The Anonymous Widower

Is The TP Group Worth A Punt?

I have been following the Class 799 train for some time. It is a hydrogen train prototype being sponsored by the owner of the train; Porterbrook.

The difficult task of fitting all of the hydrogen and electrical electrical gubbins under the floor of the train has been accomplished by the combined efforts of Birmingham University and TP Group.

But TP Group according to this article on The Times, which is entitled Directors In Line Of Fire As TP Group Takeover Bid Turns Sour, seems to have turned a bit difficult for the company.

I wrote about the Class 799 train in A Class 319 Train, But Not As We Know It! and I predict that it could be one of the stars of COP26 in Glasgow later in the year.

This picture sums up why!

The prototype may have designed for publicity, but I can see pictures of Joe, Boris, Angela et all going for a ride in this zero-carbon train, that started out as a British Rail commuter train on Thameslink.

I shall be watching the TP Group share price with interest.

 

August 17, 2021 Posted by | Finance, Hydrogen, Transport | , , , , , , , , , | 3 Comments

Solving The Electrification Conundrum

The title of this post, is the same as an article in the July 2021 Edition of Modern Railways.

This is the introductory sub-heading.

Regional and rural railways poses a huge problem for the railway to decarbonise.

Lorna McDonald of Hitachi Rail and Jay Mehta of Hitachi ABB Power Grids tell Andy Roden why they believe they have the answer.

These are my thoughts on what is said.

Battery-Electric Trains

The article starts by giving a review of battery-electric trains and their use on routes of moderate but important length.

  • Some short routes can be handled with just a charge on an electrified main line.
  • Some will need a recharge at the termini.
  • Other routes might need a recharge at some intermediate stations, with a possible increase in dwell times.

It was in February 2015, that I wrote Is The Battery Electric Multiple Unit (BEMU) A Big Innovation In Train Design?, after a ride in public service on Bombardier’s test battery-electric train based on a Class 379 train.

I also wrote this in the related post.

Returning from Harwich, I travelled with the train’s on-board test engineer, who was monitoring the train performance in battery mode on a laptop. He told me that acceleration in this mode was the same as a standard train, that the range was up to sixty miles and that only minimal instruction was needed to convert a driver familiar to the Class 379 to this battery variant.

It was an impressive demonstration, of how a full-size train could be run in normal service without connection to a power supply. I also suspect that the partners in the project must be very confident about the train and its technology to allow paying passengers to travel on their only test train.

A couple of years later, I met a lady on another train, who’d used the test train virtually every day during the trial and she and her fellow travellers felt that it was as good if not better than the normal service from a Class 360 train or a Class 321 train.

So why if the engineering, customer acceptance and reliability were proven six years ago, do we not have several battery electric trains in service?

  • There is a proven need for battery-electric trains on the Marshlink Line and the Uckfield Branch in Sussex.
  • The current Class 171 trains are needed elsewhere, so why are no plans in place for replacement trains?
  • The government is pushing electric cars and buses, but why is there such little political support for battery-electric trains?

It’s almost as if, an important civil servant in the decision process has the naive belief that battery-electric trains won’t work and if they do, they will be phenomenally expensive. So the answer is an inevitable no!

Only in the South Wales Metro, are battery-electric trains considered to be part of the solution to create a more efficient and affordable electric railway.

But as I have constantly pointed out since February 2015 in this blog, battery-electric trains should be one of the innovations we use to build a better railway.

Hydrogen Powered Trains

The article says this about hydrogen powered trains.

Hybrid hydrogen fuel cells can potentially solve the range problem, but at the cost of the fuel eating up internal capacity that would ideally be used for passengers. (and as Industry and Technology Editor Roger Ford points out, at present hydrogen is a rather dirty fuel). By contrast, there is no loss of seating or capacity in a Hitachi battery train.

I suspect the article is referring to the Alstom train, which is based on the technology of the Alstom Coradia iLint.

I have ridden this train.

  • It works reliably.
  • It runs on a 100 km route.
  • The route is partially electrified, but the train doesn’t have a pantograph.
  • It has a very noisy mechanical transmission.

Having spoken to passengers at length, no-one seemed bothered by the Hindenburg possibilities.

It is certainly doing some things right, as nearly fifty trains have been ordered for train operating companies in Germany.

Alstom’s train for the UK is the Class 600 train, which will be converted from a four-car Class 321 train.

Note.

  1. Half of both driver cars is taken up by a hydrogen tank.
  2. Trains will be three-cars.
  3. Trains will be able to carry as many passengers as a two-car Class 156 train.

It is an inefficient design that can be improved upon.

Porterbrook and Birmingham University appear to have done that with their Class 799 train.

  • It can use 25 KVAC overhead or 750 VDC third-rail electrification.
  • The hydrogen tanks, fuel cell and other hydrogen gubbins are under the floor.

This picture from Network Rail shows how the train will appear at COP26 in Glasgow in November.

Now that’s what I call a train! Let alone a hydrogen train!

Without doubt, Porterbrook and their academic friends in Birmingham will be laying down a strong marker for hydrogen at COP26!

I know my hydrogen, as my first job on leaving Liverpool University with my Control Engineering degree in 1968 was for ICI at Runcorn, where I worked in a plant that electrolysed brine into hydrogen, sodium hydroxide and chlorine.

My life went full circle last week, when I rode this hydrogen powered bus in London.

The hydrogen is currently supplied from the same chemical works in Runcorn, where I worked. But plans have been made at Runcorn, to produce the hydrogen from renewable energy, which would make the hydrogen as green hydrogen of the highest standard. So sorry Roger, but totally carbon-free hydrogen is available.

The bus is a Wightbus Hydroliner FCEV and this page on the Wrightbus web site gives the specification. The specification also gives a series of cutaway drawings, which show how they fit 86 passengers, all the hydrogen gubbins and a driver into a standard size double-deck bus.

I believe that Alstom’s current proposal is not a viable design, but I wouldn’t say that about the Porterbrook/Birmingham University design.

Any Alternative To Full Electrification Must Meet Operator And Customer Expectations

This is a paragraph from the article.

It’s essential that an alternative traction solution offers the same levels of performance and frequency, while providing an increase in capacity and being economically viable.

In performance, I would include reliability. As the on-board engineer indicated on the Bombardier  test train on the Harwich branch, overhead electrification is not totally reliable, when there are winds and/or criminals about.

Easy Wins

Hitachi’s five-car Class 800 trains and Class 802 trains each have three diesel engines and run the following short routes.

  • Kings Cross and Middlesbrough- 21 miles not electrified – Changeover in Northallerton station
  • Kings Cross and Lincoln – 16.6 miles not electrified – Changeover in Newark Northgate station
  • Paddington and Bedwyn – 13.3 miles not electrified – Changeover in Newbury station
  • Paddington and Oxford – 10.3 miles not electrified – Changeover in Didcot Parkway station

Some of these routes could surely be run with a train, where one diesel engine was replaced by a battery-pack.

As I’m someone, who was designing, building and testing plug-compatible transistorised electronics in the 1960s to replace  older valve-based equipment in a heavy engineering factory, I suspect that creating a plug-compatible battery-pack that does what a diesel engine does in terms of power and performance is not impossible.

What would be the reaction to passengers, once they had been told, they had run all the way to or from London without using any diesel?

Hopefully, they’d come again and tell their friends, which is what a train operator wants and needs.

Solving The Electrification Conundrum

This section is from the article.

Where electrification isn’t likely to be a viable proposition, this presents a real conundrum to train operators and rolling stock leasing companies.

This is why Hitachi Rail and Hitachi ABB Power Grids are joining together to present a combined battery train and charging solution to solve this conundrum. In 2020, Hitachi and ABB’s Power Grids business, came together in a joint venture, and an early outcome of this is confidence that bringing together their expertise in rail, power and grid management, they can work together to make electrification simpler cheaper and quicker.

I agree strongly with the second paragraph, as several times, I’ve been the mathematician and simulation expert in a large multi-disciplinary engineering project, that went on to be very successful.

The Heart Of The Proposition

This is a paragraph from the article.

The proposition is conceptually simple. Rather than have extended dwell times at stations for battery-powered trains, why not have a short stretch of 25 KVAC overhead catenary (the exact length will depend on the types of train and the route) which can charge trains at linespeed on the move via a conventional pantograph?

The article also mentions ABB’s related expertise.

  • Charging buses all over Europe.
  • Creating the power grid for the Great Western Electrification to Cardiff.

I like the concept, but then it’s very similar to what I wrote in The Concept Of Electrification Islands in April 2020.

But as they are electrical power engineers and I’m not, they’d know how to create the system.

Collaboration With Hyperdrive Innovation

The article has nothing negative to say about the the collaboration with Hyperdrive Innovation to produce the battery-packs.

Route Modelling

Hitachi appear to have developed a sophisticated route modelling system, so that routes and charging positions can be planned.

I would be very surprised if they hadn’t developed such a system.

Modular And Scalable

This is a paragraph from the article.

In the heart of the system is a containerised modular solution containing everything needed to power a stretch of overhead catenary to charge trains. A three-car battery train might need one of these, but the great advantage is that it is scalable to capacity and speed requirements.

This all sounds very sensible and can surely cope with a variety of lines and traffic levels.

It also has the great advantage , that if a line is eventually electrified, the equipment can be moved on to another line.

Financing Trains And Chargers

The article talks about the flexibility of the system from an operator’s point of view with respect to finance.

I’ve had some good mentors in the area of finance and I know innovative finance contributed to the success of Metier Management Systems, the project management company I started with three others in 1977.

After selling Metier, I formed an innovative finance company, which would certainly have liked the proposition put forward in the article.

No Compromise, Little Risk

I would agree with this heading of the penultimate section of the article.

In February 2015, when I rode that Class 379 train between Manningtree and Harwich, no compromise had been made by Bombardier and it charged in the electrified bay platform at Manningtree.

But why was that train not put through an extensive route-proving exercise in the UK after the successful trial at Manningtree?

  • Was it the financial state of Bombardier?
  • Was it a lack of belief on the part of politicians, who were too preoccupied with Brexit?
  • Was it that an unnamed civil servant didn’t like the concept and stopped the project?

Whatever the reason, we have wasted several years in getting electric trains accepted on UK railways.

If no compromise needs to be made to create a battery-electric train, that is equivalent to the best-in-class diesel or electric multiple units, then what about the risk?

The beauty of Hitachi’s battery-electric train project is that it can be done in phases designed to minimise risk.

Phase 1 – Initial Battery Testing 

Obviously, there will be a lot of bench testing in a laboratory.

But I also believe that if the Class 803 trains are fitted with a similar battery from Hyperdrive Innovation, then this small fleet of five trains can be used to test a lot of the functionality of the batteries initially in a test environment and later in a real service environment.

The picture shows a Class 803 train under test through Oakleigh Park station.

This phase would be very low risk, especially where passengers are concerned.

Phase 2 – Battery Traction Testing And Route Proving

I am a devious bastard, when it comes to software development. The next set of features would always be available for me to test earlier, than anybody else knew.

I doubt that the engineers at Hyperdrive Innovation will be any different.

So I wouldn’t be surprised to find out that the batteries in the Class 803 trains can also be used for traction, if you have the right authority.

We might even see Class 803 trains turning up in some unusual places to test the traction abilities of the batteries.

As East Coast Trains, Great Western Railway and Hull Trains are all First Group companies, I can’t see any problems.

I’m also sure that Hitachi could convert some Class 800 or Class 802 trains and add these to the test fleet, if East Coast Trains need their Class 803 trains to start service.

This phase would be very low risk, especially where passengers are concerned.

Possibly, the worse thing, that could happen would be a battery failure, which would need the train to be rescued.

Phase 3 – Service Testing On Short Routes

As I indicated earlier, there are some easy routes between London and places like Bedwyn, Lincoln, Middlesbrough and Oxford, that should be possible with a Class 800 or Class 802 train fitted with the appropriate number of batteries.

Once the trains have shown, the required level of performance and reliability, I can see converted Class 800, 801 and Class 802 trains entering services on these and other routes.

Another low risk phase, although passengers are involved, but they are probably subject to the same risks, as on an unmodified train.

Various combinations of diesel generators and batteries could be used to find out, what is the optimum combination for the typical diagrams that train operators use.

Hitachi didn’t commit to any dates, but I can see battery-electric trains running on the Great Western Railway earlier than anybody thinks.

Phase 4 – Service Testing On Medium Routes With A Terminal Charger System

It is my view that the ideal test route for battery-electric trains with a terminal charger system would be the Hull Trains service between London Kings Cross and Hull and Beverley.

The route is effectively in three sections.

  • London Kings Cross and Temple Hirst junction – 169.2 miles – Full Electrification
  • Temple Hirst junction and Hull station – 36.1 miles – No Electrification
  • Hull station and Beverley station – 8.3 miles – No Electrification

Two things would be needed to run zero-carbon electric trains on this route.

  • Sufficient battery capacity in Hull Trains’s Class 802 trains to reliably handle the 36.1 miles between Temple Hirst junction and Hull station.
  • A charging system in Hull station.

As Hull station also handles other Class 800 and Class 802 trains, there will probably be a need to put a charging system in more than one platform.

Note.

  1. Hull station has plenty of space.
  2. No other infrastructure work would be needed.
  3. There is a large bus interchange next door, so I suspect the power supply to Hull station is good.

Hull would be a very good first destination for a battery-electric InterCity train.

Others would include Bristol, Cheltenham, Chester, Scarborough, Sunderland and Swansea.

The risk would be very low, if the trains still had some diesel generator capacity.

Phase 5 – Service Testing On Long Routes With Multiple Charger Systems

Once the performance and reliability of the charger systems have been proven in single installations like perhaps Hull and Swansea stations, longer routes can be prepared for electric trains.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

The press release talks about Penzance and London, so would that be a suitable route for discontinuous electrification using multiple chargers?

These are the distances between major points on the route between Penzance and London Paddington.

  • Penzance and Truro – 35.8 miles
  • Truro and Bodmin Parkway – 26.8 miles
  • Bodmin Parkway and Plymouth – 26.9 miles
  • Plymouth and Newton Abbot – 31,9 miles
  • Newton Abbot and Exeter – 20.2 miles
  • Exeter and Taunton – 30.8 miles
  • Taunton and Westbury – 47.2 miles
  • Westbury and Newbury – 42.5 miles
  • Newbury and Paddington – 53 miles

Note.

  1. Only Newbury and Paddington is electrified.
  2. Trains generally stop at Plymouth, Newton Abbott, Exeter and Taunton.
  3. Services between Paddington and Exeter, Okehampton, Paignton, Penzance, Plymouth and Torquay wouldn’t use diesel.
  4. Okehampton would be served by a reverse at Exeter.
  5. As Paignton is just 8.1 miles from Newton Abbot, it probably wouldn’t need a charger.
  6. Bodmin is another possible destination, as Great Western Railway have helped to finance a new platform at Bodmin General station.

It would certainly be good marketing to run zero-carbon electric trains to Devon and Cornwall.

I would class this route as medium risk, but with a high reward for the operator.

In this brief analysis, it does look that Hitachi’s proposed system is of a lower risk.

A Few Questions

I do have a few questions.

Are The Class 803 Trains Fitted With Hyperdrive Innovation Batteries?

East Coast Trains‘s new Class 803 trains are undergoing testing between London Kings Cross and Edinburgh and they can be picked up on Real Time Trains.

Wikipedia says this about the traction system for the trains.

While sharing a bodyshell with the previous UK A-train variants, the Class 803 differs in that it has no diesel engines fitted. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies have failed.

Will these emergency batteries be made by Hyperdrive Innovation?

My experience of similar systems in other industries, points me to the conclusion, that all Class 80x trains can be fitted with similar, if not identical batteries.

This would give the big advantage of allowing battery testing to be performed on Class 803 trains under test, up and down the East Coast Main Line.

Nothing finds faults in the design and manufacture of something used in transport, than to run it up and down in real conditions.

Failure of the catenary can be simulated to check out emergency modes.

Can A Class 801 Train Be Converted Into A Class 803 Train?

If I’d designed the trains, this conversion would be possible.

Currently, the electric Class 801 trains have a single diesel generator. This is said in the Wikipedia entry for the Class 800 train about the Class 801 train.

These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails.

So it looks like the difference between the powertrain of a Class 801 train and a Class 803 train, is that the Class 801 train has a diesel generator and the Class 803 train has batteries. But the diesel generator and batteries, would appear to serve the same purpose.

Surely removing diesel from a Class 801 train would ease the maintenance of the train!

Will The System Work With Third-Rail Electrification?

There are three routes that if they were electrified would probably be electrified with 750 DC third-rail electrification, as they have this electrification at one or both ends.

  • Basingstoke and Exeter
  • Marshlink Line
  • Uckfield branch

Note.

  1. Basingstoke and Exeter would need a couple of charging systems.
  2. The Marshlink line would need a charging system at Rye station.
  3. The Uckfield branch would need a charging system at Uckfield station.

I am fairly certain as an Electrical Engineer, that the third-rails would only need to be switched on, when a train is connected and needs a charge.

I also feel that on some scenic and other routes, 750 VDC third-rail electrification may be more acceptable , than 25 KVAC  overhead electrification. For example, would the heritage lobby accept overhead wires through a World Heritage Site or on top of a Grade I Listed viaduct?

I do feel that the ability to use third-rail 750 VDC third-rail electrification strategically could be a useful tool in the system.

Will The System Work With Lightweight Catenary?

I like the design of this 25 KVAC overhead electrification, that uses lightweight gantries, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

Isuspect that both systems could work together.

 

Would Less Bridges Need To Be Rebuilt For Electrification?

This is always a contentious issue with electrification, as rebuilding bridges causes disruption to both rail and road.

I do wonder though by the use of careful design, that it might be possible to arrange that the sections of electrification and the contentious bridges were kept apart, with the bridges arranged to be in sections, where the trains ran on batteries.

I suspect that over the years as surveyors and engineers get more experienced, better techniques will evolve to satisfy all parties.

Get this right and it could reduce the cost of electrification on some lines, that will be difficult to electrify.

How Secure Are The Containerised Systems?

Consider.

  • I was delayed in East Anglia two years ago, because someone stole the overhead wires at two in the morning.
  • Apparently, overhead wire stealing is getting increasingly common in France and other parts of Europe.

I suspect the containerised systems will need to be more secure than those used for buses, which are not in isolated locations.

Will The Containerised Charging Systems Use Energy Storage?

Consider.

  • I’ve lived in rural locations and the power grids are not as good as in urban areas.
  • Increasingly, batteries of one sort or another are being installed in rural locations to beef up local power supplies.
  • A new generation of small-footprint eco-friendly energy storage systems are being developed.

In some locations, it might be prudent for a containerised charging system to share a battery with the local area.

Will The Containerised Charging Systems Accept Electricity From Local Sources Like Solar Farms?

I ask the question, as I know at least one place on the UK network, where a line without electrification runs through a succession of solar farms.

I also know of an area, where a locally-owned co-operative is planning a solar farm, which they propose would be used to power the local main line.

Will The System Work With Class 385 Trains?

Hitachi’s Class 385 trains are closely related to the Class 80x trains, as they are all members of Hitachi’s A-Train family.

Will the Charging Systems Charge Other Manufacturers Trains?

CAF and Stadler are both proposing to introduce battery-electric trains in the UK.

I also suspect that the new breed of electric parcel trains will include a battery electric variant.

As these trains will be able to use 25 KVAC overhead electrification, I would expect, that they would be able to charge their batteries on the Hitachi ABB  charging systems.

Will The System Work With Freight Trains?

I believe that freight services will split into two.

Heavy freight will probably use powerful hydrogen-electric locomotives.

In Freightliner Secures Government Funding For Dual-Fuel Project, which is based on a Freightliner press release, I detail Freightliner’s decarbonisation strategy, which indicates that in the future they will use hydrogen-powered locomotives.

But not all freight is long and extremely heavy and I believe that a battery-electric freight locomotive will emerge for lighter duties.

There is no reason it could not be designed to be compatible with Hitachi’s charging system.

In Is This The Shape Of Freight To Come?, I talked about the plans for 100 mph parcel services based on redundant electric multiple units. Eversholt Rail Group have said they want a Last-Mile capability for their version of these trains.

Perhaps they need a battery-electric capability, so they can deliver parcels and shop supplies to the remoter parts of these islands?

Where Could Hitachi’s System Be Deployed?

This is the final paragraph from the article.

Hitachi is not committing to any routes yet, but a glance at the railway map shows clear potential for the battery/OLE-technology to be deployed on relatively lightly used rural and regional routes where it will be hard to make a case for electrification. The Cambrian Coast and Central Wales Lines would appear to be worthy candidates, and in Scotland, the West Highland Line and Far North routes are also logical areas for the system to be deployed.

In England, while shorter branch lines could simply be operated by battery trains, longer routes need an alternative. Network Rail’s Traction Decarbonisation Network Strategy interim business case recommends hydrogen trains for branch lines in Norfolk, as well as Par to Newquay and Exeter to Barnstaple. However, it is also entirely feasible to use the system on routes likely to be electrified much later in the programme, such as the Great Western main line West of Exeter, Swansea to Fishguard and parts of the Cumbrian Coast Line.

Everyone is entitled to their own opinion and mine would be driven by high collateral benefits and practicality.

These are my thoughts.

Long Rural Lines

The Cambrian, Central Wales (Heart Of Wales), Far North and West Highland Lines may not be connected to each other, but they form a group of rail routes with a lot of shared characteristics.

  • All are rural routes of between 100 and 200 miles.
  • All are mainly single track.
  • They carry occasional freight trains.
  • They carry quite a few tourists, who are there to sample, view or explore the countryside.
  • All trains are diesel.
  • Scotrail have been experimenting with attaching Class 153 trains to the trains on the West Highland Line to act as lounge cars and cycle storage.

Perhaps we need a long-distance rural train with the following characteristics.

  • Four or possibly five cars
  • Battery-electric power
  • Space for a dozen cycles
  • A lounge car
  • Space for a snack trolley
  • Space to provide a parcels service to remote locations.

I should also say, that I’ve used trains on routes in countries like Germany, Poland and Slovenia, where a similar train requirement exists.

Norfolk Branch Lines

Consider.

  • North of the Cambridge and Ipswich, the passenger services on the branch lines and the important commuter routes between Cambridge and Norwich and Ipswich are run by Stadler Class 755 trains, which are designed to be converted to battery-electric trains.
  • Using Hitachi chargers at Beccles, Bury St. Edmunds, Lowestoft, Thetford and Yarmouth and the existing electrification, battery-electric Class 755 trains could provide a zero-carbon train service for Norfolk and Suffolk.
  • With chargers at Dereham and March, two important new branch lines could be added and the Ipswich and Peterborough service could go hourly and zero carbon.
  • Greater Anglia have plans to use the Class 755 trains to run a London and Lowestoft service.
  • Could they be planning a London and Norwich service via Cambridge?
  • Would battery-electric trains running services over Norfolk bring in more visitors by train?

Hitachi may sell a few chargers to Greater Anglia, but I feel they have enough battery-electric trains.

Par And Newquay

The Par and Newquay Line or the Atlantic Coast Line, has been put forward as a Beeching Reversal project, which I wrote about in Beeching Reversal – Transforming The Newquay Line.

In that related post, I said the line needed the following.

  • An improved track layout.
  • An hourly service.
  • An improved Par station.
  • A rebuilt Newquay station with a second platform, so that more through trains can be run.

I do wonder, if after the line were to be improved, that a new three-car battery-electric train shuttling between Par and Newquay stations could be the icing on the cake.

Exeter And Barnstaple

The Tarka Line between Exeter and Barnstaple is one of several local and main lines radiating from Exeter St. David’s station.

  • The Avocet Line to Exmouth
  • The Great Western Main Line to Taunton, Bristol and London
  • The Great Western Main Line to Newton Abbott, Plymouth and Penzance
  • The Riviera Line to Paignton
  • The West of England Line to Salisbury, Basingstoke and London.

Note.

  1. The Dartmoor Line to Okehampton is under development.
  2. Several new stations are planned on the routes.
  3. I have already stated that Exeter could host a charging station between London and Penzance, but it could also be an electrified hub for battery-electric trains running hither and thither.

Exeter could be a city with a battery-electric metro.

Exeter And Penzance

Earlier, I said that I’d trial multiple chargers between Paddington and Penzance to prove the concept worked.

I said this.

I would class this route as medium risk, but with a high reward for the operator.

But it is also an enabling route, as it would enable the following battery-electric services.

  • London and Bodmin
  • London and Okehampton
  • London and Paignton and Torquay

It would also enable the Exeter battery-electric metro.

For these reasons, this route should be electrified using Hitachi’s discontinuous electrification.

Swansea And Fishguard

I mentioned Swansea earlier, as a station, that could be fitted with a charging system, as this would allow battery-electric trains between Paddington and Swansea via Cardiff.

Just as with Exeter, there must be scope at Swansea to add a small number of charging systems to develop a battery-electric metro based on Swansea.

Cumbrian Coast Line

This is a line that needs improvement, mainly for the tourists and employment it could and probably will bring.

These are a few distances.

  • West Coast Main Line (Carnforth) and Barrow-in-Furness – 28.1 miles
  • Barrow-in-Furness and Sellafield – 25 miles
  • Sellafield and Workington – 18 miles
  • Workington and West Coast Main Line (Carlisle) – 33 miles

Note.

  1. The West Coast Main Line is fully-electrified.
  2. I suspect that Barrow-in-Furness, Sellafield and Workington have good enough electricity supplies to support charging systems  for the Cumbrian Coast Line.
  3. The more scenic parts of the line would be left without wires.

It certainly is a line, where a good case for running battery-electric trains can be made.

Crewe And Holyhead

In High-Speed Low-Carbon Transport Between Great Britain And Ireland, I looked at zero-carbon travel between the Great Britain and Ireland.

One of the fastest routes would be a Class 805 train between Euston and Holyhead and then a fast catamaran to either Dublin or a suitable rail-connected port in the North.

  • The Class 805 trains could be made battery-electric.
  • The trains could run between Euston and Crewe at speeds of up to 140 mph under digital signalling.
  • Charging systems would probably be needed at Chester, Llandudno Junction and Holyhead.
  • The North Wales Coast Line looks to my untrained eyes, that it could support at least some 100 mph running.

I believe that a time of under three hours could be regularly achieved between London Euston and Holyhead.

Battery-electric trains on this route, would deliver the following benefits.

  • A fast low-carbon route from Birmingham, London and Manchester to the island of Ireland. if coupled with the latest fast catamarans at Holyhead.
  • Substantial reductions in journey times to and from Anglesey and the North-West corner of Wales.
  • Chester could become a hub for battery-electric trains to and from Birmingham, Crewe, Liverpool, Manchester and Shrewsbury.
  • Battery-electric trains could be used on the Conwy Valley Line.
  • It might even be possible to connect the various railways, heritage railways and tourist attractions in the area with zero-carbon shuttle buses.
  • Opening up of the disused railway across Anglesey.

The economics of this corner of Wales could be transformed.

My Priority Routes

To finish this section, I will list my preferred routes for this method of discontinuous electrification.

  • Exeter and Penzance
  • Swansea and Fishguard
  • Crewe and Holyhead

Note.

  1. Some of the trains needed for these routes have been delivered or are on order.
  2. Local battery-electric services could be developed at Chester, Exeter and Swansea by building on the initial systems.
  3. The collateral benefits could be high for Anglesey, West Wales and Devon and Cornwall.

I suspect too, that very little construction work not concerned with the installation of the charging systems will be needed.

Conclusion

Hitachi have come up with a feasible way to electrify Great Britain’s railways.

I would love to see detailed costings for the following.

  • Adding a battery pack to a Class 800 train.
  • Installing five miles of electrification supported by a containerised charging system.

They could be on the right side for the Treasury.

But whatever the costs, it does appear that the Japanese have gone native, with their version of the Great British Compromise.

 

 

 

 

 

 

 

 

 

 

 

July 9, 2021 Posted by | Design, Energy, Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 12 Comments

A Class 319 Train, But Not As We Know It!

This article on Rail Advent is entitled COP26 To Showcase Britain’s Sustainable Trains Of The Future Thanks To Network Rail And Porterbrook Partnership.

The article talks about and shows pictures of Porterbrook’s HydroFLEX or Class 799 train, which has been developed by the University of Birmingham, fitted out for COP26.

I have downloaded this picture of the interior from Network Rail’s media centre.

Who’d have thought a Class 319 train could look so grand?

But then some Class 319 trains used by commuters don’t look their age of over thirty years.

These pictures were taken on the Abbey Line in 2018.

There’s also this BBC Profile and video of the technology behind the HydroFLEX train.

Conclusion

It looks like Network Rail and Porterbrook are doing their best to showcase the best that Britain and Scotland can offer.

I am reminded of a tale, that I heard from a former GEC manager.

He was involved in selling one of GEC’s Air Traffic Control radars to a Middle Eastern country.

The only working installation of the radar was at Prestwick in Scotland, so he arranged that the dignitaries and the sales team would be flown to Prestwick in GEC’s HS 125 business jet.

As they disembarked at Prestwick and walked to the terminal, the pilot called the GEC Manager over.

The pilot told him “The Scottish Highlands at this time of the year, are one of the most beautiful places in the world! Would you and your guests like a low-level tour on the way back? I can arrange it, if you say so!”

Despite knowing GEC’s draconian attitude to cost control he said yes.

The sale was clinched!

Are Network Rail, Porterbrook, the UK and Scottish Governments, setting up the same Scottish treatment to all the delegates to COP26?

 

June 6, 2021 Posted by | Hydrogen, Transport, World | , , , , , , , , | 1 Comment

Hydrogen On The Line

This article on The Engineer is entitled On Track: Advances In UK Hydrogen Rail.

This sub-heading introduces the article.

An expert panel from Vivarail, Birmingham University and Alstom discuss UK developments in hydrogen powered rail transport.

The article is a very readable article, that explains, the whys, wherefores and hows of hydrogen powered rail transport in the UK.

October 15, 2020 Posted by | Hydrogen, Transport | , , , , , , | 1 Comment

Hydrogen-Powered Train Makes UK Maiden Journey

The title of this post, is the same as that of this article on the BBC.

This is said in the article.

A hydrogen-powered train has travelled on Britain’s rail network for the first time.

The prototype, called the Hydroflex, made a 25-mile round trip through Warwickshire and Worcestershire, reaching speeds of up to 50 mph.

Its next phase is to move the hydrogen tanks, fuel cell and battery out of a carriage and stash them underneath the train.

The aim is for the train to start carrying paying passengers by the end of 2021.

Note that the article contains a broadcast-quality video.

There are now two hydrogen-powered trains in development in the UK.

Both the trains being converted are British Rail trains based on the Mark 3 coach design.

  • They were built originally in the 1980s and 1990s.
  • They were built for commuting over medium distances.
  • They are 100 mph trains.
  • They will keep their pantographs, so running using 25 KVAC overhead electrification.

Both trains could be fitted with quality interiors.

But from what has been disclosed the designs will be quite different.

  • The Class 799 train will be four cars, as opposed to three cars of the Class 600 train.
  • The Class 600 trains will have large hydrogen tanks inside the train, whereas the Class 799 train will have smaller ones underneath the train.
  • I would expect the Class 600 train to have a longer range between refuelling.
  • The Class 799 train will also be a tri-mode train, with the ability to use 750 VDC third-rail electrification.

As there are nearly over a hundred Class 321 trains and nearly ninety Class 319 trains, if the hydrogen conversion is successful, we could be seeing a lot of hydrogen trains on the UK rail network.

October 1, 2020 Posted by | Hydrogen, Transport | , , , , , , | Leave a comment

‘World First’: SGN Launches Bid For 300 Green Hydrogen Homes Project In Fife

This title of this post, is the same as that of this article on Business Green.

This is the introductory paragraph.

Around 300 homes in Scotland could soon have their heating and cooking powered by green hydrogen produced from renewable electricity under proposals for “the world’s first green hydrogen-to-homes network” unveiled today by SGN.

A few points from the article.

  • Construction could start in the winter of 2020/21.
  • The project will take two or three years.
  • The modified houses appear to be in Levenmouth.
  • The project has been dubbed H100 Fife.
  • The hydrogen will be produced by electrolysis using electricity generated by offshore wind.

The article also gives a round-up of the state of hydrogen in the UK.

Could This Have Other Implications For Levenmouth?

In Scottish Government Approve £75m Levenmouth Rail Link, I discussed the rebuilding of the Levenmouth Rail Link.

I suggested that the route could be run by Hitachi Class 385 trains with batteries, which Hitachi have stated are being developed. I covered the trains in more detail in Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires.

If there were to be a source of hydrogen at Levenmouth, could hydrogen-powered trains be used on the route?

The Levenmouth Rail link could be a prototype for other short rail links in Scotland.

 

In

 

 

May 21, 2020 Posted by | Transport, World | , , , , , , , , | Leave a comment

Fuelling The Change On Teesside Rails

The title of this post, is the same as that of an article in Edition 895 of RAIL Magazine.

The article is based on an interview with Ben Houchen, who is the Tees Valley Mayor.

Various topics are covered.

Hydrogen-Powered Local Trains

According to the article, the Tees Valley produces fifty percent of UK hydrogen and the area is already secured investment for fuelling road vehicles with hydrogen.

So the Tees Valley Combined Authority (TVCA) is planning to convert some routes to hydrogen.

The Trains

Ten hydrogen-powered trains will be purchased or more likely leased, as the trains will probably be converted from redundant electrical multiple units, owned by leasing companies like Eversholt Rail and Porterbrook.

The RAIL article says that the first train could be under test in 2021 and service could be started in 2022.

That would certainly fit the development timetables for the trains.

Lackenby Depot

A depot Will Be Created At Lackenby.

  • The site is between Middlesbrough and Redcar.
  • It already has rail and hydrogen connections.

This Google Map shows the area.

Note the disused Redcar British Steel station, which is still shown on the map.

I remember the area from the around 1970, when I used to catch the train at the now-closed Grangetown station, after visits to ICI’s Wilton site. It was all fire, smoke, smells and pollution.

Darlington Station

Darlington station will also be remodelled to allow more services to operate without conflicting with the East Coast Main Line.

Wikipedia says this under Future for Darlington station.

As part of the Tees Valley Metro, two new platforms were to be built on the eastern edge of the main station. There were to be a total of four trains per hour, to Middlesbrough and Saltburn via the Tees Valley Line, and trains would not have to cross the East Coast Main Line when the new platforms would have been built. The Tees Valley Metro project was, however, cancelled.

It does sound from reading the RAIL article, that this plan is being reinstated.

Would services between Bishop Auckland and Saltburn, use these new platforms?

Saltburn And Bishops Auckland Via Middlesbrough and Darlington

Currently, the service is two trains per hour (tph) between Saltburn and Darlington, with one tph extending to Bishop Auckland.

  • I estimate that the current service needs five trains.
  • If a two tph service were to be run on the whole route, an extra train would be needed.
  • I suspect, the limitations at Darlington station, stop more trains being run all the way to Bishops Auckland.

I could also see extra stations being added to this route.

The Mayor is talking of running a service as frequent as six or eight tph.

These numbers of trains, will be needed for services of different frequencies between Saltburn and Darlington.

  • 2 tph – 6 trains
  • 4 tph – 12 trains
  • 6 tph – 18 trains
  • 8 tph – 24 trains

As the London Overground, Merseyrail and Birmingham’s Cross-City Line, find four tph a more than adequate service, I suspect that should be provided.

After updating, Darlington station, should be able to handle the following.

  • Up to six tph terminating in one of the new Eastern platforms, without having to cross the East Coast Main Line.
  • Two tph between Saltburn and Bishops Auckland could use the other platform in both directions.

I would suspect that the design would see the two platforms sharing an island platform.

Alternatively, trains could continue as now.

  • Terminating trains could continue to use Platform 2!
  • Two tph between Saltburn and Bishops Auckland stopping in Platforms 1 (Eastbound) and 4 (Westbound)

This would avoid any infrastructure changes at Darlington station, but terminating trains at Darlington would still have to cross the Southbound East Coast Main Line.

If the frequencies were as follows.

  • 4 tph – Saltburn and Darlington
  • 2 tph – Saltburn and Bishop Auckland

This would require fourteen trains and give a six tph service between Saltburn and Darlington.

Ten trains would allow a two tph service on both routes.

There would be other services using parts of the same route, which would increase the frequency.

Hartlepool And The Esk Valley Line Via Middlesbrough

This is the other route through the area and was part of the cancelled Tees Valley Metro.

  • Service is basically one tph, with six trains per day (tpd) extending to Whitby.
  • A second platform is needed at Hartlepool station.
  • There is a proposal to add a Park-and-Ride station between Nunthorpe and Great Ayton stations.
  • One proposal from Modern Railways commentator; Alan Williams, was to simplify the track at Battersby station to avoid the reverse.
  • Currently, trains between Whitby and Middlesbrough are timetabled for around 80-100 minutes.
  • Hartlepool and Middlesbrough takes around twenty minutes.

Substantial track improvements are probably needed to increase the number of trains and reduce the journey times between Middlesbrough and Whitby.

But I believe that an hourly service between Hartlepool and Whitby, that would take under two hours or four hours for a round trip, could be possible.

This would mean that the hourly Hartlepool and Whitby service would need four trains.

Providing the track between Nunthorpe and |Whitby could be improved to handle the traffic, this would appear to be a very feasible proposition.

Nunthorpe And Hexham Via Newcastle

There is also an hourly service between Nunthorpe and Hexham, via Middlesbrough, Stockton, Hartlepool, Sunderland and Newcastle, there would be two tph.

  • It takes around two hours and twenty minutes.
  • I estimate that five trains would be needed for the service.
  • I travelled once between Newcastle and James Cook Hospital in the Peak and the service was busy.
  • A new station is being built at Horden, which is eight minutes North of Hartlepool.
  • The service could easily access the proposed fuelling station at Lackenby.
  • It would reduce carbon emissions in Newcastle and Sunderland stations..

Surely, if hydrogen power is good enough for the other routes, then it is good enough for this route.

Hartlepool Station

Hartlepool Station could become a problem, as although it is on a double track railway, it only has one through platform, as these pictures from 2011 show.

Consider.

  • There is no footbridge, although Grand Central could pay for one
  • There is a rarely-used bay platform to turn trains from Middlesbrough, Nunthorpe and Whitby.

This Google Map shows the cramped site.

The final solution could mean a new station.

Nunthorpe Park-And-Ride

This Google Map shows Nunthorpe with thje bEsk Valley Line running through it.

Note.

  1. Gypsy Lane and Nunthorpe stations.
  2. The dual-carriageway A171 Guisborough by-pass running East-West, that connects in the East to Whitby and Scarborough.
  3. The A1043 Nunthorpe by-pass that connects to roads to the South.

Would where the A1043 crosses the Esk Valley Line be the place for the Park-and-Ride station?

The new station could have a passing loop, that could also be used to turn back trains.

Battersby Station

Alan Williams, who is Chairman of the Esk Valley Railway Development Company, is quoted in the RAIL article as saying.

If you’re going to spend that sort of money we’d much rather you spent it on building a curve at Battersby to cut out the reversal there.

Williams gives further reasons.

  • Battersby is the least used station on the line.
  • It’s in the middle of nowhere.
  • The curve would save five minutes on the overall journey.

This Google Map shows Battersby station and the current track layout.

Note.

  1. The line to Middlesbrough goes through the North-West corner of the map.
  2. The line to Whitby goes through the North-East corner of the map.

There would appear to be plenty of space for a curve that would cut out the station.

LNER To Teesside

LNER, the Government and the TVCA are aiming to meet a target date of the Second Quarter of 2021 for a direct London and Middlesbrough service.

Middlesbrough Station

Middlesbrough Station will need to be updated and according to the RAIL article, the following work will be done.

  • A new Northern entrance with a glass frontage.
  • A third platform.
  • Lengthening of existing platforms to take LNER’s Class 800 trains.

This Google Map shows the current layout of the station.

From this map it doesn’t look to be the most difficult of stations, on which to fit in the extra platform and the extensions.

It should also be noted that the station is Grade II Listed, was in good condition on my last visit and has a step-free subway between the two sides of the station.

Journey Times

I estimate that a Kings Cross and Middlesbrough time via Northallerton would take aroud two hours and fifty minutes.

This compares with other journey times in the area to London.

  • LNER – Kings Cross and Darlington – two hours and twenty-two minutes
  • Grand Central – Kings Cross and Eaglescliffe – two hours and thirty-seven minutes.

I also estimate that timings to Redcar and Saltburn would be another 14 and 28 minutes respectively.

Frequencies

Currently, LNER run between three and four tph between Kings Cross and Darlington, with the competing Grand Central service between Kings Cross and Eaglescliffe having a frequency of five trains per day (tpd).

LNER have also started serving secondary destinations in the last month or so.

  • Harrogate, which has a population of 75.000, is served with a frequency of six tpd.
  • Lincoln, which has a population of 130,000 is now served with a frequency of six tpd.

Note that the RAIL article, states that the Tees Valley has a population of 750,000.

I feel that Middlesbrough will be served by a frequency of at least five tpd and probably six to match LNER’s new Harrogate and Lincoln services.

Will LNER’s Kings Cross and York Service Be Extended To Middlesbrough?

Cirrently , trains that leave Kings Cross at six minutes past the hour end up in Lincoln or York

  • 0806 – Lincoln
  • 0906 – York
  • 1006 – Lincoln
  • 1106 – York
  • 1206 -Lincoln
  • 1306 – York
  • 1406 – Lincoln
  • 1506 – York
  • 1606 – Lincoln
  • 1906 -Lincoln

It looks to me that a pattern is being developed.

  • Could it be that the York services will be extended to Middlesbrough in 2021?
  • Could six Middlesbrough trains leave Kings Cross at 0706, 0906, 1106, 1306, 1506 and 1706 or 1806?
  • York would still have the same number of trains as it does now!

LNER certainly seem to be putting together a comprehensive timetable.

Could Middlesbrough Trains Split At Doncaster Or York?

I was in Kings Cross station, this afternoon and saw the 1506 service to York, go on its way.

The train was formed of two five-car trains, running as a ten-car train.

If LNER employ spitting and joining,, as some of their staff believe, there are surely, places, where this can be done to serve more destinations, without requiring more paths on the East Coast Main Line.

  • Splitting at Doncaster could serve Hull, Middlesborough and York.
  • Splitting at York could serve Scarborough, Middlesborough and Sunderland.

Scarborough might be a viable destination, as the town has a population of over 100,000.

Onward To Redcar And Saltburn

One of the changes in the December 2019 timetable change, was the extension of TransPennine Express’s Manchester Airport and Middlesbrough service to Redcar Central station.

The RAIL article quotes the Mayor as being pleased with this, although he would have preferred the service to have gone as far as Saltburn, which is a regional growth point for housing and employment.

But the extra six miles would have meant the purchase of another train.

Redcar Central Station

This Google Map shows Redcar Central station and its position in the town.

It is close to the sea front and the High Street and there appears to be space for the stabling of long-distance trains to Manchester Airport and perhaps, London.

TransPennine seem to be using their rakes of Mark 5A coaches on Redcar services, rather than their Class 802 trains, which are similar to LNER’s Azumas.

Surely, there will be operational advantages, if both train operating companies ran similar trains to Teesside.

Saltburn Station

Saltburn station is the end of the line.

This Google Map shows its position in the town.

Unlike Redcar Central station, there appears to be very little space along the railway and turning back trains might be difficult.

There may be good economic reasons to use Saltburn as a terminal, but operationally, it could be difficult.

Will Redcar And Saltburn See Services To and From London?

Given that both towns will likely see much improved services to Middlesbrough, with at least a service of four tph, I think it will be unlikely.

But we might see the following.

  • LNER using Redcar as a terminus, as TransPennine Express do, as it might ease operations.
  • An early morning train to London and an evening train back from the capital, which is stabled overnight at Redcar.
  • TransPennine Express using Class 802 trains on their Redcar service for operational efficiency, as these trains are similar to LNER’s Azumas.

It would all depend on the passenger numbers.

A High-Frequency Service Between York And Teesside

After all the changes the service between York and Teesside will be as follows.

  • LNER will be offering a train virtually every two hours between York and Middlesbrough.
  • Grand Central will be offering a train virtually every two hours between York and Eaglescliffe, which is six miles from Middlesbrough.
  • TransPennine Express will have an hourly service between York and Redcar via Middlesbrough.
  • There will be between three and four tph between York and Darlington.

All services would connect to the hydrogen-powdered local services to take you all over Teesside.

Could this open up tourism without cars in the area?

Expansion Of The Hydrogen-Powered Train Network

Could some form of Hydrogen Hub be developed at Lackenby.

Alstom are talking of the hydrogen-powered Breeze trains having a range of over six hundred miles and possibly an operating speed of 100 mph, when using overhead electrification, where it is available.

In Breeze Hydrogen Multiple-Unit Order Expected Soon, I put together information from various articles and said this.

I am fairly certain, that Alstom can create a five-car Class 321 Breeze with the following characteristics.

  • A capacity of about three hundred seats.
  • A smaller three-car train would have 140 seats.
  • A near-100 mph top speed on hydrogen-power.
  • A 100 mph top speed on electrification.
  • A 1000 km range on hydrogen.
  • Regenerative braking to an on-board battery.
  • The ability to use 25 KVAC overhead and/or 750 VDC third rail electrification.

The trains could have the ability to run as pairs to increase capacity.

The distance without electrification to a selection of main stations in the North East from Lackenby is as follows.

  • Newcastle via Middlesbrough and Darlington – 21 miles
  • Newcastle via Middlesbrough and Durham Coast Line – 53 miles.
  • York via Northallerton – 27 miles
  • Doncaster via Northallerton and York – 27 miles
  • Leeds via Northallerton and York – 52 miles
  • Sheffield via Northallerton, York and Doncaster – 45 miles

I am assuming that the trains can use the electrification on the East Coast Main Line.

From these figures it would appear that hydrogen-powered trains stabled and refuelled at Lackenby could travel to Doncaster, Newcastle, Leeds, Sheffield or York before putting in a days work and still have enough hydrogen in the tank to return to Lackenby.

Several things would help.

  • As hydrogen-powered trains have a battery, with a battery range of thirty miles all these main stations could be reached on battery power, charging on the East Coast Main Line and at Lackenby.
  • Electrification between Darlington and Lackenby.
  • Electrification between Northallerton and Eaglescliffe.

I am fairly certain that a large proportion of the intensive network of diesel services in the North East of |England from Doncaster and Sheffield in the South to Newcastle in the North, can be replaced with hydrogen-powered trains.

  • Trains could go as far West as Blackpool North, Carlisle, Manchester Victoria, Preston and Southport.
  • Refueling could be all at Lackenby, although other refuelling points could increase the coverage and efficieny of the trains.
  • Green hydrogen could be produced by electrolysis from the massive offshore wind farms off the Lincolnshire Coast.
  • Hydrogen-powered trains would be ideal for re-opened routes like the proposed services from Newcastle to Blyth and Ashington.

The hydrogen-powered trains on Teesside could be the start of a large zero-carbon railway network.

The Alstom Breeze And The HydroFlex Would Only Be The Start

As I said earlier, the initial trains would be conversions of redundant British Rail-era electrical multiple units.

Thirty-year-old British Rail designs like the Class 319 and Class 321 trains based on the legendary Mark 3 carriages with its structural integrity and superb ride, may have been state-of-the-art in their day, but engineers can do better now.

  • Traction and regenerative braking systems are much more energy efficient.
  • Train aerodynamics and rolling resistance have improved, which means less energy is needed to maintain a speed.
  • Interior design and walk-through trains have increased capacity.
  • Crashworthiness has been improved.

Current Bombardier Aventras, Stadler Flirts or Siemens Desiros and CAF Civities are far removed from 1980s designs.

I can see a design for a hydrogen-powered train based on a modern design, tailored to the needs of operators being developed.

A place to start could be an electric CAF Class 331 train. or any one of a number of Aventras.

  • From the visualisation that Alstom have released of their Breeze conversion of a Class 321 train, I feel that to store enough hydrogen, a large tank will be needed and perhaps the easiest thing to do at the present time would be to add an extra car containing the hydrogen tank, the fuel cells and the batteries.
  • Alstom have stated they’re putting the fuel cells on the roof and the batteries underneath the train.

Although, it is not a hydrogen train, Stadler have developed the Class 755 train, with a power car in the middle of the train.

Stadler’s approach of a power car, must be working as they have received an order for a hydrogen-powered version of their popular Flirts, which I wrote about in MSU Research Leads To North America’s First Commercial Hydrogen-Powered Train.

I think we can be certain, that because of the UK loading gauge, that a hydrogen-powered train will be longer by about a car, than the equivalent electric train.

I can see a certain amount of platform lengthening being required. But this is probably easier and less costly than electrification to achieve zero-carbon on a route.

Batteries can be distributed under all cars of the train, anywhere there is space., But I would suspect that fuel cells must be in the same car as the hydrogen tank, as I doubt having hydrogen pipes between cars would be a good idea.

Alstom have resorted to putting hydrogen tanks and fuel cells in both driving cars and they must have sound reasons for this.

Perhaps, it is the only way, they can get the required power and range.

As I understand it, the Alstom Breeze draws power from three sources.

  • The electrification if the route is electrified.
  • The electricity generated by regenerative braking.
  • The hydrogen system produces electricity on demand, at the required level.

Energy is stored in the batteries, which power the train’s traction motors and internal systems.

The electrical components needed for the train are getting smaller and lighter and I feel that it should be possible to put all the power generation and collection into a power car, that is somewhere near the middle of the train. Stadler’s power car is short at under seven metres, but there is probably no reason, why it couldn’t be the twenty metres, that are typical of UK trains.

Suppose you took a four-car version of CAF’s Class 331 train, which has two driver cars either side of a pantograph car and a trailer car.

This has 284 seats and by comparison with the three-car version the trailer car has eighty. As the pantograph car is also a trailer, I’ll assume that has eighty seats too! Until I know better!

Replacing the pantograph car with a hydrogen car, which would be unlikely to have seats, would cut the seats to 204 seats, but a second trailer would bring it back up to 284 seats.

I actually, think the concept of a hydrogen car in the middle of a four-car electric train could work.

  • The five-car hydrogen train would have the same capacity as the four-car electric version.
  • The train would need an updated software system and some rewiring. Bombardier achieved this quickly and easily with the train for the Class 379 BEMU trial.
  • There are several types of four-car electrical multiple units, that could possibly be converted to five-car hydrogen-powered multiple units.
  • Some five-car electrical multiple units might also be possible to be converted.

Obviously, if an existing train can be adapted for hydrogen, this will be a more cost effective approach.

Conclusion

Overall, the plans for rail improvements on Teesside seem to be good ones.

I’m looking forward to riding LNER to Teesside and then using the network of hydrogen-powered trains to explore the area in 2022.

My only worry, is that, if the network is successful, the many tourists visiting York will surely increase the numbers of day visitors to Whitby.

This is a paragraph from the RAIL article.

Alan Williams says that the EVRDC’s long-term objective is to see the Esk Valley served at intervals of roughly every two hours, equating to eight return trains per day, but with Northern and NYMR services sharing the single line between Grosmont and Whitby, introducing further Middlesbrough trains during the middle of the day, brings the conversation back to infrastructure.

He goes on to detail what is needed.

January 8, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , , , , , , , , , , | 9 Comments

Thurso Company Powers Up UK’s First Green Train

The title of this post is the same as that of this article on the John O’Groat Journal.

Lithium-ion batteries for a hydrogen-powered Class 799 train are not the sort of product, you’d expect to be sourced from the Far North of Scotland.

June 29, 2019 Posted by | Transport | , , , | Leave a comment

A Brief Glimpse Of The Class 799 Train On BBC Breakfast

The Class 799 train is being launched today and BBC Breakfast were there with cameras.

These are my thoughts.

A Test Train

Helen Simpson from Porterbrook, said it was very much a test train.

Seats appear to be in some of the cars.

It looks like Birmingham University have sensibly put the hydrogen drive system in one or both of the two central cars, which in the original Class 319 train were given the designations PMSO and MSOL

The Hydrogen Tanks And Fuel Cell

The hydrogen tanks didn’t appear to be unduly large, which suggests, the the train is not going for a very long rang. But it is only a test train.

The fuel cell was clearly marked from Ballard and was just a large anonymous box. I would think, that it was probably upwards of 100 kW.

It should be noted that the Class 319 train was originally a 1,000 kW train, with a top speed of 100 mph and good acceleration.

I’ll be interested to see what size these components are, when they are published.

The Battery System

The battery did appear to be large, but then these are probably not batteries designed to fit the train, but what is available.

As with the hydrogen tanks and fuel cell, sizes would appear to have been chosen large enough to make sure that the train is not significantly less powerful, than current Class 319 trains.

June 23, 2019 Posted by | Transport | , , , | 3 Comments

Is There Nothing A Class 319 Train Can’t Do?

If a train every goes into orbit round the world, it will be highly-likely that it will be a Class 319 train!

Electric Trains In North-West England

The fleet of eighty-six trains entered service in 1987 on Thameslink  and now twenty-seven are plying their trade on the electrified routes around the North-West of England.

  • You don’t hear many complaints about them being called London’s cast-offs.
  • Passengers fill them up in Blackpool, Liverpool, Manchester and Preston.
  • They still do 100 mph where possible.
  • They seem to be reliable.
  • They are not the most attractive of trains.

But handsome is as handsome does!

Drivers have told me, that although the suspension may be a bit soft for the bumpy route across Chat Moss, the trains do have superb brakes.

Bi-Mode Class 769 Trains

Nearly thirty of the trains are being converted into bi-mode Class 769 trains for working partially-electrifired routes and although these are running late, they should be in service this year.

Rail Operations Group

Two Class 769 trains have been ordered to be fast logistics trains by Rail Operations Group.

Wikipedia says the trains will be used to transport mail.

But if you read the history of the Rail Operations Group, they make the assets sweat and I’ve read the trains will still have seats, so they might do some other rail operations.

The Hydrogen-Powered Class 799 Train 

And now comes the Class 799 train!

This is a demonstrator to prove the concept of conversion to hydrogen power.

The fact that the train now has it’s own number must be of some significance.

Alstom are converting Class 321 trains into Class 321 Breeze trains.

  • The conversion will reduce passenger capacity, due to the large hydrogen tank
  • It will have a 1,000 km range.
  • It will have regenerative breaking.
  • It will have a new AC traction package
  • It will probably have the interior of a Class 321 Renatus train.

The conversion will obviously build on Alstom’s experience with the Alstom Coradia iLint train and Eversholt’s experience with the Renatus.

When it comes to the Class 799 train, the following will apply.

  • Porterbrook have all the experience of creating the bi-mode and dual-voltage Class 769 train.
  • Birmingham University’s Birmingham Centre For Railway Research And Education (BCRRE) are providing the expertise to design and convert the Class 319 train to hydrogen power.
  • I also wouldn’t be surprised to find out, that the BCRRE has applied some very extensive mathematical modelling to find out the performance of a hydrogen-powered Class 319 train or HydroFLEX train.
  • The conversion could be based closely on Class 769 experience and sub-systems,

Could the main purpose be to demonstrate the technology and ascertain the views of train operators and passengers on hydrogen power?

The most important question, is whether the Class 799 train, will have the same passenger capacity as the original Class 319 train?

If it does, then BCRRE must have found a way to store the hydrogen in the roof or under the floor.

It should be noted, that it was only in September 2018, that the contract to develop the Class 799 train was signed and yet less than a year later BCRRE and Porterbrook will be demonstrating the train at a trade show.

This short development time, must mean that there is not enough time to modify the structure of the train to fit a large hydrphen tank inside, as Alstom are proposing.

A smaller hydrogen tank could be placed in one of three places.

  • Underneath the train.
  • On the roof.
  • Inside the train, if it is small enough to fit through the train’s doors.

Note.

  1. I doubt that anybody would put the tank inside the train for perceived safety reasons from passengers.
  2. On the roof, would require substantial structural modifications. Is there enough time?

So how do you reduce the size of the hydrogen tank and still store enough hydrogen in it to give the train a useful range?

In Better Storage Might Give Hydrogen The Edge As Renewable Car Fuel, I indicated technology from Lancaster University, that could store four times as much hydrogen in a given size of tank.

This reduced tank size would make the following possible.

  • The hydrogen tank, the fuel cell and the batteries could be located underneath the four-cars of the Class 319 train.
  • The seating capacity of the Class 799 train could be the same as that of a Class 319 train.

Clever electronics would link everything together.

If BCRRE succeed in their development and produce a working hydrogen-powered Class 799 train, how would the technology be used?

Personally, I don’t think we’ll see too many hydrogen-powered Class 799 trains, running passengers on the UK network.

  • The trains are based on a thirty-year-old train.
  • The interiors are rather utilitarian and would need a lot of improvement, to satisfy what passengers expect.
  • Their market can probably be filled in the short-term by more Class 769 trains.

But I do believe that the technology could be applied to more modern trains.

A Hydrogen-Powered Electrostar

Porterbrook own at least twenty four-car Electrostar trains, which have been built in recent years.

Six Class 387 trains, currently used by c2c, may come off lease in the next few years.

Could these trains be converted into a train with the following specification?

  • Modern train interior, with lots of tables and everything passengers want.
  • No reduction in passenger capacity.
  • 110 mph operating speed using electrification.
  • Useful speed and range on hydrogen power.
  • ERTMS capability, which Porterbrook are fitting to the Class 387 trains to be used by Heathrow Express.

It should be born in mind, that a closely-related Class 379 train proved the concept of a UK battery train.

  • The train was converted by Bombardier.
  • It ran successfully for three months between Manningtree and Harwich.
  • The interior of the train was untouched.

But what was impressive was that the train was converted to battery operation and back to normal operation in a very short time.

This leads me to think, that adding new power sources to an Electrostar, is not a complicated rebuild of the train’s electrical system.

If the smaller hydrogen tank, fuel cell and batteries can be fitted under a Class 319 train, I suspect that fitting them under an Electrostar will be no more difficult.

I believe that once the technology is proven with the Class 799 train, then there is no reason, why later Electrostars couldn’t be converted to hydrogen power.

  • Class 387 trains from c2c, Great Northern and Great Western Railway.
  • Class 379 trains, that will be released from Greater Anglia by new Class 745 trains.
  • Class 377 trains from Southeastern could be released by the new franchise holder.

In addition, some Class 378 trains on the London Overground could be converted for service on the proposed West London Orbital Railway.

A Hydrogen-Powered Aventra

If the Electrostar can be converted, I don’t see why an Aventra couldn’t be fitted with a similar system.

Conclusion

A smaller hydrogen tank, holding hydrogen at a high-density would enable trains to be converted without major structural modifications or reducing the passenger capacity.

The development of a more efficient method of hydrogen storage, would open up the possibilities for the conversion of trains to electric-hydrogen hybrid trains.

 

 

 

 

 

 

 

 

June 13, 2019 Posted by | Transport | , , , , , , , , , , , , , , | 1 Comment