The Anonymous Widower

Hydrogen Milestone: UK’s First Hydrogen-to-Power Trial At Brigg Energy Park

The title of this post, is the same as that of this press release from Centrica.

This is the sub-heading.

Centrica and HiiROC, supported by the Net Zero Technology Centre (NZTC), have successfully demonstrated the injection of hydrogen into a gas-fired peak power plant at Centrica’s Brigg Energy Park, North Lincolnshire. The trial that took place last Thursday (11 September) marks a UK first in using hydrogen to decarbonise peak power generation supplying power directly to the electricity grid.

These three opening paragraphs add detail.

HiiROC’s modular hydrogen production technology, using Thermal Plasma Electrolysis (TPE), produced hydrogen on site which was then blended at a 3% ratio for the purposes of a one-hour trial.

The trial marks a further step forward in Centrica’s ongoing efforts to advance innovative solutions for the decarbonisation of its portfolio of gas plants, demonstrating that existing gas infrastructure can operate on a hydrogen blend to provide reliable, low carbon electricity to UK homes and businesses. More broadly, the trial shows a viable route for delivering on decarbonisation readiness obligations for peaker generation as part of the UK’s journey to net zero.

It is also a key milestone in HiiROC’s journey, demonstrating the effectiveness and affordability of HiiROC’s TPE process, which produces hydrogen without CO2 emissions, making it compliant with the UK’s Low Carbon Hydrogen Standard (LCHS). By leveraging the existing gas network and co-locating hydrogen production where it is needed, operators can decarbonise without costly new infrastructure.

Note.

  1. This test was only at a low level of hydrogen.
  2. Brigg power station is a 240 MW power station, which is fuelled by natural gas.

A long journey starts with a single step.

September 16, 2025 Posted by | Energy, Hydrogen | , , , , , , | 4 Comments

Centrica And X-energy Agree To Deploy UK’s First Advanced Modular Reactors

The title of this post, is the same as that of this press release from Centrica.

This is the sub-heading.

Centrica and X-Energy, LLC, a wholly-owned subsidiary of X-Energy Reactor Company, LLC, today announced their entry into a Joint Development Agreement (JDA) to deploy X-energy’s Xe-100 Advanced Modular Reactors (“AMR”) in the United Kingdom.

These three paragraphs add more details.

The companies have identified EDF and Centrica’s Hartlepool site as the preferred first site for a planned U.K. fleet of up to 6 gigawatts.

The agreement represents the first stage in a new trans-Atlantic alliance which could ultimately mobilise at least £40 billion in economic value to bring clean, safe and affordable power to thousands of homes and industries across the country and substantive work for the domestic and global supply chain.

A 12-unit Xe-100 deployment at Hartlepool could add up to 960 megawatts (“MW”) of new capacity, enough clean power for 1.5 million homes and over £12 billion in lifetime economic value. It would be developed at a site adjacent to Hartlepool’s existing nuclear power station which is currently scheduled to cease generating electricity in 2028. Following its decommissioning, new reactors would accelerate opportunities for the site and its skilled workforce. The site is already designated for new nuclear under the Government’s National Policy Statement and a new plant would also play a critical role in generating high-temperature heat that could support Teesside’s heavy industries.

This is no toe-in-the-water project, but a bold deployment of a fleet of small modular reactors to provide the power for the North-East of England for the foreseeable future.

These are my thoughts.

The Reactor Design

The Wikipedia entry for X-energy has a section called Reactor Design, where this is said.

The Xe-100 is a proposed pebble bed high-temperature gas-cooled nuclear reactor design that is planned to be smaller, simpler and safer when compared to conventional nuclear designs. Pebble bed high temperature gas-cooled reactors were first proposed in 1944. Each reactor is planned to generate 200 MWt and approximately 76 MWe. The fuel for the Xe-100 is a spherical fuel element, or pebble, that utilizes the tristructural isotropic (TRISO) particle nuclear fuel design, with high-assay LEU (HALEU) uranium fuel enriched to 20%, to allow for longer periods between refueling. X-energy claims that TRISO fuel will make nuclear meltdowns virtually impossible.

Note.

  1. It is not a conventional design.
  2. Each reactor is only about 76 MW.
  3. This fits with “12-unit Xe-100 deployment at Hartlepool could add up to 960 megawatts (“MW”) of new capacity” in the Centrica press release.
  4. The 960 MW proposed for Hartlepool is roughly twice the size of the Rolls-Rpoyce SMR, which is 470 MW .
  5. Safety seems to be at the forefront of the design.
  6. I would assume, that the modular nature of the design, makes expansion easier.

I have no reason to believe that it is not a well-designed reactor.

Will Hartlepool Be The First Site?

No!

This page on the X-energy web site, describes their site in Texas, which appears will be a 320 MW power station providing power for Dow’s large site.

There appear to be similarities between the Texas and Hartlepool sites.

  • Both are supporting industry clustered close to the power station.
  • Both power stations appear to be supplying heat as well as electricity, which is common practice on large industrial sites.
  • Both use a fleet of small modular reactors.

But Hartlepool will use twelve reactors, as opposed to the four in Texas.

How Will The New Power Station Compare With The Current Hartlepool Nuclear Power Station?

Consider.

  • The current Hartlepool nuclear power station has two units with a total capacity of 1,185 MW.
  • The proposed Hartlepool nuclear power station will have twelve units with a total capacity of 960 MW.
  • My instinct as a Control Engineer gives me the feeling, that more units means higher reliability.
  • I suspect that offshore wind will make up the difference between the power output of the current and proposed power stations.

As the current Hartlepool nuclear power station is effectively being replaced with a slightly smaller station new station, if they get the project management right, it could be a painless exercise.

Will This Be The First Of Several Projects?

The press release has this paragraph.

Centrica will provide initial project capital for development with the goal of initiating full-scale activities in 2026. Subject to regulatory approval, the first electricity generation would be expected in the mid-2030s. Centrica and X-energy are already in discussions with additional potential equity partners, as well as leading global engineering and construction companies, with the goal of establishing a UK-based development company to develop this first and subsequent projects.

This approach is very similar to the approach being taken by Rolls-Royce for their small modular reactors.

Will Centrica Use An X-energy Fleet Of Advanced Modular Reactors At The Grain LNG Terminal?

This press release from Centrica is entitled Investment In Grain LNG Terminal.

This is one of the key highlights of the press release.

Opportunities for efficiencies to create additional near-term value, and future development options including a combined heat and power plant, bunkering, hydrogen and ammonia.

Note.

  1. Bunkering would be provided for ships powered by LNG, hydrogen or ammonia.
  2. Heat would be needed from the combined heat and power plant to gasify the LNG.
  3. Power would be needed from the combined heat and power plant to generate the hydrogen and ammonia and compress and/or liquify gases.

Currently, the heat and power is provided by the 1,275 MW Grain CHP gas-fired power station, but a new nuclear power station would help to decarbonise the terminal.

Replacement Of Heysham 1 Nuclear Power Station

Heysham 1 nuclear power station is part-owned by Centrica and EdF, as is Hartlepool nuclear power station.

Heysham 1 nuclear power station is a 3,000 MW nuclear power station, which is due to be decommissioned in 2028.

I don’t see why this power station can’t be replaced in the same manner as Hartlepool nuclear power station.

Replacement Of Heysham 2 Nuclear Power Station

Heysham 2 nuclear power station is part-owned by Centrica and EdF, as is Hartlepool nuclear power station.

Heysham 2 nuclear power station is a 3,100 MW nuclear power station, which is due to be decommissioned in 2030.

I don’t see why this power station can’t be replaced in the same manner as Hartlepool nuclear power station.

Replacement Of Torness Nuclear Power Station

Torness nuclear power station is part-owned by Centrica and EdF, as is Hartlepool nuclear power station.

Torness nuclear power station is a 1,290 MW nuclear power station, which is due to be decommissioned in 2030.

I don’t see why this power station can’t be replaced in the same manner as Hartlepool nuclear power station.

But the Scottish Nationalist Party may have other ideas?

What Would Be The Size Of Centrica’s And X-energy’s Fleet Of Advanced Modular Reactors?

Suppose.

  • Hartlepool, Grain CHP and Torness power stations were to be replaced by identical 960 MW ADRs.
  • Heysham 1 and Heysham 2 power stations were to be replaced by identical 1,500 MW ADRs.

This would give a total fleet size of 5,880 MW.

A paragraph in Centrica’s press release says this.

The companies have identified EDF and Centrica’s Hartlepool site as the preferred first site for a planned U.K. fleet of up to 6 gigawatts.

This fleet is only 120 MW short.

 

 

 

 

 

 

 

September 15, 2025 Posted by | Computing, Design, Energy, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

I’m Getting A New Hydrogen-Ready Boiler

The pump in my current nine-year-old boiler has died and it needs to be replaced.

The plumber gave me two solutions.

  • Put a new pump in the old boiler.
  • Replace the boiler with the current version of the old boiler.

Note.

  1. The plumber said the new boiler would be hydrogen-ready.
  2. I seem to remember the same pump failed before.
  3. The pump had failed because of a water-leak into its electrics.
  4. Was the previous failure of the pump caused by the same water-leak?
  5. Fitting a heat pump in my house would probably cost more than I could afford.
  6. The new boiler would come with a ten-year guarantee.

As an engineer, I can see the following scenarios for heating my house and providing hot water.

1. Keeping Calm And Carrying On

This means that the current arrangements for energy continue.

  • There would be no compulsory heat pumps.
  • There would be no change to any of my hardware, after installing the new boiler.
  • I would continue to get gas for heating and hot water  delivered through the mains.

The new boiler solution should give me ten years of reasonably trouble free-running, so long as the gas was natural gas, hydrogen blend or hydrogen.

2. Keeping Calm And Carrying On But My Energy Supplier Switches My Gas To 20 % Hydrogen-Blend

This means that the current arrangements for energy continue.

  • There would be no compulsory heat pumps.
  • There would be no change to any of my hardware, after installing the new boiler.
  • I would continue to get gas for heating and hot water  delivered through the mains.
  • The gas pipe into my house would have to be checked for compatibility with hydrogen-blend. But then I encountered no problems when switched from coal-gas to North Sea Gas around 1970.

The new boiler solution should give me ten years of reasonably trouble free-running, so long as the gas was natural gas, hydrogen-blend or hydrogen.

3. Keeping Calm And Carrying On But My Energy Supplier Switches My Gas To 100 % Hydrogen

This means that the current arrangements for energy continue.

  • There would be no compulsory heat pumps.
  • There would be no change to any of my hardware, after installing the new boiler.
  • I would continue to get gas for heating and hot water  delivered through the mains.
  • The gas pipe into my house would have to be checked for compatibility with hydrogen.

The new boiler solution should give me ten years of reasonably trouble free-running, so long as the gas was natural gas, hydrogen blend or hydrogen.

4. Switching To Some Form Of Heat Pump

  • This would mean that I would go all electric.
  • My house is a concrete lump and a guy I trust, said it would be difficult to fit a heat pump.
  • I am suspicious of scientific and technical solutions proposed by politicians.

I’m not saying, I’d never use a heat pump, but I will take a lot of convincing.

5. Switching To Some New Form Of Electric Heating

I have seen two companies, which use the excess heat from a data centre to heat water for central heating and/or hot water for domestic needs.

  • heata is a spin out from Centrica, that provides hot water and saves you money on your utility bill.
  • thermify is a startup from Wales, that replaces the gas boiler, with an electric one.

There are probably other similar systems under development.

From my knowledge of computing and electrical engineering, I believe devices like this could be new form of cost-efficient electric heating.

Because my house has three-bedrooms, I would need a thermify, for both heating and hot water, but a heata working in tandem with my gas boiler could probably keep me in hot water.

I would feel that large blocks of flats or offices could have a data centre in the basement to provide heat for the building.

I would also suspect, that there are other devices out there, that work on different principles.

My Decision

I’m fitting a new boiler, as that should give me ten years’guarantee-backed and trouble free running and future-proof me for all possible government decisions, except saying that everybody must fit a heat pump.

When, this new boiler pops its clogs, i would hope, that some clever engineers have come up with a plug-compatible electric replacement for the new boiler I am about to have fitted.

September 8, 2025 Posted by | Computing, Hydrogen | , , , , , , , | 2 Comments

Scotland And AquaVentus Partner On North Sea Hydrogen Pipeline Plans

The title of this post, is the same as that of this article on H2-View.

These four paragraphs introduce the deal and add some detail.

Hydrogen Scotland has committed to working with the AquaDuctus consortium on cross-border infrastructure concepts to connect Scotland’s offshore wind power to hydrogen production in the North Sea.

Under a Memorandum of Understanding (MOU), the two organisations plan to combine Scotland’s offshore wind with AquaVentus’ offshore electrolysis expertise, linking export and import goals across the North Sea.

The AquaDuctus pipeline is a planned offshore hydrogen link designed to carry green hydrogen through the North Sea, using a pipes and wires hybrid approach. The German consortium plans 10GW of offshore electrolysers in the North Sea, producing around one million tonnes of green hydrogen.

The pipeline design allows offshore wind farms to deliver electricity when the grid needs it, or convert power into hydrogen via electrolysis and transport it through pipelines.

Germany is embracing hydrogen in a big way.

  • I introduce AquaVentus in AquaVentus, which I suggest you read.
  • AquaVentus is being developed by RWE.
  • AquaVentus connects to a German hydrogen network called H2ercules to actually distribute the hydrogen.

This video shows the structure of AquaVentus.

I clipped this map from the video.

Note.

  1. The thick white line running North-West/South-East is the spine of AquaVentus, that will deliver hydrogen to Germany.
  2. There is a link to Esbjerg in Denmark, that is marked DK.
  3. There appears to be an undeveloped link to Norway, which goes North,
  4. There appears to be an undeveloped  link to Peterhead in Scotland, that is marked UK.
  5. There appears to be a link to just North of the Humber in England, that is marked UK.
  6. Just North of the Humber are the two massive gas storage sites of Aldbrough owned by SSE and Rough owned by Centrica.
  7. Aldbrough and Rough gas storage sites are being converted into two of the largest hydrogen storage sites in the world!
  8. There appear to be small ships sailing up and down the East Coast of the UK. Are these small coastal tankers, that are distributing the hydrogen to where it is needed?

When it is completed, AquaVentus will be a very comprehensive hydrogen network.

I believe that offshore electrolysers could be built in the area of the Hornsea 4, Dogger Bank South and other wind farms and the hydrogen generated would be taken by AquaVentus to either Germany or the UK.

  • Both countries get the hydrogen they need.
  • Excess hydrogen would be stored in Aldbrough and Rough.
  • British Steel at Scunthorpe gets decarbonised.
  • A 1.8 GW hydrogen-fired powerstation at Keadby gets the hydrogen it needs to backup the wind farms.

Germany and the UK get security in the supply of hydrogen.

Conclusion

This should be a massive deal for Germany and the UK.

September 6, 2025 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , | Leave a comment

Powering The Humber Energy Revolution

The title of this post is the same as this story on the Centrica web site.

This is the sub-heading.

From the UK’s largest industrial carbon emitter to a clean energy powerhouse, the Humber is ready to be transformed.

These are the first two paragraphs, which add more detail.

We’re prepared to invest £2 billion to keep Rough open and transform it into one of the world’s largest hydrogen storage facilities. This bold move is vital for the UK’s energy security, accelerating the energy transition and unlocking thousands of green jobs. But to make this vision a reality, we need strategic support from government.

We’ve spent time in the Humber, speaking with local communities and industry leaders to understand how this region’s infrastructure shapes lives and powers the nation.

It looks to me, that Centrica have got fed up with our useless, squabbling politicians and decided to act.

There is also a video to watch.

 

September 6, 2025 Posted by | Energy, Energy Storage, Hydrogen | , , , | 1 Comment

Shell Pulls Plug On Rotterdam Biofuels Plant

The title of this post, is the same as that of this article on The Times.

This is the sub-heading.

Retreat from green energy continues as facility that was earmarked to produce sustainable aviation fuel and renewable diesel will not now be built

These first three paragraphs add some details.

Shell has scrapped construction of one of Europe’s biggest biofuels plants as it continues its retreat from green energy

The move by the FTSE 100 oil and gas group represents a further setback for efforts to cut aviation emissions.

Shell said it would not restart construction of the biofuels facility at its Rotterdam energy and chemicals plant, which was due to produce sustainable aviation fuel (SAF) and renewable diesel.

When I wrote Centrica Secures Investment Stake In Gasrec Helping Boost UK Bio-LNG Ambitions, I took a look at the use of liquified natural gas (LNG) in transport.

This paragraph from the Centrica press release about the stake, gives the thoughts of Chris O’Shea, who is Group Chief Executive, Centrica.

Chris O’Shea, Group Chief Executive, Centrica plc, said: “Demand for bio-LNG for transport is growing fast as more HGV operators make the switch – drawn by a clean, ready-to-use fuel which slashes CO2 emissions by up to 85 per cent in comparison to diesel*. This investment in Gasrec enhances our collaboration with the leading company in the sector, and puts us in a strong position to energise a vital sector of the industry on its journey to net zero.”

Chris O’Shea of Centrica appears to feel that bio-LNG is a good alternative to diesel, so have Shell come to a similar decision, about satisfying the demand for diesel?

I asked Google AI if LNG has advantages over diesel as a truck fuel and received this answer.

Yes, LNG offers advantages over diesel, including significantly lower emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM), which improves local air quality. It can also be more economically efficient, with fuel costs potentially lower than diesel depending on market conditions. However, the overall greenhouse gas (GHG) benefits are mixed; while LNG has a lower carbon content, it can result in higher lifecycle GHG emissions due to energy losses in its production and transport, as well as methane slip.

Note.

  1. If it drops emissions by up to 85 percent for bio-LNG, surely, it would do the same for LNG.
  2. I also think with tight regulations, the use of LNG could improve air quality in cities like London.
  3. LNG would probably be a more affordable fuel than hydrogen.

It should also be noted, that several major diesel engine makers, now make families of engines, which can handle, diesel, hydrogen and natural gas.

LNG would also be a convenient stepping stone between current fuels and hydrogen, that might give a few extra years for the transition.

Could LNG Be Used In Aircraft?

Consider.

  • LNG would certainly give some reduction in carbon emissions.
  • Handling LNG in aircraft could have similar problems to hydrogen, so companies like Airbus might have already solved them.
  • In addition, LNG doesn’t have the fearsome reputation, that hydrogen seems to have gained because of the Hindenburg.
  • It would be easier to provide LNG fuel at airports all round the world.
  • Airbus have said availability of hydrogen at airports, could be a problem.

Out of curiosity, I asked Google AI if LNG could be used to power an airliner and received this answer.

Yes, liquefied natural gas (LNG) can theoretically be used to power airliners, offering a potential reduction in CO2 emissions compared to conventional jet fuel, but significant challenges exist. These challenges include the need for entirely new, larger, and heavier cryogenic fuel tanks, modifications to aircraft engines and fuel systems, and the development of a new global infrastructure for LNG supply. While experimental tests have been conducted, such as on the Soviet Union’s Tupolev Tu-155 in 1989, LNG is not currently in normal service due to these practical and infrastructural hurdles.

I would prefer it was a purpose-designed Airbus, than a Soviet-era Tupolev.

 

 

 

September 3, 2025 Posted by | Energy, Environment, Hydrogen, Transport/Travel | , , , , , , , | 2 Comments

Centrica Secures Investment Stake In Gasrec Helping Boost UK Bio-LNG Ambitions

The title of this post, is the same as that of this press release from Centrica.

This is the sub-heading.

Centrica has secured a minority stake in Gasrec, the UK’s largest dual provider of bio-LNG (bio-Liquified Natural Gas) and bio-CNG (bio-Compressed Natural Gas) to the road transport sector,

These first two paragraphs give more details.

Gasrec says the investment will drive the next phase of its infrastructure ambitions, with plans to open a UK wide network of open-access refuelling stations supplying renewable bio-LNG for the decarbonisation of heavy goods vehicles.

Centrica is taking a 16% stake and becomes one of three major shareholders in Gasrec, alongside global integrated energy company bp and private family office 44 North.

I have some thoughts.

Does Running A Truck On bio-LNG or bio-CNG. Reduce Carbon Emissions?

This paragraph from the press release, gives the thoughts of Chris O’Shea, who is Group Chief Executive, Centrica.

Chris O’Shea, Group Chief Executive, Centrica plc, said: “Demand for bio-LNG for transport is growing fast as more HGV operators make the switch – drawn by a clean, ready-to-use fuel which slashes CO2 emissions by up to 85 per cent in comparison to diesel*. This investment in Gasrec enhances our collaboration with the leading company in the sector, and puts us in a strong position to energise a vital sector of the industry on its journey to net zero.”

As Centrica is a public company, with shareholders, who would take a dim view of Mr. O’Shea telling porkies, I suspect we can assume that the following is true.

Drawn by a clean, ready-to-use fuel which slashes CO2 emissions by up to 85 per cent in comparison to diesel.

The asterisk in the full quote, refers to this note.

Low Carbon Vehicle Partnership, Innovate UK and Office for Low Emission Vehicles, Low Emission Freight & Logistics Trial (LEFT), Key Findings, November 2020. Using specific feedstocks CO2 reductions of 200% are achievable.

Centrica could be being conservative with their claims.

Decarbonising Buses, Locomotives And Trucks

Despite what Elon Musk, would have us believe, electric trucks will not dominate the future of freight transport.

An electric truck would be the vehicle equivalent of asking Usain Bolt to run a hundred metres with a large refrigerator on his back.

Trucks are going to need a fuel without a weight penalty and with a long range.

I asked Google for information about Cummins diesel, natural gas and hydrogen engines and received this AI Overview.

Cummins offers engines powered by diesel, natural gas, and hydrogen. While diesel engines are well-established, Cummins is also developing both natural gas and hydrogen engines, particularly focusing on hydrogen as a pathway to zero-carbon solutions for various applications. Cummins utilizes a fuel-agnostic platform, meaning a common base engine can be adapted for different fuel types, including diesel, natural gas, and hydrogen.

Recently, GB Railfreight purchased thirty Class 99 locomotives from Stadler.

  • They can use electrification, where it exists.
  • Where electrification doesn’t exist, they can use an onboard Cummins diesel engine, which is built in Darlington.
  • In electric-mode, they have 6.2 MW of power, and are the most powerful locomotives ever to run on UK railways.
  • In diesel-mode, they have 1.8 MW of power, which is more than enough to haul a large container train in and out of Felixstowe.

I had thought that at some future date, Cummins would convert these locomotives to electro-hydrogen.

But now that Gasrec is providing bio-LNG and bio-CNG, GB Railfreight, have the option of converting both hydrogen and biomethane.

Similar logic can be applied to Wrightbus’s Streetdeck Ultroliner, one version of which is fitted with a Cummins engine, that can be converted to electric, hydrogen or natural gas, which of course includes biomethane. This page on the Wrightbus web site describes the bus.

Wrightbus are also going back into coach manufacture, as I wrote about in Wrightbus Goes Back To The Future As It Relaunches The Contour Coach. As with the Streetdeck Ultroliner, Cummins seem to be providing one of the power units.

It seems to me, that the zero- and low-carbon revolution in transport will generate a need for the availability of biomethane, hydrogen and natural gas fuel for transport all over the country.

Gasrec with around twenty biomethane fuelling points around the country, seem well-placed to supply the biomethane in bio-LNG or bio-CNG  form.

Could Gasrec Deliver Hydrogen?

Various bus companies in the UK, have had difficulty getting the fuel for their hydrogen buses.

I believe that delivering hydrogen would be very similar to delivering LNG and if Gasrec can deliver LNG successfully and safely, they probably have the technology to do the same for hydrogen.

Centrica Seem To Be Assembling An Interesting Consortium

These are some deals, that I have reported on this blog, that involve Centrica.

Note.

  1. A lot of these deals are are about hydrogen production.
  2. Some of these deals are about biomethane production.
  3. None of these deals talk about getting hydrogen and biomethane to customers.

It appears to me, that Gasrec have a model that works to get hydrogen, methane and biomethane from production and storage to the end customers.

Developing A Rural Hydrogen Network

In Developing A Rural Hydrogen Network, I talked about supplying all those millions of off-gas grid properties with hydrogen for heating, agricultural and industrial purposes, in the countryside of the UK.

Gasrec have the technology to decarbonise the countryside.

Conclusion

Gasrec would appear to be a very useful partner for Centrica.

 

September 3, 2025 Posted by | Energy, Energy Storage, Hydrogen, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Centrica Enters Into Long Term Natural Gas Sale & Purchase Agreement

The title of this post, is the same as this press release from Centrica.

This is the sub-heading,

Centrica plc today confirmed that its trading arm, Centrica Energy, has entered into a natural gas sale and purchase agreement with US-based Devon Energy Corporation.

This first paragraph adds a few more details.

Under the agreement, Devon Energy will supply 50,000 (MMBtu) per day of natural gas over a 10‑year term starting in 2028. This is equivalent to five LNG cargoes per year. The volumes will be indexed to European gas hub price (TTF). This sale and purchase agreement supports Centrica’s objective of managing market price risk in its LNG portfolio by aligning feed gas pricing with European gas prices whilst providing Devon Energy with international price exposure.

At a first look, it looks a lot of gas.

In Investment In Grain LNG, I talk about Centrica’s purchase of the Grain LNG Terminal from National Grid. But the Grain LNG Terminal comes with several things that Centrica might need for gas from Devon.

  • A large amount of gas storage.
  • The ability to convert liquid natural gas (LNG) into gas suitable for consumers.
  • Space to build more storage if required.
  • The ability to store LNG for other companies.
  • Two jetties for delivering the LNG to the Grain LNG Terminal.
  • The ability to load tankers with LNG, so that it can be sold on to third parties like say the Germans or the Poles.

Centrica also say this about their use of the Grain LNG Terminal in this press release, that describes the purchase of the terminal.

Aligned with Centrica’s strategy of investing in regulated and contracted assets supporting the energy transition, delivering predictable long-term, inflation-linked cash flows, with 100% of capacity contracted until 2029, >70% until 2038 and >50% until 2045.

Centrica have obviously modelled their gas supply and delivery and I believe they have come up with a simple strategy, that will work.

How Will Centrica Use The Gas From The Grain LNG Terminal?

The Wikipedia entry for the Grain LNG Terminal says this about the terminal delivering gas into the gas grid.

The terminal can handle up to 15 million tonnes per annum of LNG, has a storage capacity for one million cubic metres of LNG, and is able to regasify up to 645 GWh per day (58 million cubic metres per day) for delivery into the high pressure gas National Transmission System (NTS).

Note.

  1. This will be one of the major uses of the gas.
  2. I wouldn’t be surprised if these capacities will be increased significantly, so that more gas can be stored and processed.

In Investment in Grain LNG, I outlined how I believe that hydrogen and ammonia will be produced for the bunkering of ships on one of busiest sea lanes in Europe, if not the world.

Some LNG will be used to create these zero-carbon fuels.

Some modern ships, also run on natural gas, so I asked Google AI about their operation and received this answer.

Ships can run on natural gas, specifically liquefied natural gas (LNG), by using it as a fuel source in specially designed engines. LNG is natural gas that has been cooled to a liquid state at -162°C, making it easier to store and transport. This liquid form is then used to power the ship’s engines, either directly or by burning the boil-off gas (BOG) that naturally occurs when LNG warms up.

This means that some LNG could be used to directly fuel these ships.

What Is The Gas Capacity Of The Grain LNG Terminal?

I asked Google AI this question and received this answer.

The Grain LNG Terminal, the largest LNG import terminal in Europe, has a storage capacity of 1,000,000 cubic meters (m³) and an annual throughput capacity of 15 million tonnes of LNG. This is equivalent to about 20% of the UK’s total gas demand. The terminal also has the capacity to deliver 25% of the UK’s daily gas demand.

As the space is there, I wouldn’t be surprised to see Centrica increase the capacity of the terminal, as in cold weather, emergency gas for Germany can be delivered quicker from Kent than the United States.

Could The Grain LNG Terminal Accept Gas Deliveries From The United States?

I’m certain that it already does.

Could The Grain LNG Terminal Accept Gas Deliveries From The UK?

If we start extracting gas again from under the seas around the UK, could the Grain LNG Terminal be used to store it?

Yes, but it would have to be liquified first.

It would be more energy efficient to process the extracted gas, so it could be used directly and gasify enough gas at Grain LNG Terminal from storage to make up any shortfall.

Conclusion

Centrica have done some very deep joined up thinking, by doing a long term gas deal and the Grain LNG Terminal purchase so that they have the gas to supply and somewhere to keep it, until it is needed.

 

August 19, 2025 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , | 3 Comments

Investment in Grain LNG

The title of this post, is the same as that of this press release from Centrica.

This sub-heading outlines the deal.

Centrica plc (the “Company”, “Centrica”) is pleased to announce the acquisition of the Isle of Grain liquified natural gas terminal (“Grain LNG”) in partnership1 with Energy Capital Partners LLP (“ECP”) from National Grid group (“National Grid”) for an enterprise value of £1.5 billion. After taking into account approximately £1.1 billion of new non-recourse project finance debt, Centrica’s 50% share of the equity investment is approximately £200 million.

The press release lists these key points.

  • Grain LNG delivers vital energy security for the UK, providing critical LNG import/export, regasification and rapid response gas storage capacity to balance the energy system.
  • Aligned with Centrica’s strategy of investing in regulated and contracted assets supporting the energy transition, delivering predictable long-term, inflation-linked cash flows, with 100% of capacity contracted until 2029, >70% until 2038 and >50% until 2045.
  • Opportunities for efficiencies to create additional near-term value, and future development options including a combined heat and power plant, bunkering, hydrogen and ammonia.
  • Highly efficient funding structure, with Centrica’s equity investment of approximately £200 million alongside non-recourse project financing.
  • Strong life of asset returns aligned with Centrica’s financial framework, with an expected unlevered IRR2 of around 9% and an equity IRR2 of around 14%+
    Underpins delivery of £1.6 billion end-2028 EBITDA target3 – Centrica’s share of EBITDA expected to be approximately £100 million per annum and cash distributions expected to be around £20 million on average per annum for 2026-2028, representing an attractive yield on Centrica’s equity investment
  • Partnership with ECP (part of Bridgepoint Group plc), one of the largest private owners of natural gas generation and infrastructure assets in the U.S. with direct experience in supporting grid reliability.

This Google Map shows the various energy assets on the Isle of Grain.

 

Note.

  1. It appears that works for the 1, 400 MW NeuConnect interconnector to Wilhelmshaven in Germany, are taking place in the North-East corner of the map.
  2. Grain CHP powerstation is a 1,275MW CCGT power station, which is owned by German company; Uniper, that is in the South-East corner of the map, which can also supply up to 340MW of heat energy recovered from the steam condensation to run the vapourisers in the nearby liquefied natural gas terminal.
  3. The Grain LNG terminal is at the Western side of the map.
  4. In the Thames Estuary to the East of the Isle of Grain, I estimate that there are about 1,500 MW of wind turbines.

I find it interesting that two of the assets are German owned.

I have some thoughts.

It Is A Large Site With Space For Expansion

This Google Map shows the whole of the Isle of Grain.

Note.

  1. The Grain LNG terminal is around the label Wallend.
  2. The River Medway runs East-West at the bottom of the map.
  3. Gas tankers deliver and take on gas at jetties on the North Bank of the Medway.

There could be space to expand the terminal, if the RSPB would allow it.

As an example, I asked Google AI, if peregrine falcons nest on chemical plants and got this reply.

Yes, peregrine falcons do nest on chemical plants. They have adapted to using various urban and industrial structures, including chemical plants, for nesting. This is particularly true in areas where natural cliff habitats are scarce.

Peregrine falcons are known for their adaptability, and their population has seen a resurgence in recent decades, partly due to their ability to utilize man-made structures. These structures often mimic their natural cliffside nesting

Cliffs do seem scarce on the Isle of Grain. I also asked Google AI, if peregrine falcons ate small rodents, as several chemical and other plants, where I’ve worked, had a rodent problem. One plant had a cat problem, as there had been so many rats. This was the reply.

Yes, peregrine falcons do eat small rodents, though they primarily consume birds. While their diet mainly consists of other birds like pigeons, doves, and waterfowl, they will also hunt and eat small mammals, including rodents such as mice, rats, and voles. They are opportunistic hunters and will take advantage of readily available prey, including insects, amphibians, and even fish.

I’m sure if Centrica wanted to expand, they’d employ the best experts.

Who Are ECP?

One of the key points of the press release is that this deal is a partnership with ECP (part of Bridgepoint Group plc), one of the largest private owners of natural gas generation and infrastructure assets in the U.S. with direct experience in supporting grid reliability.

The Wikipedia entry for ECP or Energy Capital Partners has this first section.

Energy Capital Partners Management, LP (ECP) is an American investment firm headquartered in Summit, New Jersey. It focuses on investments in the energy sector. The firm has additional offices in New York City, Houston, San Diego, Fort Lauderdale and Seoul.

In August 2024, ECP merged with Bridgepoint Group to form a private assets investment platform.

The Wikipedia entry for the Bridgepoint Group has this first paragraph.

Bridgepoint Group plc is a British private investment company listed on the London Stock Exchange and is a constituent of the FTSE 250 Index.

The company had started as part of NatWest.

Are The Germans Going To Take Away Some Of Our Electricity?

Consider.

  • Germany has a big need to replace Russian gas and indigenous coal, and to decarbonise.
  • Neuconnect is a 1.4 GW interconnector between the Isle of Grain and Wilhelmshaven in Germany. It is scheduled to be completed in 2028.
  • The Grain CHP powerstation is a 1,275MW CCGT power station, which is owned by German company; Uniper, could almost keep NeuConnect working at full power on its own.
  • I said earlier, in the Thames Estuary to the East of the Isle of Grain, I estimate that there are about 1,500 MW of wind turbines. One of which is part German-owned.

The Germans are also building a large electrolyser at Wilhelshaven, which is described by Google AI like this.

The Wilhelmshaven Green Energy Hub will initially feature a 500MW electrolyzer, with plans to potentially expand to 1GW, according to Energy Monitor. The hub, a joint project between Tree Energy Solutions (TES) and EWE, aims to produce green hydrogen using renewable energy sources like offshore wind. The 500MW electrolyzer is scheduled to be operational by 2028.

I wouldn’t be surprised to see that the Wilhelmshaven electrolyser were to be powered by British-generated electricity flowing down NeuConnect.

Centrica Says Their Future Development Options Include A Combined Heat And Power Plant

This objective was set in one of the key points.

This is the first paragraph of the Wikipedia entry for the Grain LNG Terminal.

Grain LNG Terminal is a Liquefied Natural Gas (LNG) terminal on the Isle of Grain, 37 miles (60 km) east of London. It has facilities for the offloading and reloading of LNG from ships at two jetties on the River Medway; for storing and blending LNG; for truck loading; and regasifying and blending natural gas to meet UK specifications. The terminal can handle up to 15 million tonnes per annum of LNG, has a storage capacity for one million cubic metres of LNG, and is able to regasify up to 645 GWh per day (58 million cubic metres per day) for delivery into the high pressure gas National Transmission System (NTS). The facility is owned and operated by National Grid Grain LNG Ltd, a wholly owned subsidiary of National Grid.

Note.

  1. This paragraph was written before the Centrica takeover.
  2. The terminal also converts liquid natural gas into gas to be distributed around the UK.

The heat needed to convert the liquid natural gas to gas is provided by the Grain CHP power station.

  • Currently 340 MW of heat is provided.
  • If the Grain LNG terminal is expanded, it will probably need more heat.

I can see Centrica building a combined heat and power (CHP) power station, that can be expanded to meet the current and future needs of gasification at the Grain LNG terminal.

I wouldn’t be surprised to see the CHP power station fitted with carbon capture, as Kent is surely one county, where carbon dioxide can be used in food production, so we can generate our carbon dioxide and eat it.

 

 Centrica Says Their Future Development Options Include Hydrogen

This objective was set in one of the key points.

Consider.

  • Centrica are an investor in HiiROC, who have a unique method of generating affordable zero-carbon hydrogen called thermal plasma electrolysis, which uses a fifth of the electricity, that traditional electrolysis does.
  • HiiROC can use natural gas as a feedstock. Centrica won’t be short of that at Grain.
  • There is space to build a large HiiROC system at the Isle of Grain site.
  • The hydrogen could be taken away by tanker ships.

Like the electricity , which will use the 450 mile NeuConnect interconnector, the hydrogen could even be exported to Wilhelmshaven in Germany by pipeline.

Wilhelmshaven is being setup to be a major German hub to both generate, import and distribute hydrogen.

 

I asked Google AI, how much hydrogen a GWh would produce and received this answer.

A GWh of electricity can produce approximately 20-22 tonnes of hydrogen through electrolysis, depending on the efficiency of the electrolyzer. Modern commercial electrolyzers operate at an efficiency of roughly 70-80%, meaning they require about 50-55 kWh of electricity to produce 1 kg of hydrogen. A GWh (1 gigawatt-hour) is equal to 1,000,000 kWh, and 1 tonne of hydrogen contains roughly 33.33 MWh of energy. 

As it is claimed on the web that HiiROC is five times more efficient than traditional electrolysis, it could need around 10-11 kWh to produce one kg. of hydrogen.

1 GWh would produce between 90-100 tonnes of hydrogen.

 Centrica Says Their Future Development Options Include Ammonia

This objective was set in one of the key points.

I asked Google AI if ammonia can be produced from hydrogen and received this answer.

Yes, ammonia (NH3) can be produced from hydrogen (H2) through a process called the Haber-Bosch process. This process involves combining hydrogen with nitrogen (N2) from the air, under high temperature and pressure, in the presence of a catalyst.

Ammonia has a large number of uses, including making fertiliser and the powering of large ships.

I asked Google AI, if there are small Haber-Bosch processes to make ammonia from hydrogen and nitrogen and received this answer.

Yes, there are efforts to develop smaller-scale Haber-Bosch processes for ammonia production. While the traditional Haber-Bosch process is typically associated with large industrial plants, research and development are exploring ways to adapt it for smaller, distributed production, particularly for localized fertilizer or fuel applications.

I wondered if Centrica are involved in the efforts to develop smaller-scale Haber-Bosch processes for ammonia production.

Google AI gave me this quick answer.

Centrica is involved in research related to the Haber-Bosch process, particularly in the context of transitioning to a low-carbon energy future. They are exploring how to adapt the Haber-Bosch process, which is crucial for fertilizer production but also a significant source of CO2 emissions, to utilize renewable energy sources. This includes investigating the use of green hydrogen produced from water electrolysis and renewable electricity. Centrica is also involved in research related to using ammonia as a fuel, including potentially for power generation

That looks to be a very positive answer. Especially, as local low-carbon fertiliser production could be a very powerful concept.

Centrica Says Their Future Development Options Include Bunkering

This objective was set in one of the key points.

Bunkering is the process of refuelling ships.

I didn’t know much about bunkering, when I started to read Centrica’s press release, but the Wikipedia entry, was a good way to get some information.

This section in the Wikipedia entry is entitled Two Types Of Bunkering, where this is said.

The two most common types of bunkering procedure at sea are “ship to ship bunkering” (STSB), in which one ship acts as a terminal, while the other moors. The second type is “stern line bunkering” (SLB), which is the easiest method of transferring oil but can be risky during bad weather.

Over the years, I have found, that two zero-carbon fuels are under development, for powering ships; hydrogen and ammonia. Others are developing ships powered by naturalo gas.

I asked Google AI if hydrogen can power ships and received this answer.

Yes, hydrogen can power ships. It can be used as a fuel for fuel cells, which generate electricity to power the ship’s propulsion and other systems, or it can be burned in modified combustion engines. Hydrogen offers a zero-emission solution for shipping, with water vapor being the only byproduct when used in fuel cells.

Google AI also told me this.

The world’s first hydrogen-powered cruise ship, the “Viking Libra”, is currently under construction and is scheduled for delivery in late 2026. This innovative vessel, a collaboration between Viking Cruises and Italian shipbuilder Fincantieri, will utilize hydrogen for both propulsion and electricity generation, aiming for zero-emission operation.

I also asked Google AI if ammonia can power ships and received this answer.

Yes, ammonia can be used to power ships and is considered a promising alternative fuel for the maritime industry. Several companies and organizations are actively developing ammonia-powered ship designs and technologies. While challenges remain, particularly around safety and infrastructure, ammonia is seen as a key potential fuel for decarbonizing shipping.

Finally, I asked I asked Google AI if natural gas can power ships and received this answer.

Yes, ships can be powered by natural gas, specifically in the form of liquefied natural gas (LNG). LNG is increasingly used as a marine fuel, offering environmental benefits over traditional fuels like diesel.

It would seem to be a case of you pays your money and makes a choice between one of four technologies; ammonia, hydrogen fuel-cell, hydrogen-ICE and LNG.

I looks to me, that if Centrica provide bunkering services for ships, they have the means to cover most of the market by providing hydrogen and ammonia, in addition to natural gas.

Although, I don’t know much about bunkering, I do feel that the two current methods, that work for oil, could be made to work for these fuels.

This Google Map shows the Thames Estuary.

Note.

  1. The Port of Tilbury is in the South-West corner of the map.
  2. London Gateway is indicated by the red arrow.
  3. The Isle of Grain is in the South-East corner of the map.
  4. Other ports between Tilbury and the Isle of Grain include Barking, Dagenham, Dartford, Erith, Greenwich, Northfleet, Purfleet, Silvertown and Thurrock.

There was never a more true phrase than – “Location, Location and Location”. And the Isle of Grain would appear to be in the right place to send out a bunkering tanker to a passing ship, that was calling at a port in London or just passing through the Strait of Dover.

This Google Map shows the Thames between London Gateway and the Isle of Grain.

Note.

  1. London Gateway is indicated by the red arrow.
  2. The Isle of Grain is in the South-East corner of the map.

It seems to me, that a refuelling philosophy could easily be worked out.

How Large is The Bunkering Market?

I asked Google AI this question and received this answer.

The world bunker fuel market is a multi-billion dollar industry, with the market size valued at USD 150.93 billion in 2023. It is projected to reach USD 242.29 billion by 2032, growing at a CAGR of 5.4% according to SkyQuest Technology. In terms of volume, the global bunker demand was estimated at 233.1 million metric tons in 2023 according to the IMO.

The market is not small!

 

 

August 18, 2025 Posted by | Energy, Finance, Hydrogen, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Hydrogen Deployment Milestone For Cemex And HiiROC

The title of this post, is the same as that of this article on Agg-Net.

This is the sub-heading.

Cemex kick-start first-of-a-kind low-carbon hydrogen project using thermal plasma electrolysis in cement production

These first two paragraphs add more detail.

CEMEX Ventures, Cemex’s corporate venture capital (CVC) and open innovation unit, announced today an initial hydrogen deployment at industrial scale with HiiROC, the pioneering British hydrogen company that produces affordable, clean hydrogen, at their Rugby cement plant in the UK.

Hydrogen has emerged as a low-carbon energy source within the construction industry’s decarbonization roadmap and offers potential as an energy solution to help reduce the sector’s reliance on fossil fuels and lower CO2 emissions. This venture marks a significant milestone for Cemex, as it represents the beginning of a large-scale strategic project plan with the aim to further lower their carbon emissions in cement production.

These third paragraph is a good outline of HiiROC and how it can be deployed.

HiiROC produce carbon-neutral hydrogen using their proprietary Thermal Plasma Electrolysis (TPE) process, which requires just one-fifth of the electrical energy used in water electrolysis and captures carbon as a solid by-product, avoiding CO2 emissions – a game-changer for the industry. HiiROC’s modular solution can be deployed as single units to full-scale industrial plants, and the hydrogen produced can be used as an alternative energy source to fuel clinker production processes, helping Cemex to achieve their decarbonization goals.

Centrica, Cemex, Hyundai, Kia and others are investors in HiiROC.

I asked Google AI, what percentage of carbon emissions came from cement production and got this answer.

Cement production accounts for roughly 8% of global carbon dioxide (CO2) emissions, according to think tank Chatham House. This makes it a significant contributor to climate change, with the industry’s emissions comparable to the total emissions of some countries.

If HiiROC can take a big bite out of carbon emissions, by reducing cement production’s 8 % share, they would be on a winner.

 

August 10, 2025 Posted by | Business, Energy, Hydrogen | , , , , , , , | Leave a comment