where the Glasgow and Edinburgh routes divide.
  6. Edinburgh Waverley and Glasgow Central will both have three tph to and from Carlisle and Preston.

These were factors in the choice of location of the depot, stated in the report.

  • Be close to the existing railway.
  • Be a relatively large, flat site.
  • Preferably a brownfield rather than greenfield site.
  • Located as close as feasible to where HS2 services will terminate or begin to minimise empty train movements.
  • Be accessible to the workforce and local transport network.
  • Be suitable for 24-hour working.
  • Have enough space to accommodate equipment for light maintenance activities.
  • Have enough space to accommodate the expected number of trains.

The site is also close to the M74.

A few of my thoughts.

The Location Of The Proposed Depot

This Google Map shows the area mentioned in the report.

Note.

  1. The red arrow indicates Cranberry Farm, which will be just to the North of the site.
  2. The West Coast Main Line passing just South of Cranberry Farm, going across the map.
  3. The B 7076 and M74 will be to the South of the site.

It looks to meet many of the factors, I stated earlier. But it does appear to be a greenfield, rather than a brownfield site.

Distances And Times From The Depot

These are distances to places, where services will or might start.

  • Carlisle – 9 miles – 6 minutes
  • Edinburgh – 93 miles – 68 minutes
  • Glasgow – 94 miles – 59 minutes

I have used distances from Gretna Green Junction, which is just to the South of the proposed depot.

Will The Depot Be Only For Classic-Compatible Trains?

Consider.

  • All services North of Wigan North Western will be run by High Speed Two’s Classic-Compatible trains.
  • A simpler depot would surely be possible if it only handled High Speed Two’s Classic-Compatible trains.
  • With the possible exception of the occasional demonstration or test run High Speed Two;s full-size fleet will never be seen North of the Border.

The only thing this depot might have to do with the full-size fleet is turn-back a test train, which would only need a 400 metre long siding. A siding this length would probably be needed to turn a pair of High Speed Two’s Classic-Compatible trains.

Could The Depot Serve A Possible Irish Extension?

I believe that eventually High Speed Two will be extended across Southern Scotland and a bridge will connect it to Northern Ireland

In A Glimpse Of 2035, I gave a fictionalised version of the first journey from London Euston to Dublin, by high speed train.

I have just calculated the length of a high speed rail link between the proposed Annandale . Depot and a Belfast Parkway station. It is around 120 miles and the route would probably branch off between Lockerbie and Annandale Depot.

I feel that Annandale Depot could serve trains for Belfast, but there would probably need to be another depot in Dublin.

 

Extra HS2 Services To Scotland

Currently, TransPennine Express run services Between Liverpool and Manchester in England and Edinburgh and Glasgow in Scotland.

I can see High Speed Two replacing these services with a similar service to the one they are planning for Birmingham.

The current service is as follows,

  • One tp2h – Manchester Airport and Edinburgh Waverley via Manchester Piccadilly, Preston, Lancaster, Carlisle and Haymarket
  • One tp2h – Manchester Airport and Glasgow Central via Manchester Piccadilly, Preston, Lancaster, Carlisle and Motherwell
  • Four trains per day (tpd) – Liverpool Lime Street and Glasgow Central via Wigan North Western, Preston, Lancaster, Carlisle and Motherwell

Note.

  1. They call at smaller stations like Wigan North Western, Lancaster, Oxenholme, Penrith and Lockerbie as appropriate, to even up the service.
  2. These services probably share one path between Preston and Carstairs.
  3. The Liverpool services are diverted Manchester services.

Could they be replaced by High Speed Two services?

The Manchester services could become.

  • One tp2h – Manchester Piccadilly and Edinburgh Waverley via Manchester Airport, Preston, Lancaster, Carlisle and Haymarket
  • One tp2h – Manchester Piccadilly and Glasgow Central via Manchester Airport, Preston, Lancaster, Carlisle and Motherwell.

Blackpool, Liverpool and other parts of the North West may be better served with high speed commuter services linking them to Preston.

Serving Scotland’s Seven Cities

Scotland has seven cities that are connected by Inter7City trains.

  • Aberdeen – Not Electrified
  • Dundee – Not Electrified
  • Edinburgh – Will be served by High Speed Two
  • Glasgow – Will be served by High Speed Two
  • Inverness – Not Electrified
  • Perth – Not Electrified
  • Stirling – Fully Electrified

Can we forget about serving Aberdeen, Dundee, Inverness and Perth until they are dulling electrified?

But Stirling must be a possibility.

There is a fully electrified route via Motherwell, Whifflet, Greenfaulds and Larbert

I estimate, that coming up from London will take four hours and five minutes, as against the current time of five hours and eighteen minutes.

Increasing Capacity On The West Coast Main Line In Scotland

Over the years, there have been several plans to run more and faster trains between England and Glasgow on the West Coast Main Line.

So would an High Speed Two go to Sirling?

At present the maximum operating speed on the route is 125 mph. Trains like Avanti West Coast’s Class 390 trains and Hitachi’s AT-300 trains, could run at 140 mph, if digital in-cab signalling were rolled out on the route.

It is absolutely essential before High Speed Two trains run to Scotland, that the West Coast Main Line is digitally signalled.

In addition to faster running, trains can be closer together, so more trains can be run in an hour.

There are also other things, that could be done to help.

  • Ensure, that all the many freight trains on the route are electrically-hauled and capable of operating at 100 mph or more.
  • Make sure that local trains sharing the routes into Glasgow and Edinburgh are fast enough to keep out of the way of the expresses.
  • Selectively, add extra tracks, so that fast trains can overtake slow ones.
  • Ideally, a line like the West Coast Main Line, needs to be quadruple track all the way.

There also must be scope for flighting.

Consider.

  • Class 390 trains take about 30 minutes between Edinburgh Waverley and Carstairs South Junction
  • Class 390 trains take about 30 minutes between Glasgow Central and Carstairs South Junction
  • Carstairs South Junction is where the two routes join.

Suppose the two trains were to leave Edinburgh and Glasgow at similar times and run South from Carstairs South Junction, a safe distance apart.

  • The lead train would be travelling at 140 mph perhaps three to five minutes in front of the second train.
  • In-cab digital signalling would enforce the safe distance.

When the trains arrived in Carlisle, they would take a couple of minutes to join up physically for the high speed dash to London.

This Google Map shows Carstairs station and the splitting of the Glasgow and Edinburgh routes.

Note.

  1. The tracks going North-West to Glasgow.
  2. The tracks going North-East to Edinburgh.
  3. The tracks going South-East to Glasgow
  4. All tracks in the picture are electrified.

There might be a need for a passing loop to increase the efficiency of this junction.

It’s not just high speed passenger trains, that can use this technique, but it can be applied to trains with the same performance. So freight trains could form a convoy!

Flighting can decrease the number of train paths needed for a particular number of services and as digital in-cab signalling extends its reach across the UK, we’ll see more applications of the technique.

Effectively, by pathing the two London and Edinburgh/Glasgow trains and adding in one Birmingham and Manchester service, High Speed Two services would only need four paths between Carlisle and Carstairs.

But there would be.

  • Four tph between Preston/Carlisle and Scotland. So capacity would be good.
  • Three tph Between Carlisle and Edinburgh.
  • Three tph Between Carlisle and Glasgow.

As Birmingham Curzon Street, Manchester Piccadilly and Manchester Airport all can handle a pair of High Speed Two’s Classic-Compatible trains, it might be possible in the future to serve both Edinburgh and Glasgow with the Birmingham and Manchester services, splitting the trains at Carlisle. This would mean.

  • Four tph between Preston/Carlisle and Scotland.
  • Four tph Between Preston/Carlisle and Edinburgh.
  • Four tph Between Preston/Carlisle and Glasgow.

That looks strange mathematics, but that’s what you get when a train can serve two places by splitting.

What About The Glasgow And South Western Line?

The Glasgow And South Western Line, runs between Glasgow and Carlisle via Dumfries.

Consider.

  • It is not electrified
  • It can be used as a diversion, when the West Coast Main Line is blocked.
  • It has always puzzled me, why this line wasn’t electrified, when the West Coast Main Line was electrified in the 1970s.
  • High Speed Two’s need for more paths and higher speeds on the West Coast Main Line, may chase some of the freight on that route on to the Glasgow and South Western, as an alternative.

Perhaps, a small part of the High Speed Two budget could be used to electrify the route.

It certainly could be used to take some freight traffic from the West Coast Main Line and to ease diversions, if High Speed Two needed to close the West Coast Main Line for improvements to track, electrification or signalling.

It is also a line, where alternative methods of powering the trains could be used.

  • It has electrification at both ends and with some electrification in the middle, battery electric passenger trains might be able to use the route.
  • The City of Glasgow is majoring on hydrogen and the route, which is 115 miles long, could be ideal for a hydrogen train.

On the other hand full electrification could enable the electric services to be run at times, when the West Coast Main Line was blocked.

It is certainly a route, that could benefit from improvement.

Extension Of The Borders Railway To Carlisle

It is looking increasingly likely that the Borders Railway will be extended to Carlisle.

This report from the High Speed Rail Group is entitled Cross-Border High-Speed Rail And The Borders Railway Project.

The first paragraph is firm about why the Edinburgh and Glasgow services should split and join at Carlisle.

It has taken a while for HS2 service plans to focus on Carlisle as the right place to divide and join Glasgow/Edinburgh high-speed train portions. Earlier plans used Carstairs – and left Carlisle with no HS2 London service.

I also think it will be considerably more affordable  and less disruptive to extend Carlisle’s already long platforms, than to build a massive new station at Carstairs capable of handling 400 metre long trains.

This paragraph puts its case for extending the Borders Railway to Carlisle.

To get best use out of the enhanced services that will then be possible, and to fully utilise the additional line capacity along the West Coast Main Line, onward rail connectivity is crucial. That’s why we flagged the compatibility with the Borders Railways re-opening from Tweedbank via Hawick to Carlisle in our report. With Carlisle-London journey times reduced to a little over 2 hours, and the Borders Railway fully re-instated, journey times from the Borders towns could be dramatically shortened – to London as well as to other major cities in England. Inward travel for tourists to the Borders region would be dramatically enhanced too.

They also add that a Borders Railway could be an useful diversion route, during the increasing number of problems on UK rail networks caused by the weather.

I believe that the Borders Railway should be extended to Carlisle and it should also be electrified.

  • It would be a useful diversion route.
  • It could handle some freight trains.
  • It might be useful to move empty stock between Edinburgh and Annandale Depot, as the Borders Railway joins the West Coast Main Line not far from the depot.

We mustn’t underestimate how many passengers to and from the Borders will use the Borders Railway to catch High Speed Two at Carlisle.

Conclusion

Moving the depot to Annandale, may look to some like a way of giving the Scots a higher profile in High Speed Two.

But I do think it gives options to make a High Speed Network easier to run North of the border.

  • High Speed Two have total control of their depot.
  • It is well placed for Carlisle, Edinburgh and Glasgow.

It is also extremely well placed for the rail network of South Scotland.

October 11, 2020 Posted by | Transport | , , , , , , , , | Leave a comment

Possibly One Of The Best Underground Railways In A Smaller City In The World!

I took these pictures, as I took the Wirral Line between James Street and Lime Street stations.

I do compare them with the dingy inside of Essex Road station, which was refurbished by British Rail about the same time.

Merseyrail’s stations and trains are generally immaculate and that can’t be said for the dirty and tired infrastructure on the Northern City Line. As I indicated in the title of this post, t is one of the best underground railways under the centre of a smaller city. Liverpool would probably be regarded as a second size of city as it lacks the several millions of London, Paris or Berlin.

The tunnels of Merseyrail’s Northern and Wirral Lines, would have been probably been used as a model for British Rail’s proposed Picc-Vic Tunnel, that sadly never got to be built!

Manchester would be very different today, if it had an underground railway across the City to the standard of that in Liverpool or Newcastle.

This map clipped from Wikipedia show the proposed route of the Picc-Vic Tunnel.

Some of the other proposals included.

  • The tunnel would be twin bores and jus under three miles long.
  • The tunnel would be electrified with 25 KVAC overhead wires.
  • The rolling stock would have been Class 316 trains, which would have been similar to those on Merseyrail.
  • Train frequency could have been forty trains per hour (tph)

In some ways the specification was more ambitious than Crossrail, which might be able to handle 30 tph, at some time in the future. But Dear Old Vicky, which was designed at the same time, is now handling forty tph.

Wikipedia says the following routes could have run through the tunnel.

Note.

  1. The Styal Line now provides the link to Manchester Airport.
  2. The route map on the Wikipedia entry, shows only Bury and Bolton as Northern destinations. But surely fanning out the trains could have run to Barrow-in-Furness, Blackburn, Blackpool, Burnley, Clitheroe, Colne, Hebden Bridge, Kirkby, Preston, Rawtenstall, Tochdale, Southport, Stalybridge, Todmorden, Wigan and Windermere

The only problem, I could see would be that there would need to be a lot of electrification North of Manchester, some of which has now been done.

There have also been developments in recent years that would fit nicely with a system of lines running through the Picc-Vic Tunnel.

More Services In Manchester Piccadilly And Manchester Victoria Stations

If you look at Liverpool Lime Street station after the remodelling of the last few years, the station is now ready for High Speed Two.

You could argue, that it would be more ready, if the Wapping Tunnel connected services to and from the East to the Northern Line, as I wrote about in Liverpool’s Forgotten Tunnel, as this would remove a lot of local trains from the station.

The Picc-Vic Tunnel would have done the same thing for Manchester Piccadilly and Manchester Victoria stations and removed the local services.

This would have left more space for High Speed Two and other long distance services.

Northern Powerhouse Rail

The original plan also envisaged an East-West Tunnel at a later date. – Northern Powerhouse Rail?

But the creation of capacity by the diversion of local services from Manchester Victoria into the Picc-Vic Tunnel, would surely have enabled the station to be developed thirty years ago as a station on an improved TransPennine route.

Tram-Trains

The system would have accepted tram-trains, which hadn’t been invented in the 1970s.

Manchester Airport

Manchester Airport had only one runway in the 1970s and I think only a few would have believed, it would have expanded like it has.

The Picc-Vic Tunnel would create a superb service to the Airport, at a frequency upwards of six tph.

High Speed Two

The Picc-Vic Tunnel would have created the capacity in  for Manchester Piccadilly station and allowed High Speed Two services to use the station.

In The Rival Plans For Piccadilly Station, That Architects Say Will ‘Save Millions’, I talked about a radical plan for extending Manchester Piccadilly station for High Speed Two, that has been put forward by Weston Williamson; the architects.

This sort of scheme would also fit well with the Picc-Vic Tunnel.

Conclusion

Manchester was short-changed and not building the Picc-Vic Tunnel was a major mistake.

It would have created an underground railway in a similar mould to that of Liverpool’s, but it would probably have served a larger network.

They would probably be the best pair of underground railways for smaller cities in the world.

August 20, 2020 Posted by | Transport | , , , , , , , , , , | 4 Comments

Beeching Reversal – East Didsbury – Stockport

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

This project has been puzzling me.

Search Google for “East Didsbury and Stockport Rail Link” and all you find is grandiose plans for billion pound extensions to the Manchester Metrolink.

Having researched a lot of the proposed Beeching Reversal projects, it appears to me, that the ones likely to be built, will give a lot of benefit for millions, not billions of pounds.

I just wonder, if in this project, Manchester is stealing an idea from Birmingham – the four-poster station!

This Google Map shows Smethwick Galton Bridge station.

This extract from the Wikipedia entry, describes the station.

The station was opened in September 1995 as part of the Jewellery Line scheme to reopen the line between Smethwick and Birmingham Snow Hill station. It was built as an interchange station between two lines, and the platforms on both lines opened at the same time.

Note.

  1. The four lift towers with stairs, that connect the four platforms, have pyramid roofs.
  2. The station is fully step-free.
  3. The rail lines are at different levels.

These pictures show the station.

It is a very practical architectural idea and the world needs more four-poster stations to connect rail lines where they cross at different levels.

Could A Four-Poster Station Link East Didsbury And Stockport?

These are my thoughts.

The Location

This Google Map shows the general area, where the station could be built.

It is a spaghetti of motorways and rail lines with a lumpy sauce of new housing called Barnes Village in the middle.

Note, where the two rail lines cross in the South-West corner of the map.

This second Google Map, shows an enlarged image of the location, where the two rail lines cross.

Note.

  1. The Styal Line runs North-South.
  2. The line running East-West is the Mid-Cheshire Line between Altrincham and Stockport stations.

I suspect most travellers joining the rail network at this point, would walk or cycle in from nearby locations or turn up in a taxi.

The Styal Line

The Styal Line has the following characteristics.

  • It is an electrified double-track line.
  • It connects Manchester Piccadilly and Wilmslow stations.
  • There is a spur that serves Manchester Airport station.
  • East Didsbury station, is the station North of where the two lines cross.
  • Gatley station, is the station South of where the two lines cross.
  • It is the route of trains to and from Manchester Airport.

These trains go through East Didsbury and Gatley stations in trains per hour (tph)

  • 1 tph – Northern – Liverpool Lime Street and Crewe
  • 1 tph – Northern – Liverpool Lime Street and Manchester Airport
  • 1 tph – Northern – Manchester Airport and Blackpool North
  • 1 tph – Northern – Manchester Airport and Cumbria
  • 1 tph – Trains for Wales – Manchester Airport and Chester
  • 1 tph – TransPennine Express – Manchester Airport and Redcar Central
  • 1 tph – TransPennine Express – Manchester Airport and Newcastle
  • 1 tph – TransPennine Express – Manchester Airport and Glasgow Central or Edinburgh

Freight trains also use the route.

This means that currently, there are eight tph between the Castlefield Corridor (Deansgate, Manchester Oxford Road and Manchester Piccadilly) and Manchester Airport, all of which go through the location, where the four-poster station could possibly be built.

So could the new station, be used to take pressure off the overloaded Castlefield Corridor?

The Mid-Cheshire Line

The Mid-Cheshire Line has the following characteristics.

  • At this point it is a single-track without electrification.
  • It connects Stockport and Altrincham stations.

Re-Doubling Of The Mid Cheshire Line Between Stockport and Altrincham And Associated Station Reopenings is another of the Beeching Reversal projects and envisages the following.

  • Re-doubling the route.
  • Possible electrification
  • Reopening some stations.

This is the only passenger service that uses the route.

  • 1 tph – Northern – Manchester Piccadilly and Chester

Up to two-three freight tph, also use the route.

In the related post, I said this about the desired frequency of services between Manchester and Chester stations.

It could be argued that two tph between Manchester Piccadilly and Chester are needed now and that four tph should be the preferred frequency.

There certainly needs to be four tph going through the proposed four-poster station.

Conclusion

I am being drawn to the conclusion, that this station if it were to be built, would help a lot of problems with Manchester’s railways.

  • It would allow a sort out of train services to Manchester Airport.
  • It would connect Stockport and Manchester Airport.
  • It would connect Stockport and East Didsbury.
  • It could help a solution to the problem of the Castlefield Corridor.

The station should be built.

August 5, 2020 Posted by | Transport | , , , , , , , , | 7 Comments

Should High Speed Two’s Macclesfield And London Service Call At Birmingham Interchange?

Connecting Manchester City Centre to the High Speed Two network will be a major undertaking.

  • It looks increasingly likely that High Speed Two and Northern Powerhouse Rail will have a shared line running from the main High Speed Two route through Crewe to Manchester Piccadilly via Manchester Airport.
  • Between Manchester Airport and Manchester Piccadilly will be in a high speed tunnel.
  • Northern Powerhouse Rail will connect Liverpool Lime Street and Warrington to Manchester Airport and Manchester Piccadilly.
  • There will be a major problem keeping train services running between Manchester and Birmingham, London and the South.

But just at Project Rio kept Manchester connected during the rebuilding of the West Coast Main Line in the early years of this century, I believe that a similar creditable alternative route may be starting to evolve.

Avanti’s Additional Class 807 Trains Will Be Delivered

These trains will allow additional services and release some Class 390 trains to reinforce other services.

Avanti West Coast’s Future West Coast Main Line Service

The small fleet of Class 807 trains are needed to provide extra services on the West Coast Main Line.

  • But if these trains are successful, will more be used as replacements for the nearly twenty-years-old Class 390 trains?
  • Will they also be given more traction power to double as the classic-compatible trains for High Speed Two.
  • Other operators might also like to purchase a high capacity 200 metre long high speed train, which would share routes used by High Speed Two.

In Thoughts On Class 807 Trains And High Speed Two’s Classic-Compatible Trains, I discuss the design of extra trains for High Speed Two and the West Coast Main Line.

Surely, though having similar trains handling both roles on the West Coast Main Line and High Speed Two, would be an advantage to Avanti West Coast?

London And Manchester Services

Currently, there are these services between London Euston and Manchester Piccadilly stations.

  • Via Milton Keynes Central, Stoke-on-Trent and Stockport
  • Via Stoke-on-Trent, Macclesfield and Stockport
  • Via Stafford, Crewe, Wilmslow and Stockport

All services have a frequency of one train per hour (tph)

High Speed Two plans to run these services between the South and the Manchester area.

  • 1 tph – 200 metres – London Euston and Wigan North Western via Old Oak Common, Crewe and Warrington Bank Quay
  • 1 tph – 200 metres – London Euston and Macclesfield via Old Oak Common, Stafford and Stoke.
  • 1 tph – 400 metres – London Euston and Manchester Piccadilly via Old Oak Common, Birmingham Interchange and Manchester Airport
  • 2 tph – 400 metres – London Euston and Manchester Piccadilly via Old Oak Common and Manchester Airport
  • 2 tph – 200 metres – Birmingham Curzon Street and Manchester Piccadilly via Manchester Airport
  • 1 tph – 200 metres – Birmingham Curzon Street and Wigan North |Western

Note.

  1. I have included Wigan North Western, as it has good connections to North Manchester.
  2. Services can’t go via Manchester Airport until the tunnel is completed.
  3. The 400 metre services will need to use dedicated High Speed Two tracks, so will need to use the tunnel via Manchester Airport.

Wigan and Macclesfield stations will not be requiring major rebuilding, during the construction of High Speed Two. That should mean the stations will not need to be closed for long periods.

  • Macclesfield station could probably handle up to three tph from the South.
  • Wigan North Western station could probably handle two tph from the South.
  • Work in the Manchester Piccadilly area, may well close the station at times.

I suspect Macclesfield and Wigan North Western could be very useful alternative stations for travelling to and from the South.

Manchester And Birmingham Via Macclesfield

I can see that there could be difficulties for some passengers, if they found themselves at Macclesfield wanting to go to the Birmingham area.

A solution would be for the Macclesfield and London service to stop at Birmingham Interchange, which will be extremely well-connected.

Birmingham Interchange

This map from High Speed Two, shows Birmingham Interchange and Birmingham International stations.

Note.

  • Birmingham Interchange station is marked by the blue dot.
  • Birmingham International station is to the West of the M42.

The two stations will be connected by an automatic people mover.

Destinations and their frequencies available from Birmingham Interchange, when High Speed Two is complete will include.

  • 2 tph – Birmingham Curzon Street
  • 1 tph – Carlisle
  • 1 tph – East Midlands Hub
  • 1 tph – Edinburgh Haymarket
  • 1 tph – Edinburgh Waverley
  • 1 tph – Glasgow Central
  • 1 tph – Leeds
  • 5 tph – London Euston
  • 1 tph – Manchester Airport
  • 1 tph – Manchester Piccadilly
  • 5 tph – Old Oak Common
  • 1 tph – Preston

It looks like if you miss your train to many important cities at Birmingham Interchange, it will be an hour to wait for the next train.

Destinations and their frequencies available from Birmingham International are currently.

  • 8 tph – Birmingham New Street
  • 1 tph – Bournemouth
  • 1 tph – Crewe
  • 0.5 tph to Edinburgh Waverley
  • 0.5 tph to Glasgow Central
  • 7 tph – London Euston
  • 1 tph – Macclesfield
  • 1 tph – Manchester Piccadilly
  • 1 tph – Reading
  • 1 tph – Shrewsbury
  • 1 tph – Southampton
  • 1 tph – Stafford
  • 1 tph – Stoke-on-Trent
  • 2 tph – Wolverhampton

Note that 0.5 tph is one train per two hours.

These two lists can be combined.

  • 10 tph – Birmingham Curzon Street/New Street
  • 1 tph – Bournemouth
  • 2 tph – Carlisle
  • 1 tph – Crewe
  • 1 tph – East Midlands Hub
  • 1.5 tph – Edinburgh Haymarket
  • 1.5 tph – Edinburgh Waverley
  • 1.5 tph – Glasgow Central
  • 1 tph – Leeds
  • 12 tph – London Euston
  • 1 tph – Macclesfield
  • 1 tph – Manchester Airport
  • 2 tph – Manchester Piccadilly
  • 5 tph – Old Oak Common
  • 1 tph – Preston
  • 1 tph – Reading
  • 1 tph – Shrewsbury
  • 1 tph – Southampton
  • 1 tph – Stafford
  • 1 tph – Stoke-on-Trent
  • 2 tph – Wolverhampton

This list is surely missing Bristol, Cardiff, Liverpool, Sheffield and Newcastle.

Conclusion

We should not underestimate the importance of Macclesfield and Wigan North Western stations in getting to and from Manchester during the building of High Speed Two.

July 15, 2020 Posted by | Transport | , , , , , , , , , , | Leave a comment

Electrifying Wales

I would not be surprised to learn that Wales wants to decarbonise their railways.

At present, Wales only has the following electrified railways either in operation or under construction.

  • The South Wales Main Line between the Severn Tunnel and Cardiff.
  • The South Wales Metro based on local railways around Cardiff and Newport is being created and will be run by electric trains.

There is no more electrification planned in the future.

Hitachi’s Specification For Battery Electric Trains

Recently, Hitachi have released this infographic for their Regional Battery Train.

This gives all the information about the train and a definitive range of 90 km or 56 miles.

The Welsh Rail Network

If you look at the network of services that are run by Transport for Wales Rail Services, they connect a series of hub stations.

Major hubs include the following stations.

  • Cardiff Central – Electrified
  • Chester
  • Hereford
  • Shrewsbury
  • Swansea

Smaller hubs and termini include the following stations.

  • Aberystwyth
  • Birmingham International – Electrified
  • Birmingham New Street – Electrified
  • Blaenau Ffestiniog
  • Carmarthen
  • Crewe – Electrified
  • Fishguard Harbour
  • Hereford
  • Holyhead
  • Llandudno Junction
  • Manchester Airport – Electrified
  • Manchester Piccadilly – Electrified
  • Machynlleth
  • Milford Haven
  • Newport – Electrified
  • Pembroke Dock

Running Welsh Routes With Electric Trains

These routes make up the Welsh rail network.

Chester And Crewe

Consider.

  • The route between Chester and Crewe is without electrification.
  • Crewe and Chester are 21 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Crewe with full batteries, that it will be possible to run between Chester and Crewe stations.

Chester And Holyhead via Llandudno Junction

Consider.

  • All services between Llandudno Junction and England call at Chester.
  • All services running to and from Holyhead call at Llandudno Junction.
  • The route between Chester and Holyhead is without electrification.
  • Chester and Llandudno Junction are 54 miles apart.
  • Llandudno Junction and Holyhead are 40 miles apart.

I believe that if a battery-electric train with a range of 56 miles can leave Chester, Llandudno Junction and Holyhead with full batteries, that it will be possible to run between Chester and Holyhead stations.

Chester And Liverpool Lime Street

Consider.

  • The route between Runcorn and Liverpool Lime Street is electrified.
  • The route between Chester and Runcorn is without electrification.
  • Chester and Runcorn are 14 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Runcorn with full batteries, that it will be possible to run between Chester and Liverpool Lime Street stations.

Chester And Manchester Airport

Consider.

  • The route between Warrington Bank Quay and Manchester Airport is electrified.
  • The route between Chester and Warrington Bank Quay is without electrification.
  • Chester and Warrington Bank Quay are 18 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Warrington Bank Quay with full batteries, that it will be possible to run between Chester and Manchester Airport stations.

Chester And Shrewsbury

Consider.

  • The route between Chester and Shrewsbury is without electrification.
  • Chester and Shrewsbury are 42 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Shrewsbury and Chester with full batteries, that it will be possible to run between Chester and Shrewsbury stations.

Llandudno And Blaenau Ffestiniog

Consider.

  • The route between Llandudno and Blaenau Ffestiniog is without electrification.
  • Llandudno and Blaenau Ffestiniog are 31 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Llandudno and Blaenau Ffestiniog with full batteries, that it will be possible to run between Llandudno and Blaenau Ffestiniog stations.

Machynlleth And Aberystwyth

Consider.

  • The route between Machynlleth and Aberystwyth is without electrification.
  • Machynlleth and Aberystwyth are 21 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Machynlleth and Aberystwyth with full batteries, that it will be possible to run between Machynlleth and Aberystwyth stations.

Machynlleth And Pwllheli

Consider.

  • The route between Machynlleth and Pwllheli is without electrification.
  • Machynlleth and Pwllheli are 58 miles apart.

I believe that if a battery-electric train with a range of upwards of 58 miles, can leave Machynlleth and Pwllheli with full batteries, that it will be possible to run between Machynlleth and Pwllheli stations.

Machynlleth And Shrewsbury

Consider.

  • The route between Machynlleth and Shrewsbury is without electrification.
  • Machynlleth and Shrewsbury are 61 miles apart.

I believe that if a battery-electric train with a range of upwards of 61 miles, can leave Machynlleth and Shrewsbury with full batteries, that it will be possible to run between Machynlleth and Shrewsbury stations.

Shrewsbury and Birmingham International

Consider.

  • The route between Birmingham International and Wolverhampton is electrified.
  • The route between Shrewsbury and Wolverhampton is without electrification.
  • Shrewsbury and Wolverhampton are 30 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury and Wolverhampton with full batteries, that it will be possible to run between Shrewsbury and Birmingham International stations.

 Shrewsbury And Cardiff Central via Hereford

Consider.

  • All services between Cardiff Central and Shrewsbury call at Hereford.
  • The route between Cardiff Central and Newport is electrified.
  • The route between Newport and Shrewsbury is without electrification.
  • Shrewsbury and Hereford are 51 miles apart.
  • Hereford and Newport are 44 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury, Hereford and Newport with full batteries, that it will be possible to run between Shrewsbury and Cardiff Central stations.

Shrewsbury And Crewe

  • The route between Shrewsbury and Crewe is without electrification.
  • Shrewsbury and Crewe are 33 miles apart.

I believe that if a battery-electric train with a range of upwards of 61 miles, can leave Shrewsbury and Crewe with full batteries, that it will be possible to run between Shrewsbury and Crewe stations.

Shrewsbury and Swansea

Consider.

  • The Heart of Wales Line between Shrewsbury and Swansea is without electrification.
  • Shrewsbury and Swansea are 122 miles apart.
  • Trains cross at Llandrindod and wait for up to eleven minutes, so there could be time for a charge.
  • Shrewsbury and Llandrindod are 52 miles apart.
  • Swansea and Llandrindod are 70 miles apart.

It appears that another charging station between Swansea and Llandrindod is needed

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury, Swansea and the other charging station, with full batteries, that it will be possible to run between Shrewsbury and Swansea stations.

Swansea And Cardiff Central

Consider.

  • The route between Swansea and Cardiff Central is without electrification.
  • Swansea and Cardiff Central are 46 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea and Cardiff Central with full batteries, that it will be possible to run between Swansea and Cardiff Central stations.

Swansea And Carmarthen

Consider.

  • The route between Swansea and Carmarthen is without electrification.
  • Swansea and Carmarthen are 31 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea and Carmarthen with full batteries, that it will be possible to run between Swansea and Carmarthen stations.

Swansea And Fishguard Harbour

Consider.

  • The route between Swansea and Fishguard Harbour is without electrification.
  • Swansea and Fishguard Harbour are 73 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Fishguard Harbour are 42 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Fishguard Harbour with full batteries, that it will be possible to run between Swansea and Fishguard Harbour stations.

Swansea And Milford Haven

Consider.

  • The route between Swansea and Milford Haven is without electrification.
  • Swansea and Milford Haven are 72 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Milford Haven are 41 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Milford Haven with full batteries, that it will be possible to run between Swansea and Milford Haven stations.

Swansea And Pembroke Dock

Consider.

  • The route between Swansea and Pembroke Dock is without electrification.
  • Swansea and Pembroke Dock are 73 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Pembroke Dock are 42 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Pembroke Dock with full batteries, that it will be possible to run between Swansea and Pembroke Dock stations.

Other Routes

I have not covered these routes.

  • Borderlands Line
  • Cardiff Valley Lines, that will be part of the South Wales Metro
  • Routes on the electrified South Wales Main Line, that are to the East of Cardiff.

The first will run between Chester and the electrified Merseyrail system and the others will be electrified, except for short stretches.

Stations Where Trains Would Be Charged

These stations will need charging facilities.

Aberystwyth

Aberystwyth station only has a single terminal platform.

I’ve not been to the station, but looking at pictures on the Internet, I suspect that fitting a charging facility into the station, wouldn’t be the most difficult of engineering problems.

Birmingham International

Birmingham International station is fully-electrified and ready for battery-electric trains.

Blaenau Fflestiniog

Blaenau Ffestiniog station has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Cardiff

Cardiff station is fully-electrified and ready for battery-electric trains.

Chester

Chester station has two through platforms and one bay platform, that are used by Trains for Wales.

  • The through platforms are bi-directional.
  • The bay platform is used by services from Liverpool Lime Street and Manchester Airport and Piccadilly.
  • The station is a terminus for Merseyrail’s electric trains, which use 750 VDC third-rail electrification.
  • Some through services stop for up to seven minutes in the station.

This Google Map shows the station.

There is plenty of space.

The simplest way to charge trains at Chester would be to electrify the two through platforms 3 and 4 and the bay platform 1.

I would use 750 VDC third-rail, rather than 25 KVAC overhead electrification.

  • I’m an engineer, who deals in scientifically-correct solutions, not politically-correct ones, devised by jobsworths.
  • Maintenance staff at the station will be familiar with the technology.
  • Station staff and passengers will know about the dangers of third-rail electrification.
  • Trains connect and disconnect automatically to third-rail electrification.
  • Trains don’t have to stop to connect and disconnect, so passing trains can be topped-up.
  • Hitachi with the Class 395 train and Alstom with the Class 373 train, have shown even trains capable of 140 mph can be fitted with third-rail shoes to work safely at slower speeds on lines electrified using third-rail.
  • Modern control systems can control the electricity to the third-rail, so it is only switched on, when the train completes the circuit.

I have a vague recollection, that there is an avoiding line at Chester station, so trains can go straight through. Perhaps that should be electrified too.

Carmarthen

Carmarthen station is a two platform station, with a rather unusual layout, that I wrote about in Changing Trains At Carmarthen Station.

I took these pictures when I passed through in 2016.

Note the unusual step-free crossing of the tracks.

This Google Map shows the layout at the station.

I believe it is another station, where third-rail electrification could be the solution.

  • Most trains seem to reverse at the station, which gives time for a full charge.
  • Others terminate here.

but would they still allow passengers to cross the line as they do now, whilst trains are being charged?

Crewe

Crewe station is fully-electrified.

  • Trains for Wales seem to use Platform 6 for through trains and the bay Platform 9 for terminating trains.
  • Both platforms appear to be electrified.
  • Terminating trains appear to wait at least 9-11 minutes before leaving.

It does appear that Crewe station is ready for battery-electric trains.

Fishguard Harbour

Fishguard Harbour station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Hereford

Hereford station has four through platforms.

This Google Map shows the station.

There is plenty of space.

As with Chester, I would electrify this station with 750 VDC third-rail equipment.

But the electrification wouldn’t be just for train services in Wales.

  • West Midlands Trains, run an hourly service to Birmingham New Street and there is only a forty-one mile gap in the electrification between Hereford and Bromsgrove.
  • Great Western Railway’s service to London, has a massive ninety-six mile run to the electrification at Didcot Junction, which could be bridged by installing charging facilities at Worcestershire Parkway and/or Honeybourne stations.

Both services have generous turnround times at Hereford, so would be able to leave fully-charged.

Distances from Hereford station are as follows.

  • Abergavenny – 24 miles
  • Bromsgrove – 41 miles
  • Great Malvern – 21 miles
  • Honeybourne – 48 miles
  • Ludlow – 13 miles
  • Newport – 44 miles
  • Shrewsbury – 51 miles
  • Worcester Parkway – 33 miles

Hereford station could be a serious battery-electric train hub.

Holyhead

Holyhead station has three terminals platforms.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Liverpool Lime Street

Liverpool Lime Street station is fully-electrified and ready for battery-electric trains.

Llandrindod

Llandrindod station has two through platforms.

I took these pictures at the station as I passed through in 2016.

The Heart of Wales Line is certainly a route, that would benefit from larger trains. Zero-carbon battery-electric trains would surely fit well in the area.

This Google Map shows the station.

It would appear that, it is another station, that could be fitted with third-rail electrification to charge the trains.

Distances from Llandrindod station are as follows.

  • Shrewsbury – 52 miles
  • Llandovery – 27 miles
  • Llanelli – 59 miles
  • Swansea – 70 miles

It would appear that a second station with charging facilities or bigger batteries are needed.

Llandudno Junction

Llandudno Junction station has four platforms.

This Google Map shows the station.

There is plenty of space.

As at Chester, the simple solution would be to electrify the platforms used by trains, that will need charging.

Butb there may also be a wider plan.

Llandudno Junction station is at the Western end of a string of five closely-spaced stations with Prestatyn station in the East.

  • Llandudno Junction and Prestatyn are eight miles apart.
  • Trains take twenty-three minutes to pass through this section.
  • Some trains do a detour to Llandudno station before continuing.
  • For part of the route, the railway lies between the dual-carriageway A55 road and the sea.

So why not electrify this section of railway between Llandudno Junction and Prestatyn stations?

  • Either 750 VDC this-rail or 25 KVAC overhead electrification could be used.
  • Prestatyn and Chester are 46 miles apart.
  • Llandudno Junction and Holyhead are 40 miles apart.

If third-rail electrification were to be used, it might be advantageous to electrify to Llandudno station.

  • It would be less intrusive.
  • It would be quieter in an urban area.
  • It would give the trains to Blaenau Ffestiniog trains a good charge.

But above all third-rail electrification might cost a bit less and cause less disruption to install.

Machynlleth

Machynlleth station is where the Aberystwyth and Pwllheli services split and join.

This Google Map shows the station.

Consider.

  • There is a train depot by the station.
  • Will there be a good power supply at the station to charge the trains?
  • Machnylleth and Pwllhelli are 58 miles apart.
  • Machynlleth and Shrewsbury are 61 miles apart.

I think that Machynlleth might be pushing things too far, without extra stations with charging facilities.

One solution might be to develop the Riding Sunbeams concept and electrify the route between Newtown and Dovey Junction via Machynlleth, using third-rail technology powered-by solar or wind power.

Another solution would be batteries with a larger capacity.

Manchester Airport

Manchester Airport station is fully-electrified and ready for battery-electric trains.

Manchester Piccadilly

Manchester Piccadilly station is fully-electrified and ready for battery-electric trains.

Milford Haven

Milford Haven station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Pembroke Dock

Pembroke Dock station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Pwllheli

Pwhelli station is a only has a single terminal platform.

This Google Map shows the location of the station.

The stsation is at the North West corner of the bay.

My first reaction, when I saw this was that I have to go.

So I took a closer look at the station instead.

I suspect that fitting a charging facility into the station, wouldn’t be the most difficult of engineering problems. Although, there might be a problem getting a good enough connection to the National Grid.

Shewsbury

Shrewsbury station is a five-platform station.

This Google Map shows the station’s unusual location over the River Severn.

It must be one of few stations in the world, where trains enter the station from three different directions.

  • From Crewe and Chester to the North.
  • From Hereford and Wales to the South.
  • From Birmingham and Wolverhampton in the East.

Adding electrification to all or selected platforms should allow trains to recharge and be on their way.

  • Under current timetables, dwell times in Shrewsbury are up to eight minutes.
  • I would suspect the train times could be adjusted, so that trains left the station with full batteries.

With battery-electric services to Aberystwyth, Birmingham International, Birmingham New Street, Cardiff Central, Chester, Crewe, Hereford, Holyhead, London Euston, Manchester, Pwllheli and Swansea, it will be a very important station.

Swansea

Swansea station has four terminal platforms.

A charging facility could be added to an appropriate number of platforms.

Or perhaps, the last few miles of track into the station should be electrified, so trains could charge on the way in, charge in the station and charge on the way out.

Third Rail Electrification

I have suggested in this post, that 750 VDC third-rail electrification could be used in several places.

I will repeat what I said earlier, when discussing Chester station.

  • I’m an engineer, who deals in scientifically-correct solutions, not politically-correct ones, devised by jobsworths.
  • Maintenance staff at the station will be familiar with the technology.
  • Station staff and passengers will know about the dangers of third-rail electrification.
  • Trains connect and disconnect automatically to third-rail electrification.
  • Trains don’t have to stop to connect and disconnect, so passing trains can be topped-up.
  • Hitachi with the Class 395 train and Alstom with the Class 373 train, have shown even trains capable of 140 mph can be fitted with third-rail shoes to work safely at slower speeds on lines electrified using third-rail.
  • Modern control systems can control the electricity to the third-rail, so it is only switched on, when the train completes the circuit.

Third-rail electrification should be seriously considered.

A Standardised Terminal Solution

In this post, I mentioned that the following stations could be powered by a scandalised solution, as they are all one platform, terminal stations.

  • Aberystwyth
  • Blaenau Ffestiniog
  • Fishguard Harbour
  • Holyhead
  • Milford Haven
  • Pembroke Dock
  • Pwllheli

The system might also be applicable at Carmarthen and Swansea.

My view is that Vivarail’s Fast Track charging based on third-rail technology would be ideal. I discussed this technology in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

Conclusion

With a bit of ingenuity, all train services run by Transport for Wales, can be run with battery-electric trains.

 

July 9, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

The Rival Plans For Piccadilly Station, That Architects Say Will ‘Save Millions’

The title of this post, is the same as that of this article on the Manchester Evening News.

This subtitle introduces the idea.

The speculative proposal includes a new underground HS2 station and an ‘s-shaped tunnel’ under the city centre.

The architects are Weston Williamson and I have felt for years that this was the best way and I put my ideas and some fragments from the press and Northern Powerhouse Rail in Manchester Piccadilly ‘Super Hub’ Proposed.

This picture from Weston Williamson, shows their proposed station.

Note.

  1. In the visualisation, you are observing the station from the East.
  2. The existing railway lines into Piccadilly station are shown in red.
  3. Stockport and Manchester Airport are to the left, which is to the South.
  4. Note the dreaded Castlefield Corridor in red going off into the distance to Oxford Road and Deansgate stations.
  5. The new high speed lines are shown in blue.
  6. To the left they go to Manchester Airport and then on to London, Birmingham and the South, Warrington and Liverpool and Wigan, Preston, Blackpool, Barroe-in-Furness, the North and Scotland.
  7. To the right, they go to Huddersfield, Bradford, Leeds, Hull and the North East, and Sheffield, Doncaster and the East.
  8. Between it looks like  a low-level High Speed station with at least four tracks and six platforms.
  9. The Manchester Mretrolink is shown in yellow.
  10. The potential for over-site development is immense. If the Station Square Tower was residential, the penthouses would be some of the most desirable places to live in the North.

This Google Map shows the current station.

Unfortunately, the map is round the other way to the visualisation, but I hope you can see how the shape of the current station is intact and can be picked out in both.

If you’ve ever used London Paddington station in the last few years, you will know that Crossrail is being built underneath. But the massive construction project of building the Crossrail platforms has not inconvenienced the normal business of the station.

Weston Williamson’s proposed station can be built in the same way.

It could be truly transformational

  • Manchester Piccadilly station would have at least 43 percent more platforms.
  • Classic-compatible High Speed commuter trains would run to Barrow, Blackpool, Chester, Derby, Nottingham and Shrewsbury from the low-level High Speed station.
  • The Northern Powerhouse Rail for all TransPennine Express services would use the low-level High Speed station.
  • Glasgow services would use the low-level High Speed station.
  • Manchester Piccadilly and Manchester Airport would have up to 18 high speed trains per hour and would be the finest airport service in the world.
  • Some or all of the low-level High Speed platforms, would be able to take 400 metre long trains.
  • 400 metre long platforms could handle one 200 metre long train from Manchester Airport and one 200 metre long train from Yorkshire.
  • The Castlefield Corridor would only have local trains, limited to a number, with which it could cope.
  • The use of the existing platforms would be reorganised.

It would be a massive increase in the capacity of the station and as been shown at Paddington with Crossrail, I am sure, that it could be built without massive disruption to existing services.

The Ultimate Train To The North

Imagine a pair of 200 metre long classic-compatible trains running between London Euston and Leeds.

  • They would travel via Birmingham Interchange, Manchester Airport, Manchester Piccadilly, Huddersfield and Bradford.
  • The trains would divide at Leeds.
  • One train would go to Hull.
  • The second train would go to York, Darlington, Durham and Newcastle. It could be extended to Edinburgh.
  • It could even run with a Turn-Up-And-Go frequency of four tph.

Why not?

 

 

June 30, 2020 Posted by | Transport | , , , , , , | 3 Comments

Could The Crewe And Derby Line Become A Much More Important Route?

On the Midlands Connect web site, they have a page, which is entitled Derby-Stoke-Crewe.

This is the introductory paragraph.

Our plans have the potential to increase passenger demand on the corridor by 72%, with faster, more frequent services.

They then give the outline of their plans, which can be summed up as follows.

  • Currently, the service is one train per hour (tph) and it takes 79 minutes.
  • The service frequency will go to two tph.
  • Twenty minutes could be saved on the second service by adjusting calling patterns.
  • Improved links at Crewe for High Speed Two. This must have been written before Stafford and Stoke got the High Speed Two service to Macclesfield.
  • East Midlands Railway are planning to extend the current Crewe and Derby service to Nottingham.

It seems a safe, and not overly ambitious plan.

These are my thoughts.

The Route

I have flown my virtual helicopter along the route and it appears to be double track all the way, except for a three mile section to the East of Crewe, that British Rail reduced to single track

However, in recent years the A5020 was built under the railway and the new bridge appears to have space for the second track to be restored, as this Google Map shows.

Note.

  1. The single track appears to be electrified, from the shadows of the gantries at either end of the bridge.
  2. West Midlands Trains appear to run an electric service between Crewe and Stafford on this route.
  3. I suspect it’s also used as a diversion route for Avanti West Coast’s Manchester service via Stoke-on-Trent or for train positioning.

Will this route allow High Speed Two trains to run between Stoke-on-Trent and Manchester Piccadilly?

From picture and comments in a rail forum, I suspect that the route could be redoubled fairly easily.

  • The electrification runs for about 15.5 miles, between Crewe station and Stoke Junction, which is about half-a-mile on the other side of Stoke-on-Trent station.
  • Trains seem to be connected to the electrification for over twenty minutes, so it could be useful for charging a battery train, running between Stoke-n-Trent and Crewe stations.

This Google Map shows Stoke Junction.

Note,

  1. Stoke-on-Trent station is to the North.
  2. The electrified railway going due South is the West Coast Main Line to Stone and Stafford stations.
  3. The line without electrification going off in a more South-Easterly direction is the line to Uttoxeter and Derby.

Following the route between Derby and Crewe, these are my observations.

  • There is a level crossing at Blythe Bridge station.
  • Most of the bridges over the route are modern, so I suspect will accept electrification.
  • The route would appear to have a speed limit of 70 mph, but I would suspect that this could be increased somewhat as it doesn’t look too challenging.
  • The route is 51 miles long, so a service that takes the current 79 minutes with nine stops, would average 38.7 mph.
  • The proposed time of 59 minutes, would average 51.8 mph

I suspect there could be more to come, as the timetable is probably written for a Class 153 train.

A Crewe And Nottingham Service

The Midlands Connect plan says the service will be the following.

  • Two tph
  • A slow train in 79 minutes.
  • A fast train in 59 minutes.
  • East Midlands Railway want to extend services to Nottingham.

It could be a fairly simple easy-to-use timetable.

Fast Trains

Consider.

  • Derby and Nottingham are 16 miles apart and fastest trains take between 19-22 minutes between the two cities.
  • When it opens, all trains would stop at East Midlands Hub station between Nottingham and Derby.
  • East Midlands Railway have a fleet that will include forty Class 170 trains.
  • I suspect that these 100 mph trains will be able to run between Crewe and Nottingham including the turnround in under 90 minutes.

This would mean that a fast hourly service would need three trains.

Slow Trains

Consider.

  • I wouldn’t be surprised to see the slower services continuing as now and not extending to Nottingham.
  • 79 minutes is probably a convenient time, which would give a ninety minute time for each leg between Derby and Crewe, when turnround is included.
  • Trains would be more of the Class 170 trains.

This would mean that a slow hourly service would need three trains.

Could Battery Electric Trains Be Used?

Consider.

  • I think it is likely that the route between Derby and East Midlands Parkway via East Midlands Hub station, will be electrified, in conjunction with Midland Main Line electrification.
  • Between Derby and Long Eaton stations via East Midlands Hub station is just under ten miles and takes ten minutes.
  • Nottingham and Crewe is 66 miles of which 25 miles in total could be electrified.
  • Derby and Crewe is 51 miles of which 15 miles are electrified.
  • The longest section without electrification is between Derby station and Stoke Junction, which is 35.5 miles.

Batteries would be charged in the following places.

  • Between Long Eaton and Derby stations.
  • During turnround at a fully-electrified Derby station.
  • Between Stoke-on-Trent and Crewe stations.
  • During turnround at a fully-electrified Crewe station.

That’s a lot better than with an electric car.

In Sparking A Revolution, I quoted this Hitachi-specification for a battery-electric train.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

I can’t see any problem with one of these trains or other battery-electric trains with a similar performance, running between Crewe and Nottingham or Derby via Stoke.

Could Hydrogen-Powered Trains Be Used?

I would suspect so, as the Alsthom Coradia iLint runs a similar route in Germany.

Connections To High Speed Two

Midlands Connect noted the route’s link to High Speed Two at Crewe.

But it also has other links to High Speed Two at Stoke-on-Trent and East Midlands Hub stations.

I suspect some stations like Uttoxeter or Alsager will have a choice of fast routes to London or Scotland.

Could Services Be Extended From Crewe?

In Connecting The Powerhouses, I talked about an article in the June 2017 Edition of Modern Railways, which proposed reopening the Midland Railway route between Derby and Manchester.

Some passengers and commentators fell a direct fast link is needed.

When High Speed Two is completed, the main route into Manchester Piccadilly will be a high speed spur from Crewe via Manchester Airport. Current plans include the following services.

  • One tph from London Euston via Old Oak Common and Birmingham Interchange.
  • Two tph from London Euston via Old Oak Common
  • Two tph from Birmingham Curzon Street

Note.

  1. All services will call at Manchester Airport.
  2. It is likely that Northern Powerhouse Rail will add six tph to Manchester Piccadilly from Liverpool via Warrington.
  3. Some services will extend through Manchester Piccadilly to Bradford, Doncaster, Huddersfield, Hull, Leeds, Newcastle, Sheffield and York.
  4. High Speed lines will probably have a capacity of up to eighteen tph.

The Birmingham Curzon Street, Liverpool and London Euston services would be eleven tph, so there would be more than enough capacity for an hourly train from Nottingham.

What would the service be like?

  • It would be between Nottingham and Manchester Piccadilly stations.
  • It could call at East Midlands Hub, Derby, Uttoxeter, Stoke-on-Trent, Kidsgrove, Crewe and Manchester Airport stations.
  • It would probably be hourly.

Timings could be as follows.

  • Nottingham and Manchester Airport – 87 minutes
  • Nottingham and Manchester Piccadilly – 91 minutes
  • Derby and Manchester Airport – 67 minutes
  • Derby and Manchester Piccadilly – 71 minutes
  • Stoke-on-Trent and Manchester Airport – 32 minutes
  • Stoke-on-Trent and Manchester Piccadilly – 36 minutes

The trains used on this and other local services that might need to use High Speed Two infrastructure would be performing a similar role as that of the Class 395 trains on High Speed One.

Possibilities must include.

  • A classic-compatible High Speed Two train.
  • A five-car AT-300 train, like East Midlands Railway’s Class 810 trains.
  • An updated Class 395 train.

All trains would need a battery capability with a range of 40 miles.

It should also be noted that in Options For High Speed To Hastings, I worked through the options needed to run high speed commuter services to Hastings.

This was the last sentence in that post.

It’s all about selling trains and a company that had a 140 mph or 225 kph high-speed electric train, that could do perhaps 25 miles or 40 kilometres on batteries, would have a valuable addition to their product range.

A train with a range of 50 miles on battery power, would be suitable for the following routes.

  • London St. Pancras and Hastings via Ashford International.
  • Manchester Piccadilly and Nottingham via Manchester Airport, Crewe, Derby and East Midlands Hub.
  • Manchester Piccadilly and Barrow-in-Furness via Manchester Airport, Warrington Bank Quay, Wigan North Western, Preston and Lancaster.
  • Manchester Piccadilly and Chester via Manchester Airport and Crewe.
  • Manchester Piccadilly and Shrewsbury via Manchester Airport and Crewe.

Charging might be needed at some of the terminal stations.

 

June 26, 2020 Posted by | Transport | , , , , , , , , , | 5 Comments